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Abstract

The concept of unsupervised universal sen-
tence encoders has gained traction recently,
wherein pre-trained models generate effec-
tive task-agnostic fixed-dimensional represen-
tations for phrases, sentences and paragraphs.
Such methods are of varying complexity, from
simple weighted-averages of word vectors to
complex language-models based on bidirec-
tional transformers. In this work we pro-
pose a novel technique to generate sentence-
embeddings in an unsupervised fashion by pro-
jecting the sentences onto a fixed-dimensional
manifold with the objective of preserving local
neighbourhoods in the original space. To delin-
eate such neighbourhoods we experiment with
several set-distance metrics, including the re-
cently proposed Word Mover’s distance, while
the fixed-dimensional projection is achieved
by employing a scalable and efficient mani-
fold approximation method rooted in topologi-
cal data analysis. We test our approach, which
we term EMAP or Embeddings by Manifold
Approximation and Projection, on six publicly
available text-classification datasets of varying
size and complexity. Empirical results show
that our method consistently performs similar
to or better than several alternative state-of-the-
art approaches.

1 Introduction

1.1 On sentence-embeddings
Dense vector representation of words, or word-
embeddings, form the backbone of most modern
NLP applications and can be constructed using
context-free (Bengio et al., 2003; Mikolov et al.,
2013; Pennington et al., 2014) or contextualized
methods (Peters et al., 2018; Devlin et al., 2019).

Given that practical systems often benefit from
having representations for sentences and docu-
ments, in addition to word-embeddings (Palangi
et al., 2016; Yan et al., 2016), a simple trick is

to use the weighted average over some or all of
the embeddings of words in a sentence or docu-
ment. Although sentence-embeddings constructed
this way often lose information because of the dis-
regard for word-order during averaging, they have
been found to be surprisingly performant (Aldar-
maki and Diab, 2018).

More sophisticated methods focus on jointly
learning the embeddings of sentences and words
using models similar to Word2Vec (Le and Mikolov,
2014; Chen, 2017), using encoder-decoder ap-
proaches that reconstruct the surrounding sentences
of an encoded passage (Kiros et al., 2015), or train-
ing bi-directional LSTM models on large exter-
nal datasets (Conneau et al., 2017). Meaningful
sentence-embeddings have also been constructed
by fine-tuning pre-trained bidirectional transform-
ers (Devlin et al., 2019) using a Siamese architec-
ture (Reimers and Gurevych, 2019).

In parallel to the approaches mentioned above, a
stream of methods have emerged recently which ex-
ploit the inherent geometric properties of the struc-
ture of sentences, by treating them as sets or se-
quences of word-embeddings. For example, Arora
et al. (2017) propose the construction of sentence-
embeddings based on weighted word-embedding
averages with the removal of the dominant singular
vector, while Rücklé et al. (2018) produce sentence-
embeddings by concatenating several power-means
of word-embeddings corresponding to a sentence.
Very recently, spectral decomposition techniques
were used to create sentence-embeddings, which
produced state-of-the-art results when used in con-
catenation with averaging (Kayal and Tsatsaronis,
2019; Almarwani et al., 2019).

Our work is most related to that of Wu et al.
(2018) who use Random Features (Rahimi and
Recht, 2008) to learn document embeddings which
preserve the properties of an explicitly-defined ker-
nel based on the Word Mover’s Distance (Kusner
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et al., 2015). Where Wu et al. predefine the na-
ture of the kernel, our proposed approach can learn
the similarity-preserving manifold for a given set-
distance metric, offering increased flexibility.

1.2 Motivation and contributions

A simple way to form sentence-embeddings is to
compute the dimension-wise arithmetic mean of
the embeddings of the words in a particular sen-
tence. Even though this approach incurs informa-
tion loss by disregarding the fact that sentences
are sequences (or, at the very least, sets) of word
vectors, it works well in practice. This already pro-
vides an indication that there is more information
in the sentences to be exploited.

