
Proceedings of Deep Learning Inside Out (DeeLIO):
The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 129–139

Online, June 10, 2021. ©2021 Association for Computational Linguistics

129

Attention vs non-attention for a Shapley-based explanation method

Tom Kersten
University of Amsterdam
t.kersten@uva.nl

Hugh Mee Wong
University of Amsterdam
h.m.wong@uva.nl

Jaap Jumelet
ILLC, University of Amsterdam
j.w.d.jumelet@uva.nl

Dieuwke Hupkes
Facebook AI Research

dieuwkehupkes@fb.com

Abstract

The field of explainable AI has recently seen
an explosion in the number of explanation
methods for highly non-linear deep neural net-
works. The extent to which such methods
– that are often proposed and tested in the
domain of computer vision – are appropri-
ate to address the explainability challenges
in NLP is yet relatively unexplored. In this
work, we consider Contextual Decomposition
(CD) – a Shapley-based input feature attribu-
tion method that has been shown to work well
for recurrent NLP models – and we test the ex-
tent to which it is useful for models that con-
tain attention operations. To this end, we ex-
tend CD to cover the operations necessary for
attention-based models. We then compare how
long distance subject-verb relationships are
processed by models with and without atten-
tion, considering a number of different syntac-
tic structures in two different languages: En-
glish and Dutch. Our experiments confirm that
CD can successfully be applied for attention-
based models as well, providing an alterna-
tive Shapley-based attribution method for mod-
ern neural networks. In particular, using CD,
we show that the English and Dutch models
demonstrate similar processing behaviour, but
that under the hood there are consistent differ-
ences between our attention and non-attention
models.

1 Introduction

Machine learning models using deep neural archi-
tectures have seen tremendous performance im-
provements over the last few years. The advent of
models such as LSTMs (Hochreiter and Schmid-
huber, 1997) and, more recently, attention-based
models such as Transformers (Vaswani et al., 2017)
have allowed some language technologies to reach
near human levels of performance. However, this
performance has come at the cost of the inter-
pretability of these models: high levels of non-
linearity make it a near impossible task for a human

to comprehend how these models operate.
Understanding how non-interpretable black box

models make their predictions has become an ac-
tive area of research in recent years (Hupkes et al.,
2018; Jumelet and Hupkes, 2018; Samek et al.,
2019; Linzen et al., 2019; Tenney et al., 2019; Et-
tinger, 2020, i.a.). One popular interpretability
approach makes use of feature attribution meth-
ods, that explain a model prediction in terms of the
contributions of the input features. For instance, a
feature attribution method for a sentiment analysis
task can tell the modeller how much each of the in-
put words contributed to the decision of a particular
sentence.

Multiple methods of assigning contributions to
the input feature approaches exist. Some are based
on local model approximations (Ribeiro et al.,
2016), others on gradient-based information (Si-
monyan et al., 2014; Sundararajan et al., 2017)
and yet others consider perturbation-based methods
(Lundberg and Lee, 2017) that leverage concepts
from game theory such as Shapley values (Shapley,
1953). Out of these approaches the Shapley-based
attribution methods are computationally the most
expensive, but they are better able at explaining
more complex model dynamics involving feature
interactions. This makes these methods well-suited
for explaining the behaviour of current NLP models
on a more linguistic level.

In this work, we therefore focus our efforts on
that last category of attribution methods, focusing
in particular on a method known as Contextual De-
composition (CD, Murdoch et al., 2018), which
provides a polynomial approach towards approx-
imating Shapley values. This method has been
shown to work well on recurrent models without
attention (Jumelet et al., 2019; Saphra and Lopez,
2020), but has not yet been used to provide in-
sights into the linguistic capacities of attention-
based models. Here, to investigate the extent to
which this method is also applicable for attention
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based models, we extend the method to include
the operations required to deal with attention-based
models and we compare two different recurrent
models: a multi-layered LSTM model (similar to
Jumelet et al., 2019), and a Single Headed Atten-
tion RNN (SHA-RNN, Merity, 2019). We focus
on the task of language modelling and aim to dis-
cover simultaneously whether attribution methods
like CD are applicable when attention is used, as
well as how the attention mechanism influence the
resulting feature attributions, focusing in particular
on whether these attributions are in line with hu-
man intuitions. Following, i.a. Jumelet et al. (2019),
Lakretz et al. (2019) and Giulianelli et al. (2018),
we focus on how the models process long-distance
subject verb relationships across a number of differ-
ent syntactic constructions. To broaden our scope,
we include two different languages: English and
Dutch.

