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Abstract

Identifying offensive information from tweets
is a vital language processing task. This task
concentrated more on English and other for-
eign languages these days. In this shared task
on Offensive Language Identification in Dra-
vidian Languages, in the First Workshop of
Speech and Language Technologies for Dra-
vidian Languages in EACL 2021, the aim
is to identify offensive content from code
mixed Dravidian Languages Kannada, Malay-
alam, and Tamil. Our team used language-
agnostic BERT (Bidirectional Encoder Rep-
resentation from Transformers) for sentence
embedding and a Softmax classifier. The
language-agnostic representation based classi-
fication helped obtain good performance for
all the three languages, out of which results for
the Malayalam language are good enough to
obtain a third position among the participating
teams.

1 Introduction

These days, social media platforms support almost
all forms of languages for people to communicate.
Internet use has increased through the support of
language technologies, and code-mixing is com-
mon nowadays (Thavareesan and Mahesan, 2019,
2020a,b). With more and more language support,
free form communication is possible among peo-
ple, and as such, comment filtering or evaluating
comment content based on its offensiveness to
an individual, group, or other forms is an essen-
tial task (Jose et al., 2020; Priyadharshini et al.,
2020). These platforms also support languages
from the Dravidian family (Chakravarthi et al.,
2020c; Mandl et al., 2020). As a result, it is nec-
essary to identify offensive content from Tweets
in English and all other languages, including code
mixed tweets used in these platforms (Hande et al.,
2020; Ghanghor et al., 2021b,a).
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Dravidian languages are spoken and used in writ-
ten form by the people in South India and Sri Lanka.
This language is also used by a small portion of
people in many parts of the world. Dravidian lan-
guages are not new, it is almost 4500 years old
(Kolipakam et al., 2018), but it remains an under-
resourced language (Chakravarthi, 2020). The com-
monly used languages of this type include Kannada,
Malayalam, and Tamil. These are free word order
languages and have high agglutinating nature.

Tweet classification based on its offensive con-
tent has been challenging over these years. Initially,
the focus was on the English language, which is
the prime language spoken and used worldwide.
Nowadays, its focus is on the low resource lan-
guages. The tweets classification is based on dif-
ferent classes, and it can be a binary classification
into offensive or not-offensive class. In an alterna-
tive way, we can classify tweets based on offensive
content, their targeted audience (individual, group,
or other), language, and form of insult.

This working note paper discusses the methodol-
ogy used to identify offensive content from tweets
in Kannada, Malayalam, and Tamil. This paper’s
subsequent sections are as follows: Section 2 dis-
cusses the related works based on offensive content
identification. Details about the task and the dataset
are in Section 3. The methods used for this classifi-
cation task is in Section 4. We project the results
and discuss the observations in Section 5. The last
section, Section 6, concludes the working note.

2 Related Works

We discuss the works done so far for offensive
content classification in this section. It is one of
the very relevant topics of concern these days as
communication is mostly through online platforms,
especially in a pandemic situation like COVID-19
that we face now. Offensive language identifica-
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tion has started with English and other foreign lan-
guages, and it has gained its importance concerning
other languages, including Dravidian and low re-
source languages.

Apart from the different forms of offensive con-
tent, such as hate speech, abusive language, cyber-
bullying, cyber-aggression, there are different kinds
of offensive content. Zampieri et al. (2019) discuss
the different kinds of offensive content classes and
a basic definition of the different classes. They
proposed a hierarchical model of offensive content
in different levels, namely, Level A: Offensive lan-
guage detection, Level B: Categorization of offen-
sive language, Level C: Offensive language target
identification.

The first level (Level A), Offensive language
detection, consists of two major classes, namely
Not Offensive, defined as posts/comments without
any offense or profanity and Offensive defined as
posts with profanity (non-acceptable language) or
offense, including insults, threats, and swear words.

The second level (Level B) consists of catego-
rizing offensive language into targeted insult and
untargeted class. The Targeted Insult class con-
sists of posts that contain insult to an individual,
group, or others. The Untargeted class contains
posts that are not targeted but have non-acceptable
language or swearing.

The third level (Level C) classifies the targets of
insults or threats. It is of three types: Individual,
Group, and Other. The Individual (IND) class has
posts that target an individual, may or may not be a
named person, also called cyberbullying, whereas
the Group (GRP) class targets people of the same
religion, affiliation, or gender (also referred to as
Hate speech). The Other (OTH) category targets
organizations, situations, events, or issues that do
not fall in the above categories. Zampieri et al.
(2019) also classified the Offensive Language Iden-
tification (OLID) dataset based tweets based on the
defined classes using SVM, CNN, BiLSTM, out of
which CNN performed better for the three levels of
classification.

Oftensive language identification has taken place
in shared tasks these years. We discuss a few of
the notable works here. Apart from the English
language, this problem is also being solved in other
languages. They predicted offensive content in
Bengali, Hindi, and Spanish languages. Pretrained
BERT models combined with CNN were used for
Arabic, Greek, and Turkish offensive language

identification (Safaya et al., 2020).

