MATILDA:
Multi-AnnoTator multi-language Interactive
Light-weight Dialogue Annotator

Davide Cucurnia® Nikolai Rozanov® Irene Sucameli¢
Augusto Ciuffoletti® Maria Simi®

<>Department of Computer Science, University of Pisa, Pisa, Italy
*Wluper Ltd., London, United Kingdom
<>{d.cucurniaZ@studenti.,irene@phd.,
augusto.ciuffoletti@, maria.simiQ}lunipi.it
#nikolai}@wluper.com

Abstract

Dialogue Systems are becoming ubiquitous in
various forms and shapes, from virtual assis-
tants (like Siri, Alexa and various chat-bots)
to customer support systems embedded within
websites. Recent publications and advance-
ments with natural language modelling have
opened up NLP (and its more advanced ap-
plications like conversational AI) to a wider
audience. Unfortunately, the lack of labelled
data within this field remains a significant bar-
rier and so we have developed MATILDA
(the first multi-annotator, multi-language dia-
logue annotation tool) as an initial contribu-
tion to help the community overcome this bar-
rier. MATILDA is a tool for creating high-
quality corpora via a user-friendly interface so
as to facilitate the annotation of dialogues, re-
solve inter-annotator disagreement and man-
age multiple users at scale. We have evalu-
ated the tool on ease of use, annotation speed
and inter-annotation resolution for both ex-
perts and novices and can confidently con-
clude that MATILDA offers a novel, stream-
lined, end-to-end solution to dialogue annota-
tion and is intuitive enough to use, even for
a non-technical audience. The tool is com-
pletely open-sourced at https://github.
com/wluper/matilda and is easily adapt-
able to any language. We are also providing
a complementary tutorial video'.

1 Introduction

As a community, we have observed great advances
in the last decade that include word-embeddings
(Mikolov et al., 2013), seqg-to-seq models for a
variety of tasks (Sutskever et al., 2014) and pre-
trained, transformer-based language models (De-
vlin et al., 2019). Relying on these seminal works,
a plethora of downstream tasks (e.g. NMT, Q&A,
dialogues, summarisation, etc.) have seen notable

"https://vimeo.com/500125248

32

improvements and some have even been “solved”.
Many of the advancements made in computational
modelling and power owe a lot of their success
to the careful curation and annotation of huge
datasets, which are thus equally pivotal to recent
advancements and progress in general. In partic-
ular, datasets such as (Budzianowski et al., 2018)
and (Byrne et al., 2019) have allowed data-hungry
neural-models to advance the field of task-oriented
dialogues.

In the field of annotation tools and data genera-
tion, recent advances such as (Collins et al., 2019)
show similar promise by open-sourcing technology
and developing it with modern usability-related
principles in mind. Following in the spirit of such
similar research, we present MATILDA (a full di-
alogue annotation tool specifically focused on the
inclusivity for all languages and facilitating mul-
tiple annotators). We evaluate it on a variety of
usability aspects, both with experienced and un-
trained users, and conclude that both our dialogue
annotation and creation tools are easy-to-use. Fur-
thermore, MATILDA offers more features than any
comparable tool in the research community; com-
fortably supporting multiple annotators as well as
multiple languages during the annotation process.
Therefore, we have open-sourced it and provided
precompiled docker images for easy setup.

MATILDA’s main contributions are: 1) a native
annotation tool that is quick-to-adapt® for multi-
language support; 2) a user-friendly interface to
simply and intuitively manage multiple users as
well as easily distribute datasets to crowd-workers
for annotation; 3) task-oriented multi-speaker an-
notation capabilities (in the style of MultiWoz and
Taskmaster); 4) inter-annotator resolution; and 5)
integrated recommendations to assist annotators.

2As an example the full adaptation of the annotation tool
from English to German took roughly 30 minutes.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 32-39

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

https://github.com/wluper/matilda
https://github.com/wluper/matilda
https://vimeo.com/500125248

2 Related Work

Table 1 compares MATILDA with other recent an-
notation tools.

