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Abstract

We present the Everyday Living Artificial In-
telligence (AI) Hub, a novel proof-of-concept
framework for enhancing human health and
wellbeing via a combination of tailored wear-
able and Conversational Agent (CA) solutions
for non-invasive monitoring of physiological
signals, assessment of behaviors through unob-
trusive wearable devices, and the provision of
personalized interventions to reduce stress and
anxiety. We utilize recent advancements and
industry standards in Internet of Things (IoT)
and AI technologies to develop this proof-of-
concept framework.

1 Introduction

The significance of stress in disease development
and progression has been established for multi-
ple therapeutic areas including cardiovascular dis-
ease (Kivimäki and Steptoe, 2018), type 2 dia-
betes (Hackett and Steptoe, 2017), obesity (Sinha
and Jastreboff, 2013), sleep disorders (Han et al.,
2012) , depression (Madsen et al., 2017), stroke
(O’Donnell et al., 2016) drug addiction (includ-
ing opioid, tobacco, cannabis, and cocaine use)
(Airagnes et al., 2018; Preston et al., 2017) , and
Alzheimer’s disease (Justice, 2018). As demon-
strated for cardiovascular disease, stressors asso-
ciated with increased risk of events include those
commonly encountered in life such as work stres-
sors, anger episodes and even the viewing of stress-
ful sporting events (Smyth et al., 2016). Exposure
to stressful events is therefore a major risk factor
for morbidity and mortality rates especially for con-
ditions that have a great impact on public health.

As the commercial IoT sector continues to grow,
our homes and bodies are increasingly instru-
mented. We now have digital personal assistants
that listen and respond to voice commands and
wearable devices equipped with multiple sensors.
The availability and maturity of this technology
affords an unprecedented opportunity to develop

holistic systems to advance the health and well-
being of many groups including one of the most
vulnerable sectors of our population: elders aging
in-place. To provide personalized and effective
interventions, such a system must be capable of
sensing, integrating, responding to physical, emo-
tional, and cognitive status in an accessible way.

Towards this vision, we have developed a proof-
of-concept framework for individually tailored de-
tection and management of mental stress and anx-
iety in everyday life. We target the development
and deployment of a novel personalized technol-
ogy that integrates conversational voice assistants
with wearable sensors and smart-textile clothing
technology to provide real-time, in-home, unob-
trusive sensing and on-body stimulation solutions
(e.g., pressure, heat, etc.). The proposed proof-
of-concept framework integrates three major com-
ponents: 1) natural language interaction with the
user via a conversational voice assistant; 2) physio-
logical signal sensing of activity, heart rate, body
temperature, and electrical conductivity of skin;
and 3) garment-based delivery of heat and com-
pression interventions to reduce stress and anxiety
detected via voice and wearable sensors.

2 Methodology

The Everyday Living AI Hub is a holistic frame-
work that orchestrates the 3 components discussed
in section 1, coordinating multiple streams of bio-
metric data and physical interventions (Figure 1).
The Hub framework allows for the analysis of self-
supplied information (such as information about a
user’s schedule, habits, and preferences) alongside
biometric data collected from OTC wearable de-
vices with the goal of providing interventions into
the user’s life to help them self-regulate. These
interventions are in the form of notifications (re-
minders to breathe, reminders that a meeting or
other scheduled time is coming up), or bindings
with devices that operate "In Real Life (IRL)" such
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Figure 1: Architecture for Everyday Living AI Hub and end-point user interaction flow.

as the SmartHugs Garment (Pettys-Baker et al.,
2018), a wearable shirt designed to perform com-
pression on dysregulated individuals. Detected
stress events are confirmed with the user via the
Hub Conversational Agent (Hub CA), which can
ask questions about the severity and timing of the
stressful event, and confirm whether an interven-
tion is necessary or desirable.

Earlier stress measures were mainly question-
naires such as Demand–Control–Support model
(Johnson and Hall, 1988, Pozo-Antúnez et al., 2018,
Karasek and Theorell, 1990). Lu et al. proposed a
framework for real-time stress measurement, moni-
toring and intervention. Like our proposed system,
they used physiological indicators to detect stress
level using a wearable smart bracelet. Our contribu-
tion adds human-in-the-loop voice control and the
ability to incorporate interventions via IoT devices
to the milieu of this prior work.

2.1 Architecture

By utilizing many industry-standard IoT protocols,
the framework is designed to be flexible. User
accounts and profiles are maintained via a web
service based on Responder (Reitz, 2018), a free
Python framework for microservice development.
Monitoring devices collect data and send it through
Bluetooth to a cell-phone companion app, or send
it directly to the Hub Server’s AI collection point
via a lightweight publish/subscribe protocol called
MQTT (Figure 1). Everyday interactions with the
framework are performed either by interacting with
a web-service Application Programming Interface
(API) via mobile application, website, or by us-
ing natural language to converse with the voice
assistant, which passes speech data through an Au-

tomatic Speech Recognition (ASR) service to the
Hub CA which is based on MindMeld (Raghuvan-
shi et al., 2018), a framework for conversational
agent development. The Hub CA then performs
actions on behalf of the user by interacting with
the API, and speaks to the user using the integrated
Text-To-Speech (TTS) service.

2.2 Project Status
Completed modules include system architecture
components such as MQTT services, web APIs
for data collection and intervention applications, a
phone app for the management of Bluetooth con-
nected devices, ASR and TTS modules, and a pro-
totype stress management garment. Active devel-
opment is underway for AI signal analysis, in-the-
loop conversational device setup, and intervention
management in the Hub CA.

3 Challenges

The Everyday Living AI Hub requires many prac-
tical and theoretical advances. While preliminary
studies have shown that commercial IoT wearables
can detect changes in heart-rate that correspond
to stress in a naturalistic environment (Pakhomov
et al., 2020), existing machine-learning models are
not equipped to reliably predict stressful events in
real-time. Collection of data and the creation of an
adequate model are ongoing work. The Hub CA is
based on established chatbot paradigms, but mod-
els and dialog flows are still under development for
the new domain of stress management.
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