Through our experiments we find that, while
both English and Dutch language models produce
similar results, our attention and non-attention mod-
els behave differently. These differences manifest
in incorrect attributions for the subjects in sen-
tences with a plural subject-verb pair, where we
find that a higher attribution is given to a plural
subject when a singular verb is used compared to a
singular subject.

Our main contributions to the field thus lie in two
dimensions: on the one hand, we compare atten-
tion and non-attention models with regards to their
explainability. On the other hand, we perform our
analysis in two languages, namely Dutch and En-
glish, to see if patterns hold in different languages.

2 Background

In this section we first discuss the model architec-
tures that we consider. Following this, we explain
the attribution method that we use to explain the dif-
ferent models. Finally, we consider the task which
we use to extract explanations.

2.1 Model architectures

To examine the differences between attention and
non-attention models, we look at one instance of
each kind of model. For the attention model, we
consider the Single Headed Attention RNN (SHA-
RNN, Merity, 2019), and for our non-attention
model a multi-layered LSTM (Gulordava et al.,
2018). Since both models use an LSTM at their
core, we hope to capture and isolate the influence

of the attention mechanism on the behaviour of the
model. Using a Transformer architecture instead
would have made this comparison far more chal-
lenging, given that these kinds of models differ in
multiple significant aspects from LSTMs with re-
gards to their processing mechanism. Below, we
give a brief overview of the SHA-RNN architec-
ture.

SHA-RNN The attention model we consider is
the Single Headed Attention RNN, or SHA-RNN,
proposed by Merity (2019). The SHA-RNN was
designed to be a reasonable alternative to the com-
paratively much larger Transformer models. Merity
argues that while larger models can bring better per-
formance, this often comes at the cost of training
and inference time. As such, the author proposed
this smaller model, which achieves results compa-
rable to earlier Transformer models, without hyper-
parameter tuning.

The SHA-RNN consists of a block structure with
three modules: an LSTM, a pointer-based attention
layer and a feed-forward Boom layer (we provide
a graphical overview in Figure 1). These blocks
can be stacked to create a similar setup to that of
an encoder Transformer. Layer normalisation is
applied at several points in the model.

The attention layer in the SHA-RNN uses only
a single attention head, creating a similar mecha-
nism to Grave et al. (2017) and Merity et al. (2017).
This is in contrast to most other Transformer (and
thus attention) models, which utilise multiple at-
tention heads. However, recent work, like Michel
et al. (2019), has shown that using only a single
attention head may in some cases provide simi-
lar performance to a multi-headed approach, while
significantly reducing the computational cost. Im-
portantly, when using multiple blocks of the SHA-
RNN, the attention layer is only applied in the sec-
ond to last block.

The Boom layer represents the feed-forward
layers commonly found in Transformer models
(Vaswani et al., 2017). In his work, Merity uses
a single feed-forward layer with a GELU activa-
tion (Hendrycks and Gimpel, 2016), followed by
summation over the output to reduce the dimension
of the resulting vector to that before applying the
feed-forward layer.

2.2 Contextual Decomposition

The interpretability method that we use and extend
in this paper is Contextual Decomposition (CD
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Figure 1: A schematic overview of a block in the SHA-
RNN. A block in the SHA-RNN is composed of an
LSTM, a single headed attention layer and a Boom
feed-forward layer. Throughout the model, layer nor-
malisation is used. Hidden states are passed between
subsequent steps in the model. The memory state is
concatenated with previous memory states, and passed
on as well.