TWIST (Pluss, 2012) is a dialogue annotation
tool which consists of two stages: turn segmenta-
tion and content feature annotation. Turn segmenta-
tion allows users to create new turn segments from
raw text. After this, users can annotate sections of
text in a segment by highlighting them and select-
ing from a predefined feature list. However, this
tool doesn’t allow users to specify custom anno-
tations or labels and doesn’t support classification
or slot-value annotation. This is not compatible
with modern dialogue datasets which require such
annotations (Budzianowski et al., 2018). INCEp-
TION (Klie et al., 2018) is a semantic annotation
platform for interactive tasks that require seman-
tic resources like entity linking. It provides ma-
chine learning models to suggest annotations and
allows users to collect and model knowledge di-
rectly in the tool. GATE (Cunningham, 2002) is
an open source tool that provides predefined solu-
tions for many text processing tasks. It is powerful
because it allows annotators to enhance the pro-
vided annotation tools with their own Java code,
making it easily extensible and provides a great
number of predefined features. However, GATE
is a large and complicated tool with a significant
setup cost - its instruction manual alone is over
600 pages long>. Despite their large feature sets,
INCEpTION and GATE are not designed for an-
notating dialogue and cannot display data as turns,
an important feature for dialogue datasets. BRAT
(Stenetorp et al., 2012) and Doccano®* are web-
based annotation tools for tasks such as text classifi-
cation and sequence labelling. They have intuitive
and user-friendly interfaces which aim to make the
creation of certain types of dataset such as classi-
fication or sequence labelling datasets as fast as
possible. BRAT also supports annotation sugges-
tions by integrating ML models. However, like
INCEpTION?® and GATE?, they are not designed
for annotating dialogues and do not support the gen-

3https://gate.ac.uk/sale/tao/tao.pdf

*https://github.com/chakki-works/doccano

’A plugin allows calculation of scores not resolu-
tion: https://dkpro.github.io/dkpro-statistics/dkpro-agreement-
poster.pdf

% Again inter-annotator score calculation capabilities are
available as separate plug-in https://gate.ac.uk/releases/gate-
5.1-betal-build3397-ALL/doc/tao/splitch10.html - however
support for resolutions is not apparent

33

eration of formatted conversational data from a raw
text file such as might be outputted by a transcrip-
tion service. LIDA (Collins et al., 2019) provides
an easy-to-setup annotation tool for modern task-
oriented dialogues and also supports the integra-
tion of recommendations. However, LIDA is not
accessible for multiple users and is only intended
for the English language. MATILDA addresses
these shortcomings and adds features such as: an-
notation styles compatible with modern dialogue
datasets, inter-annotation resolution, customisable
recommendations and user administration. Dia-
logueView’s (Heeman et al., 2002) main use-cases
are focused on segmenting recorded conversations,
annotating audio files and discourse segmentation.
Granular labelling of the dialogue, recommenders,
inter-annotator agreement, and slot-value labelling
are not possible.

3 System Overview

We introduce an annotator service that extends pre-
vious successful experiences, like LIDA, by in-
troducing features that address large-scale, task-
oriented dialogue annotation projects. In particular,
we allow for distributed multi-annotators, multi-
language support, interannotator resolution and
custom recommenders to assist the annotation pro-
cess. Furthermore, our modern and modularised
implementation simplifies extension to additional
languages, use-cases and annotation styles. A typi-
cal use-case follows this workflow:

Creation of a Dataset We envision two main ways
to create a corpus: either interactively or by upload-
ing existing data. We adopt data representations
that allow backward compatibility with other tools
based on text files with a simple syntax, and a JSON
format that is easy to operate.

User Administration Once a corpus consisting of
several collections is created, administrators can
then proceed to assign those collections to one or
more different annotators. The assigned partition
will then be shown to the designated annotators
in their “Collection” view, ready to be annotated.
According to the typical use case, we need two
roles for the users, which we call Annotators and
Administrators. We want our system to include user
management with a simple interface for creation,
editing and removal.

