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Abstract
This paper presents a way to inject and lever-
age existing knowledge from external sources
in a Deep Learning environment, extending
the recently proposed Recurrent Independent
Mechnisms (RIMs) architecture, which com-
prises a set of interacting yet independent mod-
ules. We show that this extension of the
RIMs architecture is an effective framework
with lower parameter implications compared
to purely fine-tuned systems.

1 Introduction

Deep neural networks have been successfully ap-
plied to a variety of natural language processing
tasks such as text classification, sequence label-
ing, sequence generation, etc. Deep architectures
are often non-modular, homogeneous systems and
trained end-to-end. End-to-end training is per-
formed with the hope that the structure of a net-
works is sufficient to direct gradient descent from a
random initial state to a highly non-trivial solution
(Glasmachers, 2017).

An important issue with the end-to-end training
is that throughout the training of a system com-
posed of several layers, valuable information con-
tained in a problem decomposition that resulted in
a specific network design is ignored (Glasmachers,
2017). In non-modular systems, explicit decompo-
sition of high level tasks into distinct subprocesses
is not possible and necessary complexity has to be
induced through the complexity of the input stimu-
lus. This results in large systems whith the required
number of training samples becoming intractable.
Interpretation of these black box systems is difficult
(Miikkulainen and Dyer, 1991).

In compositional systems, in contrast, smaller
modules encode specialized expertise which is
known to impact one aspect of the task at hand.
The aggregation of the modules acts synergisti-
cally to address the overall task. In a modular
system, the components act largely independently

but communicate occasionally. Module autonomy
is crucial because in the case of distributional shifts
(significant changes in some modules), other mod-
ules should remain robust (Schölkopf et al., 2012),
(Goyal et al., 2019). Modules also need to inter-
act occasionally to achieve compositional behavior
(Bengio, 2017).

Many current neural modular systems, such as
EntNet (Henaff et al., 2017) and IndRNN (Li et al.,
2018), offer only module independence, but no
module communication. The recently proposed Re-
current Independent Mechanisms (RIMs) (Goyal
et al., 2019), however, suggest to model a com-
plex system by dividing the overall model into M
communicative recurrent modules.

Deep architectures often rely solely on raw data
in large quantities with a requirement of represen-
tativeness regarding task requirements. This be-
comes problematic for tasks with a specialized,
low-frequency terminology, where high quality
knowledge sources for NLP and AI are often avail-
able and have proven their effectiveness. Embed-
ding expert knowledge in extended pre-trained
word embeddings is costly. We present untied
inedpendent modules to embed knowledge from
different sources onto systems input. Knowledge
sources, as independent experts, provide different
annotations (abstractions) for the input, combining
various classifications for solving the task.

For instance, providing sentiment lexica for sen-
timent analysis reduces the demand for training
data by expanding the limited training vocabulary
with an extended set of annotated terms. Precom-
piled word embeddings are to be considered knowl-
edge sources in the same spirit and we demonstrate
that they inter-operate with a variety of other knowl-
edge sources such as gazetteers and POS encoding.

Consider Example 1 from the Stanford Senti-
ment Treebank (SST-2) (Socher et al., 2013).

(1) This is an absurd comedy about
alienation, separation and loss.
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Figure 1 shows annotations from different knowl-
edge sources for Example 1, such as tokeniza-
tion (from the ANNIE tokenizer), POS tags (from
the Stanford POS tagger), and sentiment annota-
tions from three sentiment lexica (AFINN (Nielsen,
2011), MPQA (Wilson et al., 2005), and NRC (Mo-
hammad et al., 2013)).

x1t x2t x3t x4t x5t
t Token POS AFINN MPQA NRC

1 This DT 0 Neutral -0.19
2 is VBZ 0 Neutral 0.00
3 an DT 0 Neutral 0.08
4 absurd JJ 0 Neg. -1.56
5 comedy NN +1 Neg. 0.27
6 about IN 0 Neutral -0.34
7 alienation NN -2 Neg. 0.00
8 , , 0 Neutral 0.27
9 separation NN 0 Neutral -0.29