Kusner et al. (2015) aim to use more of the
information available in a sentence by represent-
ing sentences as a weighted point cloud of embed-
ded words. Rooted in transportation theory, their
Word Mover’s distance (WMD) is the minimum
amount of distance that the embedded words of
a sentence need to travel to reach the embedded
words of another sentence. The approach achieves
state-of-the-art results for sentence classification
when combined with a k-NN classifier (Cover and
Hart, 1967). Since their work, other distance met-
rics have been suggested (Singh et al., 2019; Wang
et al., 2019), also motivated by how transportation
problems are solved.

Considering that sentences are sets of word vec-
tors, a large variety of methods exist in literature
that can be used to calculate the distance between
two sets, in addition to the ones based on transport
theory. Thus, as a first contribution, we compare
alternative metrics to measure distances between
sentences. The metrics we suggest, namely the
Hausdorff distance and the Energy distance, are
intuitive to explain and reasonably fast to calculate.
The choice of these particular distances are moti-
vated by their differing origins and their general
usefulness in the respective application domains.

Once calculated, these distances can be used in
conjunction with k-nearest neighbours for classi-
fication tasks, and k-means for clustering tasks.
However, these learning algorithms are rather sim-
plistic and the state-of-the-art machine learning
algorithms require a fixed-length feature represen-
tation as input to them. Moreover, having fixed-
length representations for sentences (sentence-
embeddings) also provides a large degree of flex-
ibility for downstream tasks, as compared to hav-

ing only relative distances between them. With
this as motivation, the second contribution of this
work is to produce sentence-embeddings that ap-
proximately preserve the topological properties of
the original sentence space. We propose to do so
using an efficient scalable manifold-learning algo-
rithm termed UMAP (McInnes et al., 2018) from
topological data analysis. Empirical results show
that this process yields sentence-embeddings that
deliver near state-of-the-art classification perfor-
mance with a simple classifier.

2 Methodology

2.1 Calculating distances

In this work, we experiment with three different
distance measures to determine the distance be-
tween sentences. The first measure (Energy dis-
tance) is motivated by a useful linkage criterion
from hierarchical clustering (Rokach and Maimon,
2005), while the second one (Hausdorff distance)
is an important metric from algebraic topology that
has been successfully used in document indexing
(Tsatsaronis et al., 2012). The final metric (Word
Mover’s distance) is a recent extension of an exist-
ing distance measure between distributions, that is
particularly suited for use with word-embeddings
(Kusner et al., 2015).

Prior to defining the distances that have been
used in this work, we first proceed to outline the
notations that we will be using to describe them.

2.1.1 Notations
Let W ∈ RN×d denote a word-embedding matrix,
such that the vocabulary corresponding to it con-
sists of N words, and each word in it, wi ∈ Rd, is
d-dimensional. This word-embedding matrix and
its constituent words may come from pre-trained
representations such as Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), in which
case d = 300.

Let S be a set of sentences and s, s′ be two
sentences from this set. Each such sentence can
be viewed as a set of word-embeddings, {w} ∈ s.
Additionally, let the length of a sentence, s, be
denoted as |s|, and the cardinality of the set, S , be
denoted by |S |.

Let e(wi, wj) denote the distance between two
word-embeddings, wi, wj . In the context of this
paper, this distance is Euclidean:

e(wi, wj) = ‖wi − wj‖2 (1)
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Finally, D(s, s′) denotes the distance between
two sentences.

2.1.2 Energy distance
Energy distance is a statistical distance between
probability distributions, based on the inter and
intra-distribution variance, that satisfies all the cri-
teria of being a metric (Székely and Rizzo, 2013).

Using the notations defined earlier, we write it
as:

D(s, s′) =
2

|s||s′|
∑
wi∈s

∑
wj∈s′

e(wi, wj)

− 1

|s|2
∑
wi∈s

∑
wj∈s

e(wi, wj)

− 1

|s′|2
∑
wi∈s′

∑
wj∈s′

e(wi, wj)

(2)

The original conception of the energy distance
was inspired by gravitational potential energy of
celestial objects. Looking closely at Equation 2,
it can be quickly observed that it has two parts:
the first term resembles the attraction or repulsion
between two objects (or in our case, sentences),
while the second and the third term indicate the
self-coherence of the respective objects. As shown
by Székely and Rizzo (2013), energy distance is
scale equivariant, which would make it sensitive
to contextual changes in sentences, and therefore
make it useful in NLP applications.