Annotation and Supervision Each annotator has
access only to the subsets of dialogues assigned
to them to add/modify annotations and monitor

Annotation Tool Dialogue-specific An- Multi-language ~ Sup- Crowd Multi- Recommenders Inter-Annotator Language

notation port annotator Support Disagreement
Resolution

MATILDA YES YES YES YES YES PYTHON
LIDA (Collins et al., 2019) YES NO NO YES YES PYTHON
INCEpTion (Klie et al., 2018) NO NO NO YES YES/NO? JAVA
GATE (Cunningham, 2002) NO NO NO NO YES/NO 4 JAVA
TWIST (Pluss, 2012) YES NO NO NO NO -
BRAT (Stenetorp et al., 2012) NO NO NO YES NO PYTHON
DOCCANO? NO NO NO NO NO PYTHON
DialogueView (Heeman et al., 2002) YES NO NO NO NO TcK/TK

Table 1: Annotator Tool Comparison Table
Dialogue-specific Annotation: Support to annotate datasets such as MultiWoz or Taskmaster. Multi-language Support: The
ability to localise the annotation tool for different languages. Crowd Multi-annotator Support: The possibility to manage users
and easily deploy to many annotators in different locations. Recommenders: ML models to suggest annotations. Inter-Annotator
Disagreement Resolution: whether the system has an interface to resolve disagreements between different annotators. Language:
what programming language the system uses

Multi-user Interactive Light-weight Dialogue Annotator

contract ||
Indietro Dialogue_b2 Stima annotazione 6.7% Cambiamenti non salvati

duties ||

skill ||
usr[132,138][Office],

past_experience ||

degree || Id Turno: 3

age | sys Perfetto, in che settore preferiresti lavorare?

Ho terminato un corso professionale come tecnico di impianti elettrici e me la cavo bene con

languages || tutto quello che riguarda il pacchetto Office.

area ||
usr[41,70][tecnico di impia Id Turno: 4
company_name ||

company_size ||

location || Nuova richiesta

Figure 1: Dialogue annotation interface: filling slots by selection of text fragments.

work progress. Figure 1 shows a screenshot of the 3.1 System architecture
annotation interface and highlights the slot-filling
functionality. Administrators inspect annotators’
work and resolve conflicts in the interannotation
interface. When annotators provide diverging an-
notations, a designated supervisor provides a gold
standard either opting for one of them or intro-

MATILDA is designed as a Web Service: a browser
hosts the user interface while the server supports
data and control. Our use case envisions all com-
ponents running on user premises, but it is straight-
forward to distribute them on distinct hosts.

ducing an alternative one. Besides, the system On the server side, MATILDA is a bundle of two
computes interannotator agreement metrics, such ~ components: a web server and a database server.

as Cohen’s Kappa. Gold standard annotations pro- Each of them is encapsulated in a Docker, so
vided by supervisors are recorded separately and that complex configurations are carried out by the
do not overwrite the original ones. designer and invisible to the non-technical end-

The Interannotator is designed to confront two user. In fact, MATILDA operation depends only
or more annotated dialogue collections and resolve ~ on Docker support, which is available for major
annotation conflicts between them. MATILDA au- operating systems. In order to have MATILDA
tomatically retrieves all annotated versions of one operational, the end-user installs the Docker sup-
corpus partition present in the database; adminis- port and launches a Docker script that downloads
trators are also allowed to upload a file to add to and deploys on the user’s PC the server-side Dock-
the confrontation. This can be seen in Figure 2 ers. MATILDA is then reachable from the browser

34

[MATILDA

malilc

muttlanguage
iont

1 Turnid 1

2 Turn Id 2

3 Tumnid 3

4 Tun Id 4

5 Tumnid 5

6 Tumn 1d 6

7 Tumnid 7

Hello, I'm your recruiter.

Hi, I'm Alessio. I'm looking for a job as a computer technician.

Name: Dialogue_act
Name: Slot
Name: Slot
Name: Slot
Name: Slot
Name: Slot

Name: Dialogue_act

,

Dialogue Act

= sys_greet || 1

= sys_inform_basic || 0.3333333333333333
sys_inform_proactive || 0
sys_request || O
sys_select || 0
sys_deny [| 0

= usr_greet | 1

= usr_inform_basic || 1
usr_inform_proactive || O

usr_request || 0

Figure 2: Inter-annotation Resolution Interface.