The significant contributions of offensive lan-
guage identification from different teams that
participated in SemEval, 2020 are discussed in
Zampieri et al. (2020). Three sub-tasks correspond-
ing to three levels of the OLID dataset hierarchy
were offered for Arabic, Danish, English, Greek,
and Turkish languages. German BERT model
based on offensive language identification was ex-
perimented with for the German language by Risch
et al. (2019) as part of GermEval,2019.

3 Task Details and Dataset

The shared task on Offensive Language Identifica-
tion in Dravidian languages aims to identify offen-
sive content from Kannada-English, Malayalam-
English, and Tamil-English code-mixed tweet
datasets (Chakravarthi et al., 2021). It is an im-
balanced multi-class classification at the comment
level. The dataset for this task consists of classes,
namely,

1. Not_Offensive (NO)

2. Offensive_Targeted _Insult_Group (OTIG)

3. Offensive_Targeted_Insult_Individual (OTII)
4. Offensive_Targeted_Insult_Other (OTIO)

5. Offensive_Untargetede (OU)

6. Not_in_indented_language (not-Malayalam
(NM), not-Kannanda (NK), not-Tamil (NT))

Language | Train | Dev | Test | Total
Kannada 6217 | 777 | 778 | 7772
Malayalam | 16010 | 1999 | 2001 | 20010

Tamil 35139 | 4388 | 4392 | 43919

Table 1: Data statistics for Kannada, Malayalam and
Tamil

The dataset statistics for the three languages are
shown in Table 1. The average length of each post
at sentence level is 1. The dataset includes tweets
that are code mixed with the intended language
(Kannada, Malayalam, or Tamil) and the English
language.

3.1 Kannada Dataset

Hande et al. (2020) presented the Kannada-English
code mixed dataset collected from YouTube and
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Classes Kz.lnnada Mfllayalam 'Tamil
Train Dev | Train Dev | Train Dev

Not_Offensive 3544 426 | 14153 1779 | 25425 3193

Not.in_indented_language | 1522 191 | 1287 163 | 1454 172

Offensive_Targeted 329 45 140 13 2557 295

_Insult_Group

Offensive_Targeted 487 66 | 239 24 2343 307

_Insult_Individual

Offensive_Targeted 123 16 |0 0 454 65

_Insult_Other

Offensive_Untargetede 212 33 191 20 2906 356

Table 2: Training and Development Dataset for Kannada, Malayalam and Tamil languages

annotated for sentiment analysis and offensive lan-
guage detection. The dataset statistics for the Kan-
nada language is in Table 2. This dataset has 6217
tweets for training and 777 tweets for development.

3.2 Malayalam Dataset

According to Chakravarthi et al. (2020a), sys-
tems trained on monolingual data sometimes fail
with multilingual data written in non-native scripts.
Hence a Malayalam-English code mixed dataset
is created, which stands as a gold standard for of-
fensive data identification in Dravidian languages.
It helps moderate offensive content in these lan-
guages in social media comments or posts. These
dataset details are in Table 2, and it has 16010
tweets as training dataset and 1999 tweets as devel-
opment dataset.

3.3 Tamil Dataset

Tamil-English code mixed corpus with sentiment
annotations were also developed, and polarities
are assigned with an inter-annotator agreement
(Chakravarthi et al., 2020b). The Tamil dataset
has 35139 tweets for training, 4388 tweets for the
development set and its data statistics are in Table
2.

4 Methods

Our classification method uses a good sentence
representation that is purely language-agnostic in
nature. The system design consists of a representa-
tion module and a classifier module.

Representation module : Efficient sentence em-
bedding for the comments or tweets is derived
using the language-agnostic BERT (LaBSE). The
comments are in the form of code mixed language
scripts written in the non-native script, English, and
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transliterated form. We have not used any prepro-
cessing technique to make the method more generic
and add to the language-agnostic nature.

The language-agnostic BERT uses a masked
language model and a translation language model
based pretrained encoder. The dual encoder archi-
tecture helps to encode source and target sentences
separately and feed a combinational function. We
obtain the individual embeddings from the [CLS]
token’s embeddings using a shared BERT encoder.
The source and target sentence embeddings com-
parison using cosine similarity and additive margin
softmax loss learn useful cross-lingual embeddings.
The architecture of language-agnostic BERT is in
Figure 1.
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Figure 1: LaBSE model

This approach performed equally well for all
the resource-rich languages and resource-poor lan-
guages. In zero-shot transfer, it showed above-
average performance. This method was evaluated
on different corpus like BUCC shared task for par-
allel sentence extraction, United Nations parallel
corpus, Tatoeba corpus for 109 languages, and zero-
shot transfer for languages without training data
(Feng et al., 2020).