10 and CC 0 Neutral 0.41
11 loss NN -3 Neg. -0.51
12 . . 0 Neutral -0.06

Figure 1: Various annotations for Example 1

The annotations of the different sentiment lexica
in Figure 1 vary substantially: comedy is classified
as positive (+1) in AFINN, as negative in MPQA,
and almost neutral in NRC. (Özdemir and Bergler,
2015a) showed that this variance in judgements
is not prohibitive, in fact (Özdemir and Bergler,
2015b) showed that combining 5 sentiment lexica
outperformed all other combinations. These dif-
ferences are in fact advantageous in an ensemble
setting and reflect diversity among experts. The
differences cannot be exploited, when a single em-
bedding is used for tokens, but may be retained,
when different lexica are embedded independently
in different modules.

We add input independence to the RIMs archi-
tecture, providing different language annotations as
inputs to a set of independent, but interacting mod-
ules. The resulting system is a flexible modular
architecture for leveraging token-level knowledge
in form of different annotation embeddings, which
will be given different weights for the task at hand
dependeing on their usefulness during training (see
Figure 11). The system is evaluated on tasks such
as sentiment analysis and analysis of health-related
tweets for different health concerns.

Our experiments demonstrate that leveraging
knowledge sources under a modular framework
consistently improves performance with little in-
crease in parameter space. Additionally, when
frozen language models are supplemented with

knowledge sources, the drop in performance is min-
imal, making this technique particularly beneficial
for users that do not have access to powerful com-
putational resources. Lastly, the modular nature of
the system allows to visualize the models function-
ality.

2 Methods

2.1 RIMs
Recurrent independent mechanisms (RIMs) is a
modular architecture that models a dynamic system
by dividing it into M recurrent modules (Goyal
et al., 2019). At time-step t, each module Rm

(m = 1, . . . ,M ) has a hidden state hmt ∈ Rdh .

Input selection Each module Rm gets the aug-
mented input Xt = xt ⊕ 0, where 0 is an all-zero
vector and ⊕ is the row-level concatenation. Then,
using an attention mechanism, module Rm selects
input:

Am
t = softmax(

hm
t−1W

query
m (XtW

key)T√
d

)XtW
val (1)

where hmt−1W
query
m is the query, XtW

key is the
key, and XtW

val is the value in the attention
mechanism (Vaswani et al., 2017). The matrices
W query

m ∈ Rdh×dqueryin , W key ∈ Rdin×dkeyin , and
W val ∈ Rdin×dvalin are linear transformations for
constructing query, key, and value for the input
selection attention.1

If the input xt is considered relevant to module
Rm, the attention mechanism in Equation 1 as-
signs more weight to it (selects it), otherwise more
weight will be assigned to the null input (Goyal
et al., 2019).

The softmax values of Equation 1 determine a
set St of top mActive modules.2 Among M mod-
ules, those with the least attention on the null input
are the active modules. The selected input Am

t de-
termines a temporary hidden state h̃mt for the active
modules:

h̃mt = Rm(hmt−1, A
m
t ) m ∈ St (2)

where Rm(hmt−1, A
m
t ) denotes one iteration of up-

dating the recurrent module Rm based on previous
state hmt−1 and current input Am

t . The hidden states

1dqueryin , dkeyin , and dvalin are dimensionalities of query, key,
and value respectively (for the input selection attention)

2The cardinality |St| = mActive is currently a fixed hyper-
parameter, that can ultimately be determined based on the
target task.
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of the inactive modules Rm (m /∈ St) remain un-
changed:

hmt = hmt−1 m /∈ St (3)

Module communication To obtain the actual
hidden states hmt , the active modules communicate
using an attention mechanism:

hm
t = softmax(

Qt,m(Kt,:)
T

√
dh

)Vt,: + h̃m
t m ∈ St (4)

where
Qt,m = h̃m

t W̃
query
m

Kt,: is the row-level concatenation of all Kt,m

(m = 1, . . . ,M ) defined as:

Kt,m = h̃m
t W̃

key
m

and Vt,: is the row-level concatenation of all Vt,m
(m = 1, . . . ,M ) defined as:

Vt,m = h̃m
t W̃

val
m

The matrices W̃ query
m ∈ Rdh×dquerycom , W̃ key

m ∈
Rdh×dkeycom and W̃ val

m ∈ Rdh×dvalcom are used for con-
structing query, key, and value for the communica-
tion attention.3

Note that both the key Kt,: and the value Vt,:
depend on the temporary hidden states of all mod-
ules, therefore hmt in Equation 4 is determined by
attending to all modules. The overall hidden state
of the RIMs model at time-step t can be defined as
ht = [h1t , . . . , h

M
t ] which is the concatenation of

the hidden states of all modules.

Classification We choose a simple attention
layer together with a classifier to obtain the ap-
propriate vector representation of a given sample.
Attention (Bahdanau et al., 2015) determines im-
portance scores et = wT

attht using a latent context
vector watt. The score is then normalized using
αt =

exp(et)∑
j ej

for a weighted sum H =
∑

t αt ∗ ht,
which is the input for a classifier.

2.2 Multi-input RIMs
We extend this architecture to so-called multi-input
RIMs, which consist of a set of M modules, similar
to the standard RIMs. The standard RIMs model as-
sumes the same input sequence for all modules (Xt

in Equation 1), which share the same linear transfor-
mation matrices W key and W val for constructing
the keys and values for the attention mechanism.

3dquerycom , dkeycom, and dvalcom are dimensions of query, key,
and value respectively (for the communication attention)

an

DT

Neutral

absurd

JJ

Neg

comedy

NN

Neg

R1

R2

R3

input selection communicationinactive module active module

t = 3 t = 4 t = 5

Figure 2: A 3 module multi-input RIMs for Example 1
at t = 3, ..., 5. The dynamics of each module is inde-
pendent of the others and active modules communicate
at each time-step

In contrast, we untie the input attention mecha-
nism and consider dedicated linear transformations
W key

m andW val
m for moduleRm. Untying the atten-

tion mechanism allows modules to have different
inputs Xm

t (m = 1, . . . ,M ) each potentially with
a different dimensionality. This supports our use
of each module to encode a different knowledge
source, one being word embeddings, one being a
gazetteer list, etc. The input selection mechanism
of Equation 1 then expands to Equation 5:

Am
t = softmax(

hm
t−1W

query
m (Xm

t W
key
m )T√

dh
)Xm

t W
val
m

(5)

where Xm
t = xmt ⊕ 0.

In Equation 5, the softmax produces two at-
tention scores, i.e. how much the module Rm at-
tends to the input xmt and the null input 0. The top
mactive modules with least attention scores to the
null input form a set St. The temporary hidden state
for active modules is determined by Equation 2 and
modules communicate according to Equation 4,
identical to standard RIMs. An illustration of the
multi-input RIMs model is provided in Figure 2.

3 Tasks

We explore the potential of multi-input RIMs by ab-
lation on different tasks that are each very specific
in their description and do not have large training
datasets, namely three sentiment analysis tasks and
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two health-related tweet classification tasks.

3.1 Sentiment analysis

Here we consider three sentiment benchmark
datasets with their respective tasks:

SST-2 Stanford sentiment tree-bank for the task
of binary sentiment classification of movie
reviews (Socher et al., 2013). The models are
trained on the data provided by the GLUE
benchmark4 (Wang et al., 2018).

SE17-4A SemEval 2017 task 4 subtask A is a 3-
class problem for sentiment classification of
tweets (Rosenthal et al., 2017). The tweets are
classified as Negative, Neutral, and Positive.
The performance for this task is measured by
the macro-average of recall scores for positive,
negative, and neutral classes and evaluated
by the TweetEval benchmark (Barbieri et al.,
2020)5.