Murdoch et al., 2018), a feature attribution method
for explaining individual predictions made by an
LSTM. CD decomposes the output into a sum of
two contribution types β + γ: one part resulting
from a specific “relevant” token or phrase (β), and
one part resulting from all other input to the model
(γ), which is said to be “irrelevant”. The token
or phrase of interest is provided as an additional
parameter to the model.

CD performs a modified forward pass through
the model for each individual token in the input
sentence. The β + γ decomposition is achieved by
splitting up the hidden and cell state of the LSTM
into two parts as well:

ht = βt + γt (1)

ct = βct + γct (2)

This decomposition is constructed such that β
corresponds to contributions made solely by ele-
ments in the relevant phrase, while γ represents
all other contributions. Fundamental to CD is the
role of interactions between β and γ terms that
arrive from operations such as (point-wise) multi-
plications. CD resolves this by “factorizing” the
outcome of a non-linear activation function into a

sum of components, based on an approximation of
the Shapley value of the activation function (Shap-
ley, 1953).

For example, the forget gate update of the cell
state in an LSTM is defined as

c′t = ct−1 � σ(Wfxt + Vfht−1 + bf ) (3)

where Wf ∈ Rdx×dh , Vf ∈ Rdh×dh and bf ∈ Rdh .
CD decomposes both ct−1 and ht−1 into a sum of
β and γ terms:

c′t = (βct−1 + γct−1)

� σ(Wfxt + Vf (βt−1 + γt−1) + bf ) (4)

The forget gate is then decomposed into a sum
of four components (x, β, γ & bf ), based on their
Shapley values, which leads to a cross product be-
tween the terms in the decomposed cell state, and
the decomposed forget gate. The β+ γ decomposi-
tion of the new cell state ct is formed by determin-
ing which specific interactions between β and γ
components should be assigned to the new βct and
γct terms.

In this work, we consider the generalisation of
the CD method proposed by Jumelet et al. (2019),
namely Generalized Contextual Decomposition
(GCD). They alter the way that β and γ interac-
tions are divided over these terms. As such, this
method provides a more complete picture of the
interactions within the model. For a more detailed
explanation of the procedure we refer to the origi-
nal papers.

2.3 Number Agreement Task

To test our models, we consider the Number Agree-
ment (NA) task, a linguistic task that has stood
central in various works in the interpretability liter-
ature (Lakretz et al., 2019; Linzen et al., 2016; Gu-
lordava et al., 2018; Wolf, 2019; Goldberg, 2019).
In this task, a model is evaluated by how well it is
able to track the subject-verb relations over long
distances, as assessed by the percentage of cases in
which the model is able to match the form of the
verb to the number of the subject. The challenge
in the NA task lies in the presence of one or more
attractor nouns between the subject and the verb
that competes with the subject. For instance in the
sentence "The boys at the car greet", "car" forms
the attractor noun, and is a different number than
the boys, thereby possibly confusing the model to
predict a singular verb, "greets".
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Several earlier studies preceded us in consid-
ering number agreement as a means to investigate
language models. Linzen et al. laid the groundwork
for this task, using it to assess the ability of LSTMs
to learn syntax-sensitive dependencies. In their
work, they only considered the English language.
Gulordava et al. (2018) extended the task to the
Italian, Hebrew and Russian languages. Moreover,
they provided a more in-depth study of the Italian
model, comparing it to human subjects. Lakretz
et al. (2019) provided a detailed look at the underly-
ing mechanisms of LSTMs by which they are able
to model grammatical structure. To this end, they
performed an ablation study and discovered which
units were mainly responsible for this mechanism.
Finally, further research into the Italian version of
the NA task in Lakretz et al. (2020) investigated
how emergent mechanisms in language models re-
late to linguistic processing in humans.