2.1.3 Hausdorff distance
Given two subsets of a metric space, the Hausdorff
distance is the maximum distance of the points
in one subset to the nearest point in the other. A
significant work has gone into making it fast to
calculate (Atallah, 1983) so that it can be applied
to real-world problems, such as shape-matching in
computer vision (Dubuisson and Jain, 1994).

To calculate it, the distance between each point
from one set and the closest point from the other set
is determined first. Then, the Hausdorff distance
is calculated as the maximal point-wise distance.
Considering sentences {s, s′} as subsets of word-
embedding space, Rd×N , the directed Hausdorff
distance can be given as:

h(s, s′) = max
wi∈s

min
wj∈s′

e(wi, wj) (3)

such that the symmetric Hausdorff distance is:

D(s, s′) = max{h(s, s′), h(s′, s)} (4)

2.1.4 Word Mover’s distance
In addition to the representation of a sentence as a
set of word-embeddings, a sentence s can also be
represented as a N -dimensional normalized term-
frequency vector, where nsi is the number of times
word wi occurs in sentence s normalized by the
total number of words in s:

nsi =
csi∑k=N

k=1 csk
(5)

where, csi is the number of times word wi appears
in sentence s.

The goal of the Word Mover’s distance (WMD)
(Kusner et al., 2015) is to construct a sentence sim-
ilarity metric based on the distances between the
individual words within each sentence, given by
Equation 1. In order to calculate the distance be-
tween two sentences, WMD introduces a transport
matrix, T ∈ RN×N , such that each element in it,
Tij , denotes how much of nsi should be transported
to ns

′
j . Then, the WMD between two sentences is

given as the solution of the following minimization
problem:

D(s, s′) = min
T≥0

N∑
i,j=1

Tije(i, j)

subject to,
N∑
j=1

Tij = nsi and
N∑
i=1

Tij = ns
′
j

(6)
Thus, WMD between two sentences is defined as
the minimum distance required to transport the
words from one sentence to another.

2.2 Generating neighbourhood-preserving
embeddings via non-linear
manifold-learning

In this work, we propose to construct sentence-
embeddings which preserve the neighbourhood
around sentences delineated by the relative dis-
tances between them. We posit that preserving
the local neighbourhoods will serve as a proxy for
preserving the original topological properties.

In order to learn a topology-preserving fixed-
dimensional manifold, we seek inspiration from
methods in non-linear dimensionality-reduction
(Lee and Verleysen, 2007) and topological data
analysis literature (Carlsson, 2009). When broadly
categorized, these techniques consist of methods,
such as Locally Linear Embedding (Roweis and
Saul, 2000), that preserve local distances between
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points, or those like Stochastic Neighbour Embed-
ding (Hinton and Roweis, 2003; van der Maaten
and Hinton, 2008) that preserve the conditional
probabilities of points being neighbours. However,
existing manifold-learning algorithms suffer from
two shortcomings: they are computationally expen-
sive and are often restricted in the number of output
dimensions. In our work we use a method termed
Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018), which is scalable
and has no computational restrictions on the output
embedding dimension.

The building block of UMAP is a particular type
of a simplicial complex, known as the Vietoris-
Rips complex. Recalling that a k-simplex is a k-
dimensional polytope which is the convex hull of
its k + 1 vertices, and a simplicial complex is a
set of simplices of various orders, the Vietoris-
Rips simplicial complex is a collection of 0 and
1-simplices. In essence, this is a means to building
a simple neighbourhood graph by connecting the
original data points.

Figure 1: Figure showing a simple example of the em-
bedding algorithm. On the left is the original sentence-
space, approximated by the nearest neighbours graph
formed by the Vietoris-Rips complex. Instead of points
and edges, our simplicial complex has sets of points
and edges between them, formed by one of the dis-
tance metrics mentioned in Section 2.1. In this ex-
ample, four sentences, denoted by S1 through S4,
form two simplices, with S4 being a 0-simplex. The
sentences are denoted by colored ellipses, while the
high-dimensional embedding of each word in a sen-
tence is depicted by a point having the same color
as the parent sentence ellipse. The UMAP algorithm
is then employed to find a similarity-preserving Eu-
clidean embedding-space, shown on the right, by min-
imizing the cross-entropy between the two representa-
tions.

