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Abstract

Evaluation beyond aggregate performance
metrics, e.g. F1-score, is crucial to both es-
tablish an appropriate level of trust in ma-
chine learning models and identify avenues
for future model improvements. In this pa-
per we demonstrate CrossCheck, an interac-
tive capability for rapid cross-model compar-
ison and reproducible error analysis. We de-
scribe the tool, discuss design and implemen-
tation details, and present three NLP use cases
– named entity recognition, reading compre-
hension, and clickbait detection that show the
benefits of using the tool for model evaluation.
CrossCheck enables users to make informed
decisions when choosing between multiple
models, identify when the models are correct
and for which examples, investigate whether
the models are making the same mistakes as
humans, evaluate models’ generalizability and
highlight models’ limitations, strengths and
weaknesses. Furthermore, CrossCheck is im-
plemented as a Jupyter widget, which allows
for rapid and convenient integration into exist-
ing model development workflows.

1 Motivation

AI models are often imperfect, opaque, and brittle.
Gaining actionable insights about model strengths
and weaknesses is challenging because simple met-
rics like accuracy or F1-score are not sufficient to
capture the complex relationships between model
inputs and outputs. Many researchers agree that
ML models have to be optimized not only for ex-
pected task performance but for other important cri-
teria such as explainability, interpretability, reliabil-
ity, and fairness that are prerequisites for trust (Lip-
ton, 2016; Doshi-Velez and Kim, 2017; Poursabzi-
Sangdeh et al., 2018). Standard performance met-
rics can be augmented with exploratory model per-
formance analysis, where a user can interact with
inputs and outputs to find patterns or biases in the

way the model makes mistakes to answer the ques-
tions of when, how, and why the model fails.

To support ML model evaluation beyond stan-
dard performance metrics, we developed a novel
interactive tool CrossCheck1. Unlike several re-
cently developed tools for analyzing model er-
rors (Agarwal et al., 2014; Wu et al., 2019), under-
standing model outputs (Lee et al., 2019; Hohman
et al., 2019), and model interpretation and diag-
nostics (Kahng et al., 2017, 2016; Zhang et al.,
2018), CrossCheck is designed to allow rapid pro-
totyping and cross-model comparison iteratively
during model development to support comprehen-
sive experimental setup and gain interpretable and
informative insights into model performance.

Many visualization tools have been developed re-
cently, e.g., ConvNetJS2, TensorFlow Playground3,
that focus on structural interpretability (Kulesza
et al., 2013; Hoffman et al., 2018) and operate in the
neuron activation space to explain models’ internal
decision making processes (Kahng et al., 2017) or
focus on visualizing a model’s decision boundary
to increase user trust (Ribeiro et al., 2016). Instead,
CrossCheck targets functional interpretability and
operates in the model output space to diagnose and
contrast model performance.

Similar work to CrossCheck includes AllenNLP
Interpret (Wallace et al., 2019) and Errudite (Wu
et al., 2019). AllenNLP Interpret relies on saliency
map visualizations to uncover model biases, find
decision rules, and diagnose model errors. Errudite
implements a domain specific language for coun-
terfactual explanations. Errudite and AllenNLP
Interpret focus primarily on error analysis for a sin-
gle model, while our tool is specifically designed
for contrastive evaluation across multiple models
e.g., neural architectures with different parameters.

Manifold (Zhang et al., 2018) supports cross-

1https://github.com/pnnl/crosscheck
2https://github.com/karpathy/convnetjs
3https://playground.tensorflow.org/

https://github.com/pnnl/crosscheck
https://github.com/karpathy/convnetjs
https://playground.tensorflow.org/
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Figure 1: CrossCheck embedded in a Jupyter Notebook cell: (a) code used to instantiate the widget (b) the
histogram heatmap shows the distribution of the third variable for each combination of the first two (c) the legend
for the third variable (d) normalization controls (e) histogram & filter for remaining variables (f) controls for notes
(g) button to transpose the rows and columns.

model evaluation, however the tool is narrowly fo-
cused on model confidence and errors via pairwise
model comparison with scatter plots which is quite
limited and does not satisfy the needs of complex
NLP tasks. CrossCheck enables users to investi-
gate “where” and “what” types of errors models
make and, most importantly, assists the user with
answering the question of “why" a model makes
that error by relying on a set of derived attributes
from the input like inter-annotator agreement, ques-
tion type, answer length, the input paragraph, etc.