Number agreement has also been explored be-
fore in the context of attribution methods. Due to
the clear dependency between a subject and a verb,
it is a useful task to evaluate whether a model based
its prediction of the verb on the number information
of the subject. Poerner et al. (2018) provide a large
suite of evaluation tasks for attribution methods
including number agreement, and show that attri-
bution methods can sometimes yield unexpected
contribution patterns. Jumelet et al. (2019) employ
Contextual Decomposition to investigate the be-
haviour of an LSTM LM on a number agreement
task, and demonstrate that their model employs a
default reasoning heuristic when resolving the task,
with a strong bias for singular verbs. Hao (2020)
investigates an attribution method on a range of
number agreement constructions containing rela-
tive clauses, showing that LMs possess a robust
notion of number information.

3 Method

In this section, we first look at extending Contex-
tual Decomposition for the SHA-RNN. Following
this, we outline the models which we will use for
our experiments. Finally, we explain how we ex-
tended the Number Agreement task and how we
applied Contextual Decomposition to the NA task,
forming the Subject Attribution task.

3.1 Contextual Decomposition for the
SHA-RNN

The original Contextual Decomposition paper
(Murdoch et al., 2018) only defines the decom-
position for an LSTM model. The SHA-RNN
also contains several operations that have not previ-
ously been covered by these two papers. As such,
we have defined the decompositions for the fol-
lowing two operations: Layer Normalization (Ba
et al., 2016) and the Softmax operation in the Sin-
gle Headed Attention layer (Merity, 2019). Based
on these new decompositions, we leverage the
implementation of Contextual Decomposition in
the diagNNose library of Jumelet (2020) to also
cover our SHA-RNN.

Layer Normalization Layer Normalization esti-
mates the normalization statistics over the summed
inputs to the neurons in a hidden layer. A definition
of the Layer Normalization operation can be found
in Eq. (5).

µ =
1

n

n∑
i=1

ai,

σ =

√√√√ 1

n

n∑
i=1

(ai − µ)2,

LN(a) = α
a− µ
σ

+ δ,

(5)

where a represents the inputs to the hidden layer, n
the number of hidden units and α and δ are learn-
able parameters.

Because it looks at all inputs in a layer, both β
and γ might interact within this layer. As such, we
must define how we handle the decomposition of
this operation, which we show in Eq. (6).

βl+1 = LN(βl)− δ,
γl+1 = LN(βl + γl)− LN(βl) + δ

LN(a) = LN(βl + γl) = βl+1 + γl+1

(6)

Our decomposition strictly separates the γ contri-
butions from the β contributions, which means that
no information from γ may be captured in β.

Softmax Similar to our treatment of the Layer
Normalization operation, we strictly separate γ
from the β components, as can be observed in
Eq. (7).

βl+1 = Softmax(βl),

γl+1 = Softmax(βl + γl)− βl+1
(7)
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3.2 Models

For our experiments we consider two types of mod-
els: the attention SHA-RNN model and the non-
attention LSTM model. Below, we will outline the
specific architectures used and training hyperpa-
rameters chosen to build and train these models.

3.2.1 Architectures
LSTM model The LSTM model we use is simi-
lar to the one used by Gulordava et al. (2018). The
model is a stacked two layer LSTM, each with
650 hidden units. Word embeddings are trained
alongside the model and the weights of the embed-
ding layer are tied to the decoder layer (Inan et al.,
2017).

SHA-RNN model For our SHA-RNN we use
two blocks (see Fig. 1), each with an LSTM with
650 hidden units. Furthermore, our model also
utilises a trained word embedding layer with tied
weights, similar to our non-attention model. Fi-
nally, our Boom layer does not increase our dimen-
sion size, but keeps it at 650. This means our Boom
layer reduces to a feed-forward layer with GELU
activations.