SE15-11 SemEval 2015 task 11 is a pilot task
of sentiment analysis for figurative language
tweets. The training set comprises a collec-
tion of sarcastic, ironic, and metaphoric tweets
(4490 tweets) annotated on an 11 point scale
(−5, . . . ,+5) (Ghosh et al., 2015). The per-
formance is measured by Cosine similarity
between the gold standard labels and predic-
tions.

We use the following sentiment lexica as knowl-
edge sources:

1. AFINN: A manually compiled lexicon of 2500
words, rated for valence scores with an integer
between -5 and 5 together with their prior
polarities (Nielsen, 2011).

2. MPQA: A manually compiled lexicon of 8000
words, distinguishing positive, negative, and
neutral sentiment scores (Wilson et al., 2005).

3. NRC HashTag sentiment: An automatically
compiled resource, that uses seed hashtags
(Mohammad et al., 2013). The polarity of the
seed hashtag is used to calculate PMI-based6

scores (Church and Hanks, 1990).

4http://gluebenchmark.com
5https://github.com/cardiffnlp/

tweeteval
6point-wise mutual information

The training set SE15-11 has been released as
tweet IDs and part of the training set is not available
anymore7, therefore we randomly select 20% of the
available tweets as test set and use the remaining
for training.

3.2 Health experience classification of tweets

Personal experiences gleaned from social media
can enhance awareness of the state of public health.
Here we focus on two tasks:

SM18-2 The task of medication intake report
detection was introduced as SMM4H 2018
Task 2 (Weissenbacher et al., 2018) as a 3-
way classification task. Tweets in which the
user clearly expresses a personal medication
intake/consumption are considered Class 1.
Tweets where the user may have taken some
medication are labeled as Class 2. Class 3
tweets mention medication names but do not
indicate personal intake. The total number of
samples in the training set is 17700.

SM20-5 Birth defect mention detection concern-
ing a child is a 3-class problem, where Class
1 tweets indicate that the user’s child has a
birth defect. Class 2 tweets are unclear as
to whether the poster speaks of birth defects
of their child. Class 3 tweets merely men-
tion birth defects but not with respect to the
poster’s child (Klein et al., 2020). The training
set includes 18382 samples.

Both, SM18-2 and SM20-5 benefit from special-
ized gazetters of relevant medical terms, in particu-
lar:

1. Drugs: A gazetteer list of drug names com-
piled from Drug Bank (Wishart et al., 2018).

2. Diseases: A list of terms for infections,
wounds, injuries, pain, etc., compiled from
subtree C in MeSH8 (Lipscomb, 2000). Dis-
ease mentions are important evidence for med-
ication intake classification, since drugs are
usually consumed to treat a disease.

3. Birth Defect: Congenital, hereditary, and
neonatal diseases and abnormalities (from
MeSH C16).

7about 33% of the tweets are not available
8https://meshb.nlm.nih.gov/treeView

http://gluebenchmark.com
https://github.com/cardiffnlp/tweeteval
https://github.com/cardiffnlp/tweeteval
https://meshb.nlm.nih.gov/treeView
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4. Pregnancy: Pregnancy complication terms
(from MeSH C13.703)

For SM18-2, the gold labels of the competition
set have not been disclosed, therefore we randomly
hold out a test set (20% of the original training
data). For SM18-2 and SM20-5 the performances
are measured in terms of micro-F1 scores for 0 and
1 class.

4 Implementation

Preprocessing We preprocess the data using a
GATE pipeline (Cunningham et al., 2002) with the
ANNIE English Tokenizer (for SST-2 task) and
ANNIE tweet tokenizer as well as the hashtag tok-
enizer (for the tweet tasks).

Embeddings Each annotation type provides a se-
quence (see Figure 1) which is used as input for a
dedicated module in multi-input RIMs. Therefore,
each sequence has to be properly embedded. The
annotation types can be embedded either using pre-
trained embeddings or using randomly initialized
embeddings that are learned during the training.