A key difference, in this work, to the original

formulation is that an individual data sample (i.e.,
the vertex of a simplex) is not a d-dimensional
point but a set of d-dimensional words that make
up a sentence. By using any of the distance metrics
defined in Section 2.1, it is possible to construct the
simplicial complex that UMAP needs in order to
build the topological representation of the original
sentence space. An illustration can be found in
Figure 1.

As per the formulation laid out for UMAP, the
similarity between sentences s′ and s is defined as:

vs′|s = exp
−(D(s, s′)− ρs)

σs
(7)

where σs is a normalisation factor selected based on
an empirical heuristic (See Algorithm 3 in the work
of McInnes et al. 2018), D(s, s′) is the distance be-
tween two sentences as outlined by Equation 2, 4
or 6, and ρs is the distance of s from its nearest
neighbour. It is worth mentioning that for scala-
bility, vs′|s is calculated only for predefined set of
approximate nearest neighbours, which is a user-
defined input parameter to the UMAP algorithm,
using the efficient nearest-neighbour descent algo-
rithm (Dong et al., 2011).

The similarity depicted in Equation 7 is asym-
metric, and symmetrization is carried out by a fuzzy
set union using the probabilistic t-conorm:

vss′ = (vs′|s + vs|s′)− vs′|svs|s′ (8)

As UMAP builds a Vietoris-Rips complex gov-
erned by Equation 7, it can take advantage of the
nerve theorem (Borsuk, 1948), which makes this
construction a homotope of the original topological
space. In our case, this implies that we can build
a simple nearest neighbours graph from a given
corpus of sentences, which has certain guarantees
of approximating the original topological space, as
defined by the aforementioned distance metrics.

The next step is to define a similar nearest neigh-
bours graph in a fixed low-dimensional Euclidean
space. Let sE , s′E ∈ RdE be the corresponding
dE-dimensional sentence-embeddings. Then the
low dimensional similarities are given by:

wss′ = (1 + a||sE − s′E ||2
b
))
−1

(9)

where, ||sE − s′E || is the Euclidean distance be-
tween the dE-dimensional embeddings, and setting
a, b are input-parameters, set to 1.929 and 0.791,
respectively, as per the original implementation.



5

Algorithm 1: Constructing sentence-
Embeddings by Manifold Approximation
and Projection: EMAP
Data: A pre-trained word-embeddings

matrix, W ; a set of sentences, S ;
desired dimension of the generated
sentence-embeddings, dE

Result: A set of sentence-embeddings,
{sE} ∈ SE

1 Calculate the distance matrix for the entire
set of sentences, such that the distance
between any two sentences is given by
Equation 2, 4 or 6;

2 Using this distance matrix, calculate the
nearest neighbour graph between all input
sentences, given by Equations 7 and 8;

3 Calculate the initial guess for the low
dimensional embeddings, SE ∈ R|S |×DE ,
using the graph laplacian of the original
nearest neighbour graph;

4 Until convergence, minimize the
cross-entropy between the two
representations (Equation 10) using
stochastic gradient descent;

5 Return the set of dE-dimensional
sentence-embeddings, SE ;

The final step of the process is to optimize the
low dimensional representation to have as close
a fuzzy topological representation as possible to
the original space. UMAP proceeds to do so by
minimizing the cross-entropy between the two rep-
resentations:

C =
∑
s 6=s′

vss′ log
vss′

wss′
+ (1− vss′) log

1− vss′
1− wss′

(10)
usually done via stochastic gradient descent.

A summary of the proposed process used to
produce sentence-embeddings is provided in Al-
gorithm 1, and pictorially presented in Figure 1.

3 Datasets and resources

3.1 Datasets
Six public datasets1 have been used to empirically
validate the method proposed in this paper. These
datasets are of varying sizes, tasks and complex-
ities, and have been used widely in existing liter-

1https://drive.google.com/open?id=
1sGgAo2SBoYKhQQK_kilUp8KSToCI55jl

ature, thereby making comparisons and reporting
possible. Information about the datasets can be
found in Table 1.