3.2.2 Training
We trained four models to conduct our experiments
on. For both the attention (SHA-RNN) and non-
attention (LSTM) model architectures, a model
was trained on a Dutch and English corpus. Both
corpora are based on wikipedia text. Following Gu-
lordava et al. (2018), only the 50.000 most common
words were retained in the vocabulary for both cor-
pora, replacing all other words with <unk> tokens.
The corpora were split into a training, validation
and test set.

The training of the models is split up in two
phases: first, the model is trained for thirty epochs
with a learning rate of 0.02 and a batch size of 64.
Then, we fine-tune the model for an additional five
epochs with the learning rate halved to 0.01 and a
batch size of 16. During training, we set dropout
to 0.1. We use the LAMB optimizer (You et al.,
2019) following Merity (2019).

3.3 Extending Number Agreement

In this work, we extend the Number Agreement
(NA) task to the Dutch language. We do so by ap-
plying the same procedure that was used in Lakretz
et al. (2019), namely by creating a synthetic dataset.
This is different from the works of Linzen et al.

(2016) and Gulordava et al. (2018), which derived
their sentences directly from corpora.

Our version of the NA task contains a total of
five different templates. First of all, we use a sim-
ple template called Simple in which the verb im-
mediately follows the subject. We then extend
this by adding a prepositional phrase which mod-
ifies the subject between the subject and the verb,
either by having a prepositional phrase contain-
ing a noun (NounPP) or containing a proper noun
(NamePP). We then have the sentence conjunction
(SConj) task, which consists of two Simple tem-
plates separated by a conjunction. The challenge of
the SConj task is correctly predicting the number
of the verb in the second sentence. Finally, we have
the ThatNounPP template, which contains a declar-
ative content clause which incorporates a second
subject-verb dependency with a noun modifying
prepositional phrase in its that-clause. An overview
of the templates including example sentences can
be found in Table 1.

We create our final NA-task by obtaining fre-
quent words from our corpus to populate these
sentence templates. This process is done for both
the Dutch and the English corpora, such that we
can more easily compare the results.

3.4 Subject Attribution Task

We propose a new task for input feature attribution
methods based on the Number Agreement task:
Subject Attribution. The goal of the task to produce
explanations in such a way that congruent subject-
verb relations gain higher attributions than non-
congruent ones.

In context of the NA task this means that we
compare the attribution scores of the subject of the
sentence in the case where it is and is not congruent
with the number of the verb. In our evaluation we
consider a higher attribution for the congruent noun
compared to the non-congruent noun to be correct,
as this would be in line with human intuition. A
schematic overview of this task can be found in
Fig. 2.

In this work, we use the task in the following
way: we apply our attribution method on each sen-
tence within our dataset, generating input feature
attributions. We then compare the subject attribu-
tions of these sentences to find in which percent-
age of the sentences the attributions for the subject
were higher for the congruent verb than the non
congruent one.
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NA-task Template Example
Simple DET N V De jongen groet

The boy greets
NounPP DET N PREP DET N V De jongens bij de auto groeten

The boys at the car greet
NamePP DET N PREP NAME V De jongens bij Pat groeten

The boys at Pat greet
SConj DET N V en/and DET N V De jongen groet en de moeders missen

The boy greets and the mothers miss
ThatNounPP DET N V dat/that DET N PREP DET N V De jongen denkt dat de moeders bij de auto missen

The boy thinks that the mothers at the car miss

Table 1: Overview of the templates for the NA-tasks. DET is a determiner, N a noun, NAME a name of a person, V
a verb and PREP a preposition. The underlined noun in the template signifies the subject belonging to the relevant
verb.

P(approve) = 0.16

0.02𝜙

The at Patboys

0.25𝜙 0.01𝜙 -0.12𝜙

P(approves) = 0.04

0.01𝜙

The at Patboys

0.02𝜙 0.14𝜙

>

>

-0.13𝜙

NUMBER AGREEMENT TASK

SUBJECT ATTRIBUTION TASK

LM LM

Figure 2: Schematic overview of the default number agreement task that compares the output probabilities of the
LM, and the subject attribution task that compares the attribution scores of the subject to the correct and incorrect
form of the verb. We hypothesise that for a model with a sophisticated understanding of number agreement, the
subject’s contribution to the correct verb form is greater than to the incorrect form.