Tokens are embedded using ELMo (Peters et al.,
2018) or RoBERTa (Liu et al., 2019) pre-
trained models. For ELMo, we use the pre-
trained model provided by AllenNLP9 and for
RoBERTa, the model provided by Hugging
Face10.

POS tags following (Bagherzadeh and Bergler,
2021), we apply Word2Vec on POS tag se-
quences instead of token sequences. The
POS embeddings are trained using the Gen-
sim package (Rehurek and Sojka, 2010) with a
window size of 5 and dimensionality 20. The
pretraining is performed on combined training
data of all tasks introduced in Section 3.

AFINN and NRC matches do not require an em-
bedding, since the lexica quantify the senti-
ment scores numerically.

MPQA matches for Negative, Neutral, and Posi-
tive polarities are encoded numerically by −1,
0, and 1 respectively.

Medical Gazetteer matches are embedded using
a learnable embedding matrix B ∈ R5×20.

9https://allennlp.org/
10https://huggingface.co/

The 5 rows in B correspond to 4 medical re-
sources11 plus one row to indicate no annota-
tion.

The multi-input RIMs model is a flexible archi-
tecture and the modules can be of any recurrent
type. Here, we use LSTMs for complex inputs,
such as Token or POS, and RNNs for annotations
with simpler encodings, such as gazetteers.

Module din dh dquerin dkeyin dvalin dquercom dkeycom dvalcom

Token 1024 256 512 512 1024 64 64 256
POS 50 256 100 100 50 64 64 256
Senti1 1 256 16 16 1 64 64 256
Medic2 20 256 100 100 20 64 64 256

1: AFIIN, MPQA, NRC
2: Drug, Preg, BirthDef, Disease

Figure 3: Hyper-parameters used in the experiments.

Figure 3 summarizes the hyper-parameters used
for multi-input RIMs. We use the learning rates of
lr = 0.5e − 2 and lr = 0.5e − 4 for ELMo- and
RoBERTa-based models respectively. The hyper-
parameters are tuned based on a grid-search ap-
proach. The multi-input RIMs model itself (ex-
cluding the language models) has 4M learnable
parameters.

To calculate classification loss we use cross-
entropy loss and we optimize the models using
the Adam optimizer (Kingma and Ba, 2015). The
models are implemented using PyTorch (Paszke
et al., 2017).

5 Numerical results

We present a set of ablation studies to evaluate the
effectiveness and contribution of different knowl-
edge sources.

All modules active Figures 4–6 report results for
the multi-input RIMs model when the modules are
provided with different annotation types and all
modules are kept active (M = mActive). For the
runs where the Token annotation is the only input
(M = 1), the model is reduced to a simple LSTM
with ELMo or RoBERTa embeddings, which we
consider to form baselines.

Figure 4 shows that all sentiment tasks benefit
from the sentiment lexica. For SST-2, AFINN and
MPQA add more to the task than NRC. On the
other hand, NRC yields considerable performance
improvements for the tweet sentiment data sets of

11Drug, Disease, Birth defect, and Pregnancy

https://allennlp.org/
https://huggingface.co/
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SST-2 (Acc %) SE17-4A (mac-Rec %) SE15-11 (Cosine)

M Annotations ELMo RoBERTa ELMo RoBERTa ELMo RoBERTa

1 Token 88.5 96.4 64.1 70.2 78.1 82.2

2 Token + AFINN 91.2 96.7 66.8 71.6 80.1 83.0
2 Token + MPQA 90.3 96.5 65.9 71.2 80.0 83.2
2 Token + NRC 89.7 96.4 67.1 71.5 82.1 83.9
2 Token + POS 89.2 96.4 65.2 70.8 78.9 82.2

3 Token + POS + AFINN 91.8 97.1 68.3 72.0 81.4 83.3
3 Token + POS + MPQA 90.7 96.9 67.2 71.8 81.1 83.3
3 Token + POS + NRC 90.5 96.5 68.9 72.4 82.6 84.4