3.2 Resources

Pre-trained word-embedding corpus: We use
the pre-trained set of word-embeddings provided
by Mikolov et al (2013)2.
Software implementations: We use a variety of
software packages and custom-written programs
perform our experiments, the starting point being
the calculation of sentence-wise distances. We cal-
culate the Hausdorff distance using a directed im-
plementation provided in the Scipy python library3,
whereas the energy distance is calculated using
dcor4. Lastly, the word mover’s distance is cal-
culated using implementation provided by Kusner
et al. (2015)5. In order to produce the symmetric
distance matrix for a dataset, we employ custom
parallel implementation which distributes the calcu-
lations over all available logical cores in a machine.

To calculate the sentence-embeddings, the im-
plementation of UMAP provided by McInnes et al
(2018) is used6. Finally, the classification is done
via linear kernel support vector machines from the
scikit-learn library (Pedregosa et al., 2011)7.

All of the code and datasets have been packaged
and released8 to rerun all of the experiments.
Compute infrastructure: All experiments were
run on a m4.2xlarge machine on AWS-EC29, which
has 8 virtual CPUs and 32GB of RAM.

4 Experiments

4.1 Competing methods

In order to check the usefulness of our proposed
approach, we benchmark its performance in two
different ways. The first, and most obvious, ap-
proach is to consider the performance of the k-NN

2https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

3https://docs.scipy.org/doc/scipy/
reference/generated/scipy.spatial.
distance.directed_hausdorff.html

4https://dcor.readthedocs.io/en/
latest/functions/dcor.energy_distance.
html#dcor.energy_distance

5https://github.com/mkusner/wmd
6https://umap-learn.readthedocs.io/en/

latest/api.html
7https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html
8https://github.com/DeepK/

distance-embed
9https://aws.amazon.com/ec2/

https://drive.google.com/open?id=1sGgAo2SBoYKhQQK_kilUp8KSToCI55jl
https://drive.google.com/open?id=1sGgAo2SBoYKhQQK_kilUp8KSToCI55jl
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html
https://dcor.readthedocs.io/en/latest/functions/dcor.energy_distance.html##dcor.energy_distance
https://dcor.readthedocs.io/en/latest/functions/dcor.energy_distance.html##dcor.energy_distance
https://dcor.readthedocs.io/en/latest/functions/dcor.energy_distance.html##dcor.energy_distance
https://github.com/mkusner/wmd
https://umap-learn.readthedocs.io/en/latest/api.html
https://umap-learn.readthedocs.io/en/latest/api.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://github.com/DeepK/distance-embed
https://github.com/DeepK/distance-embed
https://aws.amazon.com/ec2/
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Dataset #classes #train docs #test docs #avg tokens Data-details
amazon 4 5600 2400 70 Reviews labeled by product
bbcsport 5 517 220 192 Articles labeld by sport

classic 4 4965 2128 62 Manuscripts labeled by publisher
ohsumed 10 3999 5153 104 Medical abstracts categorized by subject headings
reuters8 8 5485 2189 69 News article categorization
twitter 3 2176 932 8 Tweet sentiment analysis

Table 1: Dataset information: Metadata describing the datasets used in our experiments.

classifier as a baseline. This is motivated by the
state-of-the-art k-NN based classification accuracy
reported by Kusner et al. for the word mover’s
distance. Thus, our embeddings need to match or
surpass the performance of a k-NN based approach,
in order to be considered for practical use.