We built CrossCheck to make our existing error
analysis workflow faster and reproducible, reduc-
ing human effort to replicate exploratory analyses
of new models. CrossCheck helps calibrate trust
by enabling users to:
• contrast multiple models,
• see when the model is right (or wrong), un-

derstand the relationship between correctness
and confidence, and examine those examples,
• investigate whether the model makes the same

mistakes as humans,
• highlight model limitations, and
• understand how models generalize across do-

mains, languages, and datasets – which has
pervasive demand across NLP.

2 CrossCheck

CrossCheck is embedded in a Jupyter4 notebook
and input is a single mixed-type table, i.e. a pandas
DataFrame5, allowing for tight integration with

4https://jupyter.org
5http://pandas.pydata.org

data scientists’ workflows (see Figure 1a). Below
we outline the features of CrossCheck in detail.

CrossCheck’s main view (see Figure 1b) extends
the confusion matrix visualization technique by re-
placing each cell in the matrix with a histogram —
we call this view the histogram heatmap. Each
cell shows the distribution of a third variable condi-
tioned on the values of the corresponding row and
column variables. Every bar represents a subset of
instances, i.e., rows in the input table, and encodes
the relative size of that group. This view also con-
tains a legend showing the bins or categories for
this third variable (see Figure 1c).

The histograms in each cell in CrossCheck are
drawn horizontally to encourage comparison across
cells in the vertical direction. CrossCheck sup-
ports three normalization schemes (see Figure 1d),
i.e., setting the limit of the x-axis in each cell: (1)
normalizing by the maximum count within the en-
tire matrix, (2) within each column, or (3) within
each cell. We hide certain axes and adjust the
padding between cells to emphasize the selected
normalization. Figure 2 illustrates how these differ-
ent normalization options appear in CrossCheck.
By design, there is no equivalent row normaliza-
tion option, but the matrix can be transposed (see
Figure 1g) for an equivalent effect.

Any variables not directly compared in the his-
togram heatmap are visualized on the left side of
the widget as histograms (see Figure 1e). These
histograms also allow the user to filter data when
it is rendered in the main view by clicking on the
bar(s) corresponding to the data they want to keep.

https://jupyter.org
http://pandas.pydata.org
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(a) by table (b) by column (c) by cell

Figure 2: CrossCheck supports three histogram normalization options that affect how axes and padding are
rendered to improve the readability and interpretation of the view (a) by table: minimal padding, the same x-axes
are shown on the bottom row (b) by column: extra padding between columns, different x-axes are shown on the
bottom row (c) by cell: extra padding between rows and columns, different x-axes are shown for each cell.

Users can click on any bar in the histogram
heatmap to view those instances in a sidebar where
they can annotate noteworthy findings. Enabling
“Notes Only” (see Figure 1f) shows only instances
that have been annotated in the histogram heatmap,
revealing what has been annotated in the context of
the current variable groupings.

3 Use Cases and Evaluation

In this section, we highlight how CrossCheck can
be used in core NLP tasks such as named en-
tity recognition (NER) and reading comprehension
(RC) or practical applications of NLP such as click-
bait detection (CB). We present an overview of the
datasets used for each task below:
• NER: CoNLL (Sang, 2003), ENES (Aguilar

et al., 2018), WNUT 17 Emerging Enti-
ties (Derczynski et al., 2017)6,
• MC: Stanford Question Answering Dataset

(SQuAD) (Rajpurkar et al., 2016)7,
• CB: Clickbait Challenge 2017 (Potthast et al.,

2018)8.

3.1 Named Entity Recognition (NER)
To showcase CrossCheck, we trained and evalu-
ated the AllenNLP NER model (Peters et al., 2017)
across three benchmark datasets – CoNLL, WNUT,
and ENES, producing nine different evaluations.
The model output includes, on a per-token level,
the model prediction, the ground truth, the original
sentence (for context), and what the training and
testing datasets were as shown in Figure 3a.

This experiment was designed to let us under-
stand how models trained on different datasets gen-

6github.com/leondz/emerging_entities_

(a) Named Entity Recognition

(b) Reading Comprehension

Figure 3: Examples of model outputs in CrossCheck

for core NLP tasks – for the NER task (above), pre-
dicted named entities are highlighted, and for the RC
task (below), predicted answer span is highlighted.

eralize to the same test data (shown in columns) and
how models trained on the same training data trans-
fer to perform across different test datasets (shown
in rows). Figure 2 illustrates the CrossCheck grid
of train versus test datasets. The data has been fil-
tered so that only errors contribute to the bars so
we see a distribution of errors per train-test combi-
nation across the actual role. The CoNLL dataset
is much larger so we normalize within columns in
Figure 2b to find patterns within those sub-groups.