5 Token + POS + AFINN + MPQA + NRC 92.3 97.3 70.4 73.3 83.2 85.0

1 TokenF 83.2 94.1 61.1 68.2 75.3 80.3
5 TokenF + POS + AFINN + MPQA + NRC 89.1 95.4 68.2 71.6 81.4 84.1

F : Frozen language model

Figure 4: Multi-input RIMs on sentiment tasks with knowledge sources. Each annotation is the input of a dedicated
module. In each run, all modules are kept active (mActive =M )

SE17-4a and SE15-11. We surmise the greater
effectiveness of the NRC lexicon for the tweet sen-
timent tasks is due to the fact that it is constructed
from tweet corpora.

POS constitutes general linguistic knowledge
and demonstrates consistent yet small improve-
ments for the sentiment tasks. However, POS im-
proves performance for the health concerns data of
SM18-2 (Figure 5) and SM20-5 (Figure 6). Note
that both tasks concern detection of personal ex-
perience mentions, for which categories such as
pronouns (both personal and possessive) and verbs
in past tense are important, which carry distinctive
POS tags.

M Annotations ELMo RoBERTa
1 Token 68.2 72.0

2 Token + Drug 71.3 73.9
2 Token + Disease 70.5 73.0
2 Token + POS 71.5 74.1

3 Token + POS + Drug 73.6 74.8
3 Token + POS + Disease 72.7 74.5

4 Token + POS + Drug + Disease 74.8 76.4

1 TokenF 64.2 70.0
4 TokenF + POS + Drug + Disease 71.6 73.8

Figure 5: Multi-input RIMs for SM18-2, personal drug
intake. All modules are active

POS constitutes general linguistic knowledge
and demonstrates consistent yet small improve-
ments for the sentiment tasks. However, POS im-
proves performance for the health concerns data of
SM18-2 (Figure 5) and SM20-5 (Figure 6). Note
that both tasks concern detection of personal ex-
perience mentions, for which categories such as
pronouns (both personal and possessive) and verbs
in past tense are important, which carry distinctive
POS tags.

Improvements from medical knowledge
gazetteers are also compelling. Figure 5 shows that
the Disease gazetteer enhances the performance
for the medication intake task, corroborating the
hypothesis that disease mentions are strong evi-

M Annotations ELMo RoBERTa
1 Token 62.6 68.2

2 Token + BirthDef 65.3 70.4
2 Token + Preg 63.8 69.1
2 Token + POS 65.0 69.9

3 Token + POS + BirthDef 67.5 72.2
3 Token + POS + Preg 67.0 71.0

4 Token + POS + BirthDef + Preg 69.3 73.6

1 TokenF 60.3 65.4
4 TokenF + POS + BirthDef + Preg 66.5 69.6

Figure 6: Multi-input RIMs for SM20-5, birth defect in
a child. All modules are active
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dence for medication intake. Similarly, Figure 6
shows that the Pregnancy gazetteer, as a comple-
mentary knowledge source, provides effective sup-
port for birth defect mention detection.

Some modules active We next evaluate perfor-
mance when limiting the number of active modules
(mActive < M ). Figures 7-9 show experiments
for multi-input RIMs with each annotation as in-
put to different modules. Interestingly, for most
tasks, limiting the number of modules yields better
performance, corroborating observations made by
(Goyal et al., 2019).

This confirms the importance of forcing the an-
notations into competition mode for the moder-
ate to small datasets: if mActive < M , the mod-
ules compete for activation. As argued by (Goyal
et al., 2019) and (Parascandolo et al., 2018) the
competition between modules for representational
resources (here the annotations) potentially leads to
independence among learned mechanisms, making
each module specialize on a simpler sub-problem,
which prevents individual RIMs from dominating
(Bengio et al., 2020).

Freezing language model vs fine-tuning We
are interested in the behaviour of multi-RIMs when
the language models are frozen. Freezing models
such as BERT has recently demonstrated improve-
ments (including speed-up) in the Adapters frame-
work (Houlsby et al., 2019) and (Pfeiffer et al.,
2020). The Adapters rely on injecting new train-
able layers (modules) as intermediate layers within
a frozen language model. The trainable layers are
then expected to learn task specific representations.