The second approach is to compare the clas-
sification accuracies of several state-of-the-art
embedding-generation algorithms on our chosen
datasets. These are:
dct (Almarwani et al., 2019): embeddings are gen-
erated by employing discrete cosine transform on
a set of word vectors.
eigensent (Kayal and Tsatsaronis, 2019): sentence
representations produced via higher-order dynamic
mode decomposition (Le Clainche and Vega, 2017)
on a sequence of word vectors.
wmovers (Wu et al., 2018): a competing method
which can learn sentence representations from the
word mover’s distance based on kernel learning,
termed in the original work as word mover’s em-
beddings.
p-means (Rücklé et al., 2018): produces sentence-
embeddings by concatenating several power-means
of word-embeddings corresponding to a sentence.
doc2vec (Le and Mikolov, 2014): embeddings pro-
duced by jointly learning the representations of
sentences, together with words, as a part of the
word2vec procedure.
s-bert (Reimers and Gurevych, 2019): embeddings
produced by fine-tuning a pre-trained BERT model
using a Siamese architecture to classify two sen-
tences as being similar or different.

Note that the results for wmovers and doc2vec
are taken from Table 3 of Wu et al.’s work (2018),
while all the other algorithms are explicitly tested.

4.2 Setup

Extensive experiments are performed to provide a
holistic overview of our neighbourhood-preserving
embedding algorithm, for various sets of input pa-
rameters. The steps involved are as follows:
Choose a dataset (one of the six mentioned in

Section 3.1). For every word in every sentence
in the train and test splits of the dataset, retrieve
the corresponding word-embedding from the pre-
trained embedding corpus (as stated in Section 3.2).
Calculate symmetric distance matrices corre-
sponding to each of the chosen distance metrics,
for all of the sets of word-embeddings from the
train and test splits.
Apply the UMAP algorithm on the distance ma-
trices to generate embeddings for all sentences in
the train and the test splits.
Calculate embeddings for competing methods
for the methods outlined in Section 4.1.

Embeddings are generated for various hyperpa-
rameter combinations for EMAP as well as all the
compared approaches, as listed in Table 2.
Train a classifier on the produced embeddings
to perform the dataset-specific task. In this work,
we train a simple linear-kernel support vector ma-
chine (Cortes and Vapnik, 1995) for every compet-
ing method and every dataset tested. The classifier
is trained on the train-split of a dataset and eval-
uated on the test-split. The only parameter tuned
for the SVM is the L2 regularization strength, var-
ied between 0.001 and 100. The overall test ac-
curacy has been been reported as a measure of
performance.

5 Results and Discussion

The results of all our experiments are in compiled
in Tables 3 and 4. All statistical tests reported are
z-tests, where we compute the right-tailed p-value
and call a result significantly different if p < 0.1.
Performance of the distance metrics: From Ta-
ble 3 it can be observed that the word mover’s dis-
tance consistently performs better than the others
experimented with in this paper. WMD calculates
the total effort of aligning two sentences, which
seems to capture more useful information com-
pared to the hausdorff metric’s worst-case effort
of alignment. As for the energy distance, it cal-
culates pairwise potentials amongst words within
and between sentences, and may suffer if there are
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Method Parameter Value(s) Tested

EMAP

n neighbors 40
embedding dim 50, 100, 300, 1000

min dist 1.0, 1.5, 2.0
spread 1.0, 2.5
n iters 1000

distance wmd, hausdorff, energy

kNN k 1
distance wmd, hausdorff, energy

dct components 1 through 6

eigensent components 1 through 3
time lag 1, 2, 3, [1,2], [1,2,3], [1,2,3,4]

pmeans powers 1, [1,2], [1,2,3], [1,2,3,4,5,6]
s-bert model bert-base-nli-mean-tokens

Table 2: Hyperparameter values tested. For EMAP, n neighbours refers to the size of local neighborhood used
for manifold approximation, embedding dim is the fixed dimensionality of the generated sentence-embeddings,
min dist is the minimum distance apart that points are allowed to be in the low dimensional representation, spread
determines the scale at which embedded points will be spread out, n iters is the number of iterations that the UMAP
algorithm is allowed to run, and finally, distance is one of the metrics proposed in Section 2.1. For the spectral
decomposition based algorithms, dct and eigensent, components represents the number of components to keep in
the resulting decomposition, while time lag corresponds to the window-length in the dynamic mode decomposi-
tion process. For pmeans, powers represents the different powers which are used to generate the concatenated
embeddings.