Docker
subsystem
Ve D
MongoDB MATILDA
- user credentials - WSGI (gunicorn)
- user assignments - flask
- dialogs - backend code
- annotations - HTML templates
- metadata - JavaScript
T 27017 | 5000
S Virtual Bridge HTTP

|
Browser

Figure 3: architecture

at the URL http://localhost/index.html. The
tech-inclined user has the option to configure some
features, like the use of an external database or the
access through a network interface. The installation
script and the operation manual are distributed on
GitHub nhttps://github.com/wluper/matilda,

while the Dockers are available from https://hub.

docker.com.

As seen in Figure 3, the MATILDA engine is
written in Python using the Flask framework, while
the client-side JavaScript uses the Vue framework.

35

The MongoDB database provides NoSQL access
to the dialogs, the annotations and their metadata.
This technology meets the required flexibility, al-
lowing heterogeneous types of documents and an
agile structure. The native support of JSON docu-
ments matches with the format used for the internal
representation of the dialogs. Finally, the availabil-
ity of both an open-source server and a public ser-
vice is useful when implementing either a service
on-premises, according to the reference use-case,
or, in a more advanced use-case, to implement a
cloud database for sharing dialogs.

The most stringent requirement on host hardware
is that the processor must belong to the 64-bit fam-
ily; this is inherited from Docker. To analyse the
footprint of MATILDA components, we installed it
on a system based on the Intel Celeron J3355, a 2-
core microprocessor dated 2016, created for entry
level desktop systems and with a 2GB RAM. Dur-
ing a significant processing peak, induced with an
upload, the footprint did not exceed a few percent
of hardware capacity.

The developer can find the engine source code
in the GitHub repository mentioned above; this al-
lows them to customize or to add new features to
MATILDA and to produce a new Docker. Locale-
dependent information is recorded in an indepen-

http://localhost/index.html
https://github.com/wluper/matilda
https://hub.docker.com
https://hub.docker.com

dent JSON document, and so introducing a differ-
ent localization of the interface is non-intrusive (?).

4 Evaluation

MATILDA was evaluated on two experiments: the
first evaluated MATILDA’s admin-related capabili-
ties while and the second evaluated its annotation
performance. Both experiments were conducted
across three different languages (English, Italian
and German) to assess MATILDA’s cross-language
adaptability.

4.1 Quantitative Evaluation

4.1.1 Administration and Supervision

The administration experiment involved a total of
six participants, each representing different super-
visory roles: i) an expert supervisor (ES) who is fa-
miliar with MATILDA or has relevant background
knowledge in NLP and dialogue annotation and ii)
an untrained supervisor (US) who has never used
MATILDA before and has little to no experience
with dialogue annotation in general. The initial
admin task consisted of adding two new users (Al
and A2) into MATILDA and assigning them as an-
notators, then creating a new dialogue collection
and defining its features (e.g. collection’s title, its
description, etc.) and assigning the new collection
to all the annotators. The second inter-annotator
task consisted of resolving inter-annotator conflicts
which may occur at the end of the annotation work,
which involved the supervisor comparing conflicts
on MATILDA for each annotator disagreement and
selecting one, thus creating a final, gold dataset.

During the two phases of the experiment, we
record the time needed for ES and US to com-
plete the tasks. Table 2 describes and compares
the time taken on the admin task for the two su-
pervisors across the three languages considered. It
also shows the time taken to resolve inter-annotator
disagreements as well as the total number of dis-
agreements resolved.

The quantitative evaluations show that both
trained and untrained supervisors were able to suc-
cessfully complete the predefined tasks, with the
untrained supervisors performing only marginally
worse, despite having never used an annotation tool
before. The untrained supervisors were provided
with a 15 minute guided training prior to the inter-
annotation task as they were unfamiliar with the
task (having no prior NLP knowledge or experi-
ence).