Here, we investigate task adaptation using
multi-input RIMs, combining trainable mod-
ules with complementary task specific re-
sources/representations to compensate for possible
losses in learning capacity of the model.

The last two rows in Figures 4-6 report perfor-
mance when the language model is frozen (no fine-
tuning). The fully-featured versions of all frozen
systems still outperform the token-only baseline
for all tasks for ELMo and almost all tasks for
RoBERTa.

All of runs were executed on an Intel® Core i7
2.20GHz CPU. When we fine tune our RoBERTa-
based models, the average time for a forward pass
and back-propagation for one sample is 1.71sec
compared to 0.63sec when the language model is
frozen.

This significant reduction in training overhead
when freezing language models is helpful for users
whose access to computational resources is limited.
The reported experiments suggest that appropriate
knowledge sources can compensate for losses when
freezing heavy language models such as ELMo or
RoBERTa.

Comparison with SOTA The SST-2, SE17-4A,
SM20-5 tasks have been deployed on GLUE,
TweetEval, and Codalab benchmarks respectively,
therefore, the state of the art (SOTA) results are
available. Current SOTA performances on SST-
2 are obtained by (Sun et al., 2019) and (Raffel
et al., 2020) (tied), SOTA for SE17-4A is reported
by (Barbieri et al., 2020), and SOTA for SM20-5
is reported by (Bai and Zhou, 2020) as shown in
Figure 10.

For other tasks however, we replicated the re-
ported SOTA system for each task. For SM18-2 the
SOTA performance is reported for (Xherija, 2018),
which is a two-layer stacked bi-LSTM with atten-
tion. The SOTA results for SE15-11 are reported
by CRNN-RoBERTa (Potamias et al., 2020) for a
RoBERTa-based model in which a bi-LSTM layer
is stacked on top of the RoBERTa model, together
with a pooling operation for its last layer. The
model is replicated here based on hyper-paramters
provided in (Potamias et al., 2020).

Figure 10 shows that multi-input RIMs perform
at or above SOTA for all benchmarks with greater
performance gains for tasks with comparatively
smaller datasets and more complex linguistic re-
quirements (SM18-2, SM20-5, SE15-11).

6 Module activation patterns

An advantage of a modular system is the possibility
of module inspection. The functionality of each
module during the course of processing has to be
transparent for assessment.

Figure 11 provides the activation patterns of two
multi-input RIMs when applied to two inputs from
SST-2 (Figure 11a) and SM20-5 (Figure 11b) to as-
sess whether they give insight into the functionality
of the modules.

In Figure 11a, the modules that operate on sen-
timent knowledge sources (AFINN, MPQA, and
NRC) are active only when an annotation is avail-
able and are idle (inactive) otherwise. The senti-
ment modules also compete with one another. Con-
sider Beautifully at t = 1. For this token, both
AFINN and MPQA provide annotations (AFINN:
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SST-2 (Acc %) SE17-4A (mac-Rec %) SE15-11 (Cosine)

M mActive ELMo RoBERTa ELMo RoBERTa ELMo RoBERTa

5

1 89.6 95.5 65.4 71.0 80.4 82.8
2 91.7 96.7 67.2 71.9 82.6 84.0
3 92.8 96.9 69.7 74.5 84.0 84.8
4 91.9 97.5 71.3 73.9 82.9 85.6
5 92.3 97.3 70.4 74.3 83.2 85.0

Figure 7: Multi-input RIMs with 5 modules for the sentiment tasks. The number of active modules varies.

M mActive ELMo RoBERTa

4

1 73.1 74.5
2 75.0 77.2
3 75.3 77.0
4 74.8 76.4

Figure 8: (µF1) of multi-input RIMs with 4 modules
(Token + POS + Drug + Disease) on SM18-2. The num-
ber of active modules varies.