4 Results and analysis

In our work, we have considered several experi-
ments. Firstly, we evaluate the ability of our mod-
els to handle the data itself by comparing the model
perplexities. Following this, we look at the Num-
ber Agreement and Subject Attribution tasks to
evaluate the differences between our models.

4.1 Model Perplexities

To establish the adequacy of our models on the data,
we calculate the perplexity for each model over the
held-out test set (Table 2). Due to the different data
sets used for the two languages, direct comparisons
between the perplexity scores for the English and
Dutch models are not feasible. We do observe
that for both languages, the SHA-RNN yields a
perplexity score that is 5% lower than the score of
the LSTM counterpart.

Model Perplexity
LSTM (English) 56.24
LSTM (Dutch) 34.24

SHA-RNN (English) 53.25
SHA-RNN (Dutch) 32.54

Table 2: Model perplexities

4.2 Number Agreement

To assess the performance of the different lan-
guage models, we consider the different sentence
structures presented in Table 1. For each sen-
tence structure, we evaluate the predictive perfor-
mance of the model on matching the form of the
verb to the number of the relevant subject. For
example, given a singular subject, we evaluate
p(VERBS|SUBJS) > p(VERBP|SUBJS). The same
sentence templates have been used for the Subject
Attribution task. We apply Contextual Decomposi-
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tion to the sentences to investigate the behavioural
differences between the models.

We examine the results of our experiments along
two axes: language and attention. First, we com-
pare the Dutch and English language models. Fol-
lowing this, we analyse the differences between the
attention and non-attention models.

4.2.1 Language axis
Across the board, the Dutch models perform
slightly better on the NA tasks than the English
models. This could be due to the data sets used,
as the Dutch data set was larger than the English
one, giving the Dutch model more opportunities
to learn. We do find similar patterns between the
Dutch models (Table 3a) and the English models
(Table 3b): between the two languages, the models
generally share the tasks and conditions that they
perform well on. There are exceptions to this, as in
the case of the Simple NA task for the LSTM, with
Dutch models performing better on the singular
condition while their English counterparts achieve
higher scores on the plural condition.

When we compare the results of the models on
the Subject Attribution task in Tables 3a and 3b,
we find more substantial differences between the
models across the languages. In case of the English
models, the SHA-RNN performed rather poorly
on the plural conditions of the Subject Attribution
task. This is remarkable, given that the Dutch SHA-
RNN yields significantly higher scores on these
conditions.

We observe that for the English SHA-RNN, con-
textual decomposition consistently yields attribu-
tion scores that are lower for the plural conditions
than those for the singular conditions (see Fig. 3
for an example). In the Dutch SHA-RNN, this be-
haviour is only apparent for the Simple, NounPP
and NamePP tasks.

Jumelet et al. (2019) encountered similar be-
haviours when applying CD to an LSTM language
model. They attributed the lower attributions to a
bias towards singular verbs in the model, which re-
sulted in a form of default reasoning. However, our
accuracy results do not indicate a similar bias, as
we found all our models performing well on both
plural and singular subjects. This raises the ques-
tion as to what is causing this behaviour, which we
leave for future work.

Overall, these results do not demonstrate any sig-
nificant differences between the Dutch and English
models. While we have shown that differences

occur across conditions, we find that for most con-
ditions, both models behave similarly, with the two
LSTM models displaying more similarities than
the SHA-RNN models.