Distance energydist hausdorffdist wmddist
Method knn EMAP knn EMAP knn EMAP
amazon 0.923* 0.909 0.781 0.844* 0.918 0.929*
bbcsport 0.941 0.942 0.925 0.941 0.972 0.987

classic 0.912 0.921 0.943 0.953* 0.961 0.978*
ohsumed 0.456 0.505* 0.491 0.603* 0.551 0.630*

r8 0.942 0.962* 0.863* 0.837 0.951 0.973*
twitter 0.731 0.749 0.736 0.741 0.712 0.722

Table 3: Comparison versus kNN. Results shown here compare the classification accuracies of k-nearest neigh-
bour to our proposed approach for various distance metrics. For every distance, bold indicates better accuracy,
while ∗ indicates that the winning accuracy was statistically significant with respect to the compared value (,i.e.,
EMAP vs kNN for a given distance metric). It can be observed that our method almost always outperforms k-
nearest neighbour-based classification.

Method wmd-EMAP dct eigensent wmovers pmeans doc2vec s-bert
amazon 0.929 0.932 0.902∨ 0.943∧ 0.938 0.912∨ 0.923
bbcsport 0.986 0.972 0.968 0.982 0.981 0.979 0.986

classic 0.978 0.964 0.947∨ 0.971 0.960 0.965 0.966
ohsumed 0.630 0.594∨ 0.574∨ 0.645∧ 0.614∨ 0.598∨ 0.556∨

r8 0.973 0.967 0.958∨ 0.972 0.969 0.949∨ 0.954∨
twitter 0.722 0.644∨ 0.669∨ 0.745 0.636∨ 0.673∨ 0.673∨

Table 4: Comparison versus competing methods. We compare EMAP based on word mover’s distance to various
state-of-the-art approaches. The best and second-best classification accuracies are highlighted in bold and italics.
We perform statistical significance tests of our method (wmd-EMAP) against all other methods, for a given dataset,
and denote the outcomes by ∨ when the compared method is worse and ∧ when our method is worse, while the
absence of a symbol indicates insignificant differences. In terms of absolute accuracy, we observe that our method
achieves state-of-the-art results in 2 out of 6 datasets.

shared commonly-occurring words in both the sen-
tences. However, given that energy and hausdorff
distances are reasonably fast to calculate and per-
form respectably well, they might be worth using in
applications with a large number of long sentences.

Comparison versus kNN: EMAP almost always

outperforms k-nearest neighbours based classifica-
tion, for all the tested distance metrics. The perfor-
mance boost for WMD is between a relative per-
centage accuracy of 0.5% to 14%. This illustrates
the efficiency of the proposed manifold-learning
method.
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Query Sentence Best Match Sentence Cosine Sim
I have spent thousands of dollar’s On Meyers
cookware everthing from KitchenAid Anolon
Prestige Faberware & Circulan just to name a few
Though Meyers does manufacture very high quality
pots & pans and I would recommend them to anyone
it’s just sad that if you have any problem with them
under warranty you have to go throught the chain
of command that never gets you anywhere even if
you want to speak with upper management about
the rudeness of the customer service department
Their customer service department employees are
always very rude and snotty and they act like they
are doing you a favor to even talk to you about their
products

When I opened the box I noticed corrosion
on the lid When I contacted Rival customer
service via email they told me I had to purchase
a new lid I called and spoke with a customer
service representative and they told me that a
lid was not covered under warranty When I
explained that I just opened it and it was
defective they told me to just return the
product that there was nothing that they were
going to do After being treated this way I will
NOT be purchasing any more Rival products
if they don’t stand behind their product VERY
VERY poor customer service

0.997

This movie will bring up your racial prejudices in
ways that most movies just elude to It demonstrates
how connected we all are as people and how seperated
we are by only one thing our viewpoints The acting
is superb and you get one cameo appearance after
another which is a treat Of course the soundtrack is
terrific The ending is intense to witness one situation
after another coming to an unfortunate finish

I waited years for this movie to be released in the
United States As far as I was concerned it wasn’t
about the acting as much as it was about the
feeling the actors wanted to portray in which
they profoundly accomplished I would recommend
this movie to anyone who can reach that one step
deeper into the minds of creativity and passion
and appreciate the struggles of rising above and
beyond the pain of broken dreams