36

’ Time(min:sec) per admin task

English | Italian | German
ES 03:45 03:05 02:20
UsS 02:52 02:55 03:30
Time(min:sec) per inter-annotator task

ES 22:05 09:31 17:30
US 26:30* | 25:02 15:13*
Conflicts 38 40 25
Total Labels 130 130 130

Table 2: Comparison of the time taken by different
supervisors to carry out admin and inter-annotators res-
olution tasks. *Needed additional training before being
able to perform the task

The evaluation revealed a strong dependency on
the execution of admin tasks with the supervisor’s
familiarity with MATILDA and annotation systems
in general. However, the results also indicate that
users who are unfamiliar with annotation tools are
still able to easily use MATILDA and complete
administration and inter-annotation tasks.

4.1.2 Annotation

The second evaluation focuses on quantitatively
analysing the tool’s annotation interface. An expert
annotator (EA) and an untrained annotator (UA)
were both asked to annotate five dialogues and the
time taken to complete the task was recorded (the
results are shown in Table 3). Each dialogue, across
all languages tested, had an average of eight turns
(wherein a turn consisted of one user utterance and
system response) and twenty-four possible class
labels per turn (10 dialogue acts and 14 slots). This
complexity is comparable with those of public di-
alogue datasets, like Multiwoz or Taskmaster-1
(Budzianowski et al., 2018; Byrne et al., 2019).

Time(min:sec) per annotation task

English | Italian | German
EA | 34:27 16:35 27:55
UA | 37:30 49:48 45:00

Table 3: Time taken to annotate a set of 5 dialogues by
different native-speaker annotators

The results of this experiment show that even
untrained annotators were able to use MATILDA
to successfully complete the annotation task. In
fact, a substantial increase in the users’ annotation

speed can be observed within just a few annotations,
demonstrating a fast learning curve for MATILDA.

For expert annotators, the average annotation
time was 26:17 minutes for five dialogues (giving
an average of approximately 5:16 minutes per dia-
logue). For untrained annotators, this increases to
approximately 8:50 minutes per dialogue. There-
fore, annotating a data-set of 10,000 dialogues
(with two annotations per dialogue) can be cal-
culated as requiring 1,756 hours or 100x 8-hour
working days for two expert annotators to com-
plete on MATILDA. However, this time can be
massively reduced using untrained crowd-workers,
wherein approximately 52 untrained workers could
complete the annotation of such a dataset within
a week. Thus highlighting the importance of such
tools and software as MATILDA, that can manage,
collate and resolve annotation conflicts across the
crowd-workers.

4.2 Qualitative Evaluation & User Feedback

4.2.1 Questionnaire

In addition to the quantitative evaluations, a quali-
tative analysis was conducted in the form of a ques-
tionnaire about MATILDA’s usability, provided to
each annotator and supervisor as an an anonymous
feedback form. Each supervisor was asked to eval-
uate the following features with a Low-Medium-
High score:

* QI: ease of completing the admin task;

* Q2: ease of resolving inter-annotator con-
flicts;

* Q3: quality of the feedback provided by the

tool.

* Q4: overall usability of MATILDA admin in-
terface.

’ Supervisors evaluation

Low | Medium | High
Q1| 0.0% 16.7% | 83.3%
Q2| 167% | 50.0% | 33.3%
Q3 |333% | 50.0% | 16.7%
Q4 | 0.0% 333% | 66.7%

Table 4: Evaluation of MATILDA usability

Similarly, we ask annotators to evaluate:

* QI1: ease of annotation;

* Q2: ease of understanding how to work on
a dialogue collection and how to sent it to
supervisors at the end of the annotation;

* Q3: quality of the feedback provided by the
tool.

* QQ4: overall usability of MATILDA annotator
interface.