17
7rajpurkar.github.io/SQuAD-explorer/
8www.clickbait-challenge.org/#data

github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
github.com/leondz/emerging_entities_17
rajpurkar.github.io/SQuAD-explorer/
www.clickbait-challenge.org/#data
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Figure 4: CrossCheck for evaluation of reading comprehension models to understand the relationship between
correctness, confidence and question types. This highlight models limitations and shows for what examples the
model answers correctly.

Table 1: Traditional evaluation: F1-scores for the NER
models trained and tested across domains.

Train \ Test CoNLL WNUT ENES
CoNLL 92.51 40.10 11.88
WNUT 55.75 44.73 33.33
ENES 50.78 57.48 64.00

For the same experimental setup, Table 1 sum-
marizes performance with F1-scores. Unlike the
F1-score table, CrossCheck reveals that models
trained on social media data misclassify ORG on
the news data, and the news models overpredict
named entities on social media data.

3.2 Reading Comprehension (RC)

Similar to NER, we trained an AllenNLP model
for reading comprehension (Seo et al., 2016) that
is designed to find the most relevant span for a
question and paragraph input pair. The model out-
put includes, on a question-paragraph level: the
model prediction span, ground truth span, model
confidence, question type and length, the number
of annotators per question, and what the train and
test datasets were, as shown in Figure 3b.9 Figure 4
contrasts model correctness and confidence across
question types. CrossCheck reveals that across all
types of questions when the model is correct it has
higher confidence (bottom row) and lower confi-
dence when incorrect (top row). It also reveals
that models have a higher variability in confidence
when predicting “why” questions.

9We evaluated RC on SQuAD and TriviaQA datasets, but
with space limitations only present results for SQuAD.

3.3 Clickbait Detection

Finally, we demonstrate CrossCheck for compar-
ison of regression models. We use a relevant ap-
plication of NLP in the domain of deception detec-
tion (clickbait detection) that was the focus of the
Clickbait Challenge 2017, a shared task focused on
identifying a score (from 0 to 1) of how “clickbait-
y” a social media post (i.e., tweet on Twitter) is,
given the content of the post (text and images) and
the linked article webpages. We use the validation
dataset that contains 19,538 posts (4,761 identified
as clickbait) and pre-trained models released on
GitHub after the challenge by two teams (blobfish
and striped-bass)10.

In Figure 5 we illustrate how CrossCheck can
be used to compare across multiple models and
across multiple classes of models.11 When filtered
to show only the striped-bass models (shown at
right), a strategy to predict coarse (0 or 1) click-
bait scores versus fine-grained clickbait scores is
clearly evident in the striped-bass model predic-
tions. Here, there is a complete lack of predictions
falling within the center three columns so even with
no filters selected (shown at left), CrossCheck in-
dicates that there is an inconsistency in the range
of outcomes between models (an explanation for
the disparity in F1-scores in Table 2). In cases

10Models and code were available via github.com/
clickbait-challenge/ repositories.

11Note, models could also be grouped by any number of
shared characteristics such as the algorithms or architectures
used (e.g., different neural architectures used in deep learning
models, or models that use deep learning versus those that
do not), hyper-parameter settings, granularity of prediction
outputs, ensembles versus single models, etc.

github.com/clickbait-challenge/
github.com/clickbait-challenge/
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Figure 5: CrossCheck for cross-model comparison across two teams who competed in the Clickbait Challenge
2017 shared task, highlighting distinctions in the variety of prediction outputs with histograms normalized across
the full table that become particularly clear when team filters are selected.

Table 2: Traditional evaluation summary table contrast-
ing mean squared error (MSE) and mean absolute error
(MAE) of each model’s predictions.

Team Model MSE MAE

blobfish
FullNetPost 0.026 0.126
FullNet 0.027 0.130
LingNet 0.038 0.157

striped-bass
xgboost 0.171 0.326
randomforest 0.180 0.336

where there is a more nuanced or subtle dispar-
ity, shallow exploration with different filters within
CrossCheck can lead to efficient, effective identifi-
cation of these key differences in functional model
behavior.

4 Design and Implementation

We designed CrossCheck following a user-
centered design methodology. This is a contin-
uous, iterative process where we identify needs
and goals, implement prototypes, and solicit feed-
back from our users to incorporate in the tool.
Our users were data scientists, specifically NLP
researchers and practitioners, tasked with the afore-
mentioned model evaluation challenge. We iden-
tified CrossCheck’s goals as allowing the user to:
understand how instance attributes relate to model
errors; provide convenient access to raw instance
data; integrate into a data scientists workflow; and
reveal and understand disagreement across models,
and support core NLP tasks and applications.