0.998

We see a phrase a lot when we visit how to sites for
writers World building By this we mean the setting
the characters and everything else where our story
will occur For me this often means maps memories
and visits since I write about where I live But if
you’d like to see exactly what world building means
head down to your local library and grab SALEM’S
LOT by Stephen King When Stephen
King mania first gripped the English speaking world
I missed it I saw the film of CARRIE and hated it
Years later at a guard desk on a long shift scheduled
so suddenly that I hadn’t had a chance to visit the
library I read what was in the desk instead THINNER
If I were Stephen King I’d have put a pen name on
that crap as well One of King’s fans brought me
around She recommended THE SHINING Of course
I thought of that Kubrick/Nicholson travesty No no
she said read the book It’s much different Yes it is
It’s fantastic for its perceptiveness Next up PET
SEMATARY which scared the crap out of me
And that my friends is not easy ON WRITING I’ve
gushed about that enough times The films STAND
BY ME and THE APT PUPIL So in the end I
appreciate King and forgive him for CARRIE
and I think he’s forgiven himself

in the possibility that Steve Berry could ever
transcend his not so great debut The Amber Room
Romanov Prophecy started in the right direction
Third Secret was OK but I think he hit his *peak*
right there

0.955

Table 5: Examples of best-matching sentences. From the amazon reviews dataset using wmd-EMAP.

Comparison versus state-of-the-art methods:
Consulting Table 4, it seems that wmovers, pmeans
and s-bert form the strongest baselines as com-
pared to our method, wmd-EMAP (EMAP with
word mover’s distance). Considering the statistical
significance of the differences in performance be-
tween wmd-EMAP and the others, it can be seen
that it is almost always equivalent to or better than
the other state-of-the-art approaches. In terms of
absolute accuracy, it wins in 3 out of 6 evaluations,
where it has the highest classification accuracy, and
comes out second-best for the others. Compared

to it’s closest competitor, the word mover’s embed-
ding algorithm, the performance of wmd-EMAP is
found to be on-par (or slightly better, by 0.8% in
the case of the classic dataset) to slightly worse
(3% relative p.p., in case of the twitter dataset). In-
terestingly, both of the distance-based embedding
approaches, wmd-EMAP and wmovers, are found
to perform better than the siamese-BERT based
approach, s-bert.

Thus, the overall conclusion from our empiri-
cal studies is that EMAP performs favourably as
compared to various state-of-the-art approaches.
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Examples of similar sentences with EMAP: We
provide motivating examples of similar sentences
from the amazon dataset, as deemed by our ap-
proach, in Table 5. As can be seen, our method
performs quite well in matching complex sentences
with varying topics and sentiments to their closest
pairs. The first example pair has the theme of a cus-
tomer who is unhappy about poor customer service
in the context of cookware warranty, while the sec-
ond one is about positive reviews of deeply-moving
movies. The third example, about book reviews,
is particularly interesting: in the first example, a
reviewer is talking about how she disliked the first
Stephen King work which she was exposed to, but
subsequently liked all the next ones, while in the
matched sentence the reviewer talks about a simi-
lar sentiment change towards the works of another
author, Steve Berry. Thus in the last example, the
similarity between sentences is the change of senti-
ment, from negative to positive, towards the works
of books of particular authors.

6 Conclusions

In this work, we propose a novel mechanism to
construct unsupervised sentence-embeddings by
preserving properties of local neighbourhoods in
the original space, as delineated by set-distance
metrics. This method, which we term, EMAP or
Embeddings by Manifold Approximation and Pro-
jection leverages a method from topological data
analysis can be used as a framework with any dis-
tance metric that can discriminate between sets,
three of which we test in this paper. Using both
quantitative empirical studies, where we compare
with state-of-the-art approaches, and qualitative
probing, where we retrieve similar sentences based
on our generated embeddings, we illustrate the ef-
ficiency of our proposed approach to be on-par or
exceeding in-use methods. This work demonstrates
the successful application of topological data anal-
ysis in sentence embedding creation, and we leave
the design of better distance metrics and manifold
approximation algorithms, particularly targeted to-
wards NLP, for future research.
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