M mActive ELMo RoBERTa

4

1 68.0 70.4
2 70.0 73.2
3 70.6 73.3
4 69.3 73.6

Figure 9: (µF1) of multi-input RIMs with 4 modules
(Token + POS + BirthDef + Preg) on SM20-5. The
number of active modules varies.

+3, MPQA: Pos.), but the AFINN module wins the
competition and is active while the MPQA mod-
ule is inactive. The larger NRC lexicon provides
more annotations for the input leading to more ac-
tivity for the NRC module compared to the other
sentiment modules for this sentence.

Inactivity of token modules at certain time steps
is particularly interesting, indicating that the model
has chosen to attend to a external knowledge source.
We find that 63% of the time, when the sentiment
lexia provide consistent sentiment polarities, the
token module is inactive.

The activation patterns in Figure 11b show the
Birth Defect and Pregnancy gazetteer modules are

Task SOTA RIMs
SST-2 (Acc) 97.5 (1,2) 97.5
SE17-4A (mac-Rec) 72.6 (3) 74.5
SE15-11 (Cosine) 82.2 (4) 85.6
SM18-2 (µF1) 69.2 (5) 77.2
SM20-5 (µF1) 69.0 (6) 73.6

Figure 10: Comparison of the state of the art systems
with multi-input RIMs. 1: Ernie (Sun et al., 2019),
2: T5 (Raffel et al., 2020), 3: RoBERTa-RT (Barbi-
eri et al., 2020) 4: CRNN-RoBERTa (Potamias et al.,
2020), 5: (Xherija, 2018), 6: (Bai and Zhou, 2020)

active only, when an annotation is available. The
tokens CHD (t = 9) and T18 (t = 15) are matched
by the Birth Defect gazetteer and the token stillbirth
(t = 20) is matched by the Pregnancy gazetteer.

The activity patterns are the result of the input
selection mechanism (attention). Multi-input RIMs
modules are free to select an input signal or ignore
it, which allows each module to potentially focus
on a specific part of the input. The input selection
mechanism prevents the modules from getting up-
dated with spurious inputs (here the input at steps,
where no annotation is available). Additionally,
this allows the system to develop different modules
to select complementary input signals, biasing the
behavior away from combining redundant encod-
ings.

We believe that the activation patterns can be
useful for model explanation. Nevertheless, the
activation patterns have to be studied under a vari-
ety of NLP tasks and different, richer annotations,
which demands a dedicated study and is beyond
the scope of this paper.

7 Conclusion

This paper presents proof of concept for a modular
system for leveraging different knowledge sources.
Under the proposed model, various annotations
with different encodings are used as inputs for a set
of independent, decoupled, but interacting modules,
a novel extension of the RIMs architecture.

Deploying several readily available knowledge
sources (gazetteer lists and part-of-speech informa-
tion), our experiments report on different sentiment
tasks and data sets, as well as two health-related
tasks and datasets. The results suggest that the
modules successfully interoperate for addressing
different target tasks and multiple datasets with
drastically reduced parameter space (and process-
ing resources).

In addition to the transfer potential of RIMs, we
probed their transparency. The activation patterns
of the modules in multi-input RIMs showed inter-
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a – Input: “Beautifully shot, delicately scored and powered by a set of heartfelt performances, it’s a
lyrical endeavour"
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b – Input: “Our baby had a very serious form of CHD. It was caused by T18 and we had a stillbirth."

Figure 11: Activation patterns of the modules of RIMs (ELMo as token embedding) for two samples: (a) SST-2
with M = 5 and mActive = 2, (b) SM20-5 with M = 4 and mActive = 2. The gray squares indicate active
modules and the white regions indicate inactivity.

estingly differentiated motifs. In particular, the
activation patterns show that modules are active
only when their input annotation is relevant for the
target task. To interpret the functionality of differ-
ent modules in multi-input RIMs architectures, we
plan a detailed analysis of the module activation
patterns under different NLP tasks in the future.
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