4.2.2 Attention axis
To compare the attention models (SHA-RNNs) to
the non-attention model (the LSTMs), we again
first consider the accuracy scores in Tables 3a
and 3b. A comparison between the SHA-RNN
and the LSTM shows that the SHA-RNN performs
slightly worse than the LSTM by a small margin.
There are some cases where this difference is more
pronounced, such as for the English ThatNounPP
task (see Table 3b), where we observe large dif-
ferences for the singular subject conditions. This
behaviour goes against the perplexity results in Ta-
ble 2, which indicate a better performing SHA-
RNN. This is in line with the results found by
Nikoulina et al. (2021), who demonstrate that per-
plexity is not always directly correlated to perfor-
mance on downstream tasks, as appears to be the
case for our Number Agreement task.

Looking at the model explanations in Tables 3a
and 3b we see that across the board the LSTM per-
forms better on the Subject Attribution task. We
find that both SHA-RNN models generally do not
produce the expected attributions for the plural sub-
ject conditions, while there are very few instances
of the LSTM performing under 50%, only failing
by a large margin for the English LSTM on the
Simple P and NamePP P conditions (see Table 3a).

From our observations, the attention and non-
attention models behave differently both in terms
of accuracy scores on the NA task and the expla-
nations from the Subject Attribution task. We find
that the difference between the architectures of the
SHA-RNN and the LSTM leads to significant varia-
tions in general performance as well as behavioural
patterns.

5 Conclusion

In this paper, we compared both attention (SHA-
RNN) and non-attention (LSTM) language models
across two languages, namely Dutch and English.
To test these models, we extended the Number
Agreement task from Lakretz et al. (2019) to the
Dutch language, which allows us to compare these
models across both languages. In addition to this,
we extended a feature attribution method called
Contextual Decomposition (Murdoch et al., 2018)
to the SHA-RNN model. We applied Contextual
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NA-task
Singular Subject Plural Subject

Condition SHA-RNN LSTM Condition SHA-RNN LSTM
Simple S 92.1 (77.8) 99.2 (65.4) P 94.0 (25.9) 94.4 (58.6)
NounPP SS 99.0 (83.3) 94.7 (56.1) PS 91.5 (20.7) 98.5 (70.0)
NounPP SP 95.2 (82.0) 94.7 (48.3) PP 96.8 (21.3) 98.7 (71.2)
NamePP S 59.3 (58.3) 81.8 (57.2) P 83.8 (43.3) 75.3 (48.8)
SConj SS 95.8 (77.0) 96.0 (90.3) SP 88.7 (43.8) 89.3 (63.0)
SConj PS 42.8 (67.0) 89.5 (89.3) PP 94.0 (50.2) 95.5 (42.8)
ThatNounPP SSS 98.3 (72.2) 96.7 (80.7) SPS 99.3 (61.8) 100.0 (89.3)
ThatNounPP SSP 99.0 (65.5) 94.7 (75.2) SPP 99.2 (66.2) 100.0 (91.8)
ThatNounPP PSS 97.8 (70.7) 96.8 (83.5) PPS 99.7 (62.2) 100.0 (89.3)
ThatNounPP PSP 98.2 (62.0) 91.3 (78.0) PPP 99.5 (65.8) 100.0 (91.7)

(a) Results for the Dutch language models.

NA-task
Singular Subject Plural Subject

Condition SHA-RNN LSTM Condition SHA-RNN LSTM
Simple S 94.0 (93.3) 92.7 (93.3) P 99.3 (11.7) 96.3 (35.7)
NounPP SS 86.0 (92.3) 78.3 (95.5) PS 82.5 (8.8) 93.3 (54.6)
NounPP SP 83.8 (93.5) 54.8 (94.0) PP 97.0 (9.0) 96.8 (59.5)
NamePP S 68.0 (89.3) 86.7 (96.5) P 66.2 (14.5) 52.3 (12.5)
SConj SS 93.8 (93.0) 94.3 (90.5) SP 99.3 (15.7) 96.3 (87.2)
SConj PS 82.3 (93.5) 94.3 (94.3) PP 99.3 (10.7) 98.8 (90.5)
ThatNounPP SSS 91.8 (100.0) 70.7 (92.0) SPS 92.3 (5.0) 95.8 (51.3)
ThatNounPP SSP 85.2 (100.0) 43.7 (94.0) SPP 98.7 (4.2) 100.0 (65.7)
ThatNounPP PSS 86.2 (99.8) 69.7 (92.3) PPS 92.0 (4.3) 97.0 (55.7)
ThatNounPP PSP 81.2 (100.0) 46.3 (92.3) PPP 98.2 (2.3) 99.5 (68.0)

(b) Results for the English language models.