’ Annotators evaluation

Q1| 0.0% | 66.7% | 33.3%
Q2| 0.0% | 333% | 66.7%
Q3 | 66.6% | 16.7% | 16.7%
Q4| 0.0% | 333% | 66.7%

Table 5: Evaluation of MATILDA usability

Tables 4 and 5 show the percentages of responses
to each question for supervisors and annotators re-
spectively. Question 4 (Q4) about overall usability
shows 66.7% Good usability, 33.3% Medium us-
ability and nobody answered with Low usability
(including the untrained annotators) which confirm
the quantitative results regarding MATILDA’s low-
friction usability. Questions about the individual
aspects of the tasks (Q1 and Q2) also confirm the
overall usability of the tool, receiving mostly Good
or Medium scores. The main point for improve-
ment, according to the responses, was the level of
feedback the tool provides to the user (i.e. prompts
that show whether a user action was successful at a
task, like the successful creation of a user, etc)

4.2.2 Feedback

We have also provided the study participants the
venue to express their feedback in an unstructured
way, by prompting them, “Please provide feedback
in a couple of sentences on the usability of the
annotation and supervision aspects of the app and
the improvements you would suggest”.

The feedback can be summarised in three cate-
gories:

1. Feedback and Information Prompts by the tool
2. Improving slot-filling for the annotation tool

3. Improving the layout of the inter-annotator
resolution

The first feedback was also apparent from the
feedback forms provided in the previous section.
We have accepted this feedback to improve our

37

tool and the to-be-published version is planned to
include these improvements.

The second feedback point was very important
and the future version of the tool will work on
improving the slot-filling annotation format.

The final feedback was more of an aesthetic feed-
back about the location and visibility of certain
aspects of the interannotator resolution screen.

5 Conclusion and future work

We have presented MATILDA the first, to the best
of our knowledge, multi-annotator, multi-language
dialogue annotation tool that allows the user to
annotate, distribute annotation work among crowd-
workers or colleagues and to resolve annotation
conflicts. We evaluate the tool based on the ease
and rapidity of use and show that even untrained
novices can quickly learn to use it.

Thanks to the open-source nature of the original
LIDA project, we hope the community will pick-
up on this work both in terms of using it to create
strongly needed corpora for different languages as
well as extending it to allow even more use-cases
and more advanced annotation styles.

To this end we have conducted qualitative feed-
back sessions with study participants and provided
a potential avenue of concrete improvements. We
hope that this work will be a meaningful stepping
stone for our community to create more useful re-
sources in many languages.

6 Acknowledgements

In this work we would like to acknowledge the
great input from EACL Reviewers that helped us
push the paper to a new level.

We particularly would like to thank the thoughtful
input of our colleagues in the University of Pisa,
especially Clara Casandra and Carla Congiu.

We would also like to thank members of the
Wluper team that acted as Testers, Annotators and
Paper Reviewers. In particular, special thanks
go to Mohammed Terry-Jack, Lamia El Afani,
Andrew Burnie, Ed Collins and Maurice von
Sturm. Furthermore, additional thanks goes to the
authors and developers of the previous version
of this annotation tool - LIDA - Ed Collins and
Bingbing Zhang.

38

Furthermore, the work of Nikolai Rozanov was
done under the Research Lab of Wluper Ltd. (UK/
10195181) and part of the contribution of this lab
was supported by the Innovate UK Smart Grants:
October 2019.

References

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,
Semih Yavuz, Ben Goodrich, Amit Dubey, Kyu-
Young Kim, and Andy Cedilnik. 2019. Taskmaster-
1: Toward a realistic and diverse dialog dataset.

Edward Collins, Nikolai Rozanov, and Bingbing
Zhang. 2019. LIDA: lightweight interactive dia-
logue annotator. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019 - System Demonstrations, pages 121-126. As-
sociation for Computational Linguistics.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223-254.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Peter A. Heeman, Fan Yang, and Susan E. Strayer.
2002. DialogueView - an annotation tool for dia-
logue. In Proceedings of the Third SIGdial Work-
shop on Discourse and Dialogue, pages 50-59,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5-9.

https://doi.org/10.18653/v1/D19-3021
https://doi.org/10.18653/v1/D19-3021
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/1118121.1118129
https://doi.org/10.3115/1118121.1118129

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111-3119. Curran Associates, Inc.

Brian Pluss. 2012. Twist dialogue annota-
tion tool. http://mcs.open.ac.uk/nlg/
non-cooperation/resources/user—guide.
pdf.

Pontus Stenetorp, Sampo Pyysalo, Goran Topidé,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102-107. Association for Computational Lin-
guistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104-3112. Curran Associates, Inc.

39

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