4.1 Design Iterations

Round 1—Heatmaps (functional prototype)
Our first iteration extended the confusion matrix
visualization technique with a functional prototype
that grouped the data by one variable, and showed
a separate heatmap for each distinct value in that
group. User feedback: though heatmaps are famil-
iar, the grouping made the visualization misleading
and difficult to learn.

Round 2—Table & Heatmap (wireframes)
We wireframed a standalone tool with histogram
filters, a sortable table, and a more traditional
heatmap visualization with a rectangular brush
to reveal raw instance data. User feedback: the
sortable table and brushing would be useful, but
the heatmap has essentially the same limitations as
confusion matrices.

Round 3—Histogram Heatmap (wireframes)
We wireframed a modified heatmap where each
cell was replaced with a histogram showing the
distribution of a third variable conditioned on the
row and column variables. This modified heatmap
was repeated for each variable in the dataset except
for the row and column variables. User feedback:
Putting the histogram inside the heatmap seems
useful, but multiple copies would be overwhelming
and too small to read. We would prefer to work
with just one histogram heatmap.

Round 4—CrossCheck (functional prototype)
We implemented a single “histogram heatmap” in-
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side a Jupyter widget, and made raw instance data
available to explore by clicking on any bar. Addi-
tionally we incorporated histogram filters from the
Round 2 design and allowed the user to change the
histogram normalization. User feedback: the tool
was very useful, but could use minor improvements
e.g., labeled axes and filtering, as well as ability to
add annotation on raw data.

Round 5—CrossCheck (polished prototype)
We added minor features like a legend, a matrix
transpose button, axis labels, dynamic padding
between rows and columns (based on normaliza-
tion), and the ability to annotate instances with
notes. User feedback: the tool works very well, but
screenshots aren’t suitable to use in publications.

4.2 Implementation Challenges

To overcome the rate limit between the
python kernel and the web browser (see the
NotebookApp.iopub_data_rate_limit Jupyter
argument) our implementation separates raw
instance data from tabular data to be visualized in
CrossCheck’s histogram heatmap. The tool groups
tabular data by each field in the table and passed as
a list of each unique field/value combinations and
the corresponding instances within that bin. This is
computed efficiently within the python kernel (via
a pandas groupby). This pre-grouping reduces the
size of the payload passed from the python kernel
to the web browser and allows for the widget to
behave more responsively because visualization
and filtering routines do not need to iterate over
every instance in the dataset. The tool stores raw
instance data as individual JSON files on disk in a
path visible to the Jupyter notebook environment.
When the user clicks to reveal raw instance data,
this data is retrieved asynchronously using the web
browser’s XMLHttpRequest (XHR). This allows
the web browser to only retrieve and render the few
detailed instances the user is viewing at a time.

5 Discussion

CrossCheck is designed to quickly and easily ex-
plore many combinations of characteristics of mod-
els (e.g., parameter settings, network architectures)
as well as datasets used for training or evaluation.
It also provides users the ability to efficiently com-
pare and explore model behavior in specific situa-
tions and generalizability of models across datasets
or domains. CrossCheck can also generalize to

support model comparison, e.g. when ground truth
is absent, by visualizing model agreement.

CrossCheck enables users to perform error anal-
ysis in an efficient, concise, and reproducible man-
ner due to its effective integration into data scien-
tists’ workflows. The tool can be used to evalu-
ate across models trained on image, video, tabular
data, or combinations of data types with interactive
exploration of specific instances on demand. A
limitation of the tool is that adding new use cases
might require end users to write custom JavaScript
code to visualize instances in the details sidebar be-
yond what is currently implemented. Future work
includes expanding to include additional generic
components to cover more core NLP or ML tasks.

6 Conclusions

We have presented CrossCheck, a new interactive
capability that enables rapid model evaluation and
error analysis. There are several key benefits to
performing evaluation and analyses using Cross-
Check, especially compared to i.e., adhoc or man-
ual approaches because CrossCheck is generaliz-
able across text, images, video, tabular, or combi-
nations of multiple data types, can be integrated di-
rectly into existing workflows for rapid and highly
reproducible error analysis during and after model
development, users can interactively explore er-
rors conditioning on different model/data features,
and users can view specific instances of inputs that
cause model errors or other interesting behavior
within the tool itself.
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