Table 3: Overview of prediction accuracy scores (the numbers outside the brackets) and subject attribution be-
haviour (in brackets) on the Number Agreement tasks for the Dutch and English language models. For each task,
the noun inflections are given in the condition column, with S indicating singular and P indicating plural. The
underlined letter in the condition indicates the noun belonging to the verb that is predicted. The numbers in brack-
ets denote the performance on the subject attribution task: the percentage of cases in which the attributions of the
subjects were higher to the congruent verb than to the non-congruent ones. The colour coding of the table cells
follows the performance on this subject attribution task along a colour gradient from green (high performance) to
red (low performance).

Decomposition to the Number Agreement task to
obtain interpretable explanations and compared the
different models from a feature attribution stand-
point.

We found that both the Dutch and English mod-
els behaved similarly in terms of accuracy. While
general performance differed between the two lan-
guages, we did find that similar behavioural pat-
terns emerged from the models. This partially held
for the explanations obtained through Contextual
Decomposition, where we did uncover differences.
These differences were centred around the SHA-
RNN, which we found behaved as if it applied
default reasoning similar to the work of Jumelet
et al. (2019).

Comparing our attention and non-attention mod-
els, we found immediate differences, both when

comparing the performance on the Number Agree-
ment task as when looking into the attributions.
Both models performed differently on the same
tasks and feature attributions varied between them.
We found that our LSTM performed better on the
attribution task.

Our current results suggest that attention and
non-attention models behave differently according
to Contextual Decomposition. More specifically,
we find that the attention models have more diffi-
culty producing correct attributions for plural sen-
tences. A logical next step would then be to com-
pare our current results by those obtained through
different attribution methods such as SHAP (Lund-
berg and Lee, 2017) and Integrated Gradients (Sun-
dararajan et al., 2017). Should we find that Contex-
tual Decomposition holds up well to these other
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(a) Example SHA-RNN attributions

verbS verbP

bias

det

subjS

prep

det

nounP

-0.44 -0.38

0.51 0.43

0.39 0.33

0.42 0.36

0.5 0.42

0.51 0.43

NounPP SP Attributions

verbS verbP

bias

det

subjP

prep

det

nounS

-0.3 -0.26

0.44 0.38

0.37 0.33

0.37 0.32

0.47 0.41

0.49 0.42

NounPP PS Attributions

(b) Aggregated SHA-RNN attributions
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(c) Aggregated LSTM attributions

Figure 3: Contextual Decomposition attributions for the English models (SHA-RNN and LSTM) on the SP and PS
conditions of the NounPP task. Fig. 3a shows the attributions of two individial sentences, while Figs. 3b and 3c
show aggregated attributions over all sentences of that condition. Note that in Fig. 3b the attribution for the subject
under the singular verb is both higher in the SP condition as well as in PS condition, while in Fig. 3c the attribution
is higher for the subject matching the verb form.

methods, it could then prove to be a valuable
method for approximating Shapley values in poly-
nomial time. Moreover, it is worth looking into the
application of Contextual Decomposition in Trans-
former architectures, which rely more heavily on
these kinds of attention mechanisms.

An alternative line of research that we would
like to explore is the attention mechanism itself.
Even though it has been shown that attention does
not provide guarantees for explainability (Jain and
Wallace, 2019), it would still be worthwhile to in-
vestigate the attention patterns that are employed
by the SHA-RNN.
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