Class P R F1 |S
Not_offensive 0.69 0.78 0.73 | 427
Offensive_Targeted | 0.30 0.23 0.26 | 44
_Insult_Group

Offensive_Targeted | 0.56 0.52 0.54 | 75
_Insult_Individual

Offensive_Targeted | 0.50 0.07 0.12 | 14
_Insult_Other

Offensive 0.00 0.00 0.00 | 33
_Untargetede

not-Kannada 0.66 0.56 0.61 | 185
accuracy 0.63 | 778
macro avg 045 036 038|778
weighted avg 0.62 0.63 0.62 | 778

Table 3: Results for Kannada language in terms of Pre-
cision (P), Recall (R), Fl-score (F1) and Support (S)

Softmax

T
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A
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Figure 2: System design

Classification module : The embedded repre-
sentation of sentences are passed through a per-
ceptron based classifier. It is a two-layer classifier
with Dense(100) as an input layer with ReLLU ac-
tivation and Dense(5,6) as an output layer with a
softmax activation function for multiclass classi-
fication. The classifier is trained for 20 epochs
with validation data used from the development
dataset provided. The same approach is followed
for all three languages. The overall system design
is shown in Figure 2.

5 Results and Observations

This classification task’s experimental results are
measured in terms of weighted average precision,
recall, and F1-score using Scikit-Learn classifica-
tion report. Weighted average averages the support
weighted mean per label ! and are used when the

"https://scikit-learn.org/stable/modules/generated
/sklearn.metrics.classification_report.html

datasets are highly imbalanced.

5.1 Kannada

The classification report for the Kannada language
offensive content identification into six classes is
in Table 3. We observe that the system is good only
at classifying not-offensive classes and comments
that do not belong to the Kannada language.

The misclassified instances can be clearly seen
through the confusion matrix shown in Table 4.
Samples from Offensive_Targeted_Insult_Group,
Offensive_Targeted_Insult_Other, Offen-
sive_Untargeted classes are the most misclassified
instances.

5.2 Malayalam

The results for Malayalam code mixed tweet clas-
sification is in Table 7. From the table, we find an
above-average performance for the classification
of all the classes, resulting in an F1-score of 0.95.
This model’s better classification F1-score for the
Malayalam dataset implies that LaBSE based sen-
tence representations are suitable for Malayalam
code mixed texts.

The confusion matrix for Malayalam dataset
classification is shown in Table 5. Here we ob-
serve that majority of samples from each class are
classified correctly which lead to an F1-score of
0.95.

5.3 Tamil

For the Tamil language, the classification report
for offensive content classification is in Table 8,
and we observe above average results only for the
not-offensive class and an average value for tweets
that do not belong to the Tamil language.

The confusion matrix for Tamil dataset classifica-
tion is shown in Table 6, from which it is found that
Not_offensive and not-Tamil are the only classes
classified adequately, which resulted in lesser per-
formance.

5.4 Comparison with MBERT

The tweets are encoded with Multilingual BERT
(Devlin et al., 2018), bert-base-multilingual-cased,
a pretrained encoder with 12 layer, 768 hidden
layer size, 12 heads and 110M parameters trained
for 104 languages. The same classification module
is used. LaBSE based results are compared with
the multilingual BERT based classification results
in Table 9 in terms of its weighted F1 score. We
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Predicted Classes
NO OTIG OTII OTIO OU NK

., NO [333]11 [18 [0 [20 |45
2 OTG |23 [10 [4 |1 |3 |3
& Orm [23 [4 [39 [0 [5 [4
3 Omo[6 [6 [0 [1 [1 [0
£ OoU [25[2 |4 [0 |0 [2
< NK [72 [0 |5 [0 |4 |104

Table 4: Confusion Matrix for Kannada dataset

Predicted Classes
NO OTIG OTII OU NM

£ NO [1726]3 [9 [8 [19
Z oriGg |10 [12 [1 |0 |0
© orm |12 [0 [14 [0 |1

g ou [11 [0 [0 [18 [0
< NM [20 [0 [0 |0 |128

Table 5: Confusion Matrix for Malayalam dataset

Predicted Classes

NO OTIG OTII OTIO OU NT
, NO [2823[116[79 [8 [117]47
2 OTIG [172]60 |23 [1 [29 |3
S OTI [177 [28 |60 |7 |26 |17
g OTO|[46 [8 [6 |1 [10 |0
T OU [203[37 |23 [4 |93 |8
< NT [65 |6 |4 |0 |4 |81

Table 6: Confusion matrix for Tamil dataset

find that the performance of both the models are
almost similar with respect to this task.

6 Conclusions

In this paper, we used language-agnostic BERT
for embedding comments/tweets of any language
and identified the different categories of offensive
content using a softmax classifier. This model
achieved comparatively good results without apply-
ing any pre-processing techniques. The quality of
the embedding model helps to encode information
more effectively. Comparing LaBSE for Kannada,
Malayalam, and Tamil language, this embedded
representation is more efficient for the Malayalam
language and helped improve classification results.
Our team was ranked 3rd for the Malayalam lan-
guage, 11th for the Kannada language, and 9th for
the Tamil language in DravidianLangTech 2021,
part of EACL, 2021.
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