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Abstract

Automatic coreference resolution is understud-
ied in Danish even though most of the Danish
Dependency Treebank (Buch-Kromann, 2003)
is annotated with coreference relations. This
paper describes a conversion of its partial, yet
well-documented, coreference relations into
coreference clusters and the training and eval-
uation of coreference models on this data. To
the best of our knowledge, these are the first
publicly available neural coreference models
for Danish. We also present a new entity
linking annotation on the dataset using Wiki-
Data identifiers, a named entity disambigua-
tion (NED) dataset, and a larger automatically
created NED dataset enabling wikily super-
vised NED models. The entity linking anno-
tation is benchmarked using a state-of-the-art
neural entity disambiguation model.

1 Introduction

The Danish Dependency Treebank (DDT) (Buch-
Kromann, 2003) is a beneficial resource for Danish
NLP that contains several annotation layers. Most
of the layers were annotated as part of the Copen-
hagen Dependency Treebank project, but a conver-
sion of the dependency syntax annotation into Uni-
versal dependencies (Johannsen et al., 2015; Nivre
et al., 2020) and the addition of named entities
annotation layers (Hvingelby et al., 2020; Plank,
2019; Plank et al., 2020) are newer additions. The
partial coreference annotation has received no at-
tention for NLP purposes despite being very well
documented. This paper describes converting the
coreference relations into coreference clusters and
a new entity linking annotation with unique Wiki-
data item identification codes (QIDs) (Vrandečić,
2012) on the same data.

Entity linking is the task of detecting mentions
and matching the mentions to a knowledge base.
The two annotation layers—coreference and entity
linking—complement each other as two types of

entity resolution. In practice, entity linking can
be reduced to a binary classification task, called
named entity disambiguation (NED), thereby sim-
plifying the task and omitting mention detection.

The coreference-annotated data is benchmarked
using a strong neural model. The entity linking
annotation is turned into a NED dataset and bench-
marked using a state-of-the-art NED model. We
automatically create a larger NED train set from
Wikipedia articles for train set augmentation, and
we observe an improvement for the wikily super-
vised models. All data and models are publicly
available.1

2 Related work

Danish anaphors have received some attention:
Navarretta (2000) shows that Danish deictics are
used in more contexts than the English ones and
Houser et al. (2006) specifically discuss the use
of verb phrase pronominalization in Danish. Dan-
ish has gendered possessive pronouns, but non-
gendered reflexive pronouns. This has made it use-
ful as an unambiguous testbed for gender bias in
natural language inference models, machine trans-
lation models, and language models (González
et al., 2020). But automatic coreference resolu-
tion for Danish has received no attention, and there
was no established evaluation set for this task.

Linked resources such as Wikipedia enable
multi-lingual entity linking/NED models and
datasets, and Danish is often among the evalua-
tion languages (Pan et al., 2017; McNamee et al.,
2011). DBpedia Spotlight2 is the most recent entity
linking system that also supports Danish. But due
to this being a different task from NED, we can not
compare our model to DBpedia Spotlight.

1https://github.com/alexandrainst/
danlp

2https://www.dbpedia-spotlight.org/

https://github.com/alexandrainst/danlp
https://github.com/alexandrainst/danlp
https://www.dbpedia-spotlight.org/
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Annes bil ramte et træ . Køretøjet blev totalskadet i ulykken . Den skete utilsigtet . Bilen blev kørt væk .

Annes car hit a tree . The vehicle was totalled in the accident . It happended unintentionally . The car was driven away .

coref-var

coref-res

coref

coref-iden

Figure 1: A constructed example of a coreference-annotated paragraph with binary relations as graphs and three
clusters marked with background colour or borders around the word spans. The English word-by-word translation
is below. Translation: “Anne’s car crashed into a tree. The vehicle was damaged beyond repair in the accident. It
happened unintentionally. The car was towed.”

N LA UA REL

COREF 238 61 64 89
COREF-VAR 146 59 72 73
REF 70 90 91 94
COREF-IDEN 62 73 81 77
COREF-RES 36 62 67 75
COREF-EVOL 1 0 100 0

Table 1: Labelled agreement (LA), Unlabelled agree-
ment (UA), only relation name (REL) and support (N)
for the doubly annotated subset. Numbers are taken di-
rectly from the DDT documentation.3

3 Dataset

The coreference-annotated part spans 2/3 of the
DDT and is documented in Korzen and Buch-
Kromann (2011). This subset encompasses 341
documents/3,403 sentences/64,076 tokens. The
source is the PAROLE Corpus (Bilgram and Ke-
son, 1998). The domain is mostly newswire (299
documents) but also a small fraction of magazine
text (41 documents) and news broadcast (1 docu-
ment). We refer to this dataset as DACOREF.

4 Coreference

Annotation and conversion The DDT docu-
mentation3 is extensive and this section’s details
concerning the annotation come from this resource.
We refer to the DDT documentation for more de-
tails.

Key observations about the annotation scheme:
Like the Ontonotes (Weischedel et al., 2013) coref-
erence annotation, singletons are not annotated.
The annotation does not label attributive noun
phrases connected through copula verbs such as
“to be” (“at være”). Verb phrases can only be linked
if they are coreferent with a noun phrase.

The dataset is annotated with binary relations
between core nodes. We consider nine different

3https://github.com/mbkromann/
copenhagen-dependency-treebank/blob/
master/manual/cdt-manual.pdf

coreference labels that we merge heuristically into
clusters. We omit the associative anaphors. Coref-
erence clusters are sets of text spans that all refer to
the same entity and labels are omitted. Each cluster
is uniquely numbered.

We merge the following relations if they span the
same target words: COREF (coreferential personal
pronoun), COREF-ELL (elliptic anaphor demonstra-
tive pronoun), COREF-EVOL (evolving anaphor),
COREF-IDEN (coreferential noun phrase with com-
plete lexical identity), COREF-IDEN.SB (coreferen-
tial noun phrase with lexical identity in the noun
but lexical variety in some other (typically attribu-
tive) component), COREF-VAR (coreferential noun
phrase with lexical variety in the noun), and REF

(syntactically determined coreference, e.g., relative
pronouns).

COREF-RES (resumptive anaphor clause or pred-
icate) and COREF-RES.PRG (pragmatic resumptive
anaphor) are also used for clustering but not merged
with any other label, nor each other. Figure 1 shows
a constructed example where COREF-VAR, COREF-
IDEN and COREF are merged when on the same
target word(s), but COREF-RES is not, thereby mak-
ing ulykken part of two clusters.

Seven documents are doubly annotated, and they
are assumed to form the basis of the reported an-
notation quality in the documentation, which we
reprint in Table 1. COREF-ELL, COREF-IDEN.SB,
and COREF-RES.PRG are subclasses of COREF,
COREF-IDEN and COREF-RES, respectively. Sepa-
rate scores were not reported for those but they are
assumed to be included in the parent class score.
DACOREF use the annotations of one annotator,
“Lotte”.

The coreference annotation only contains a label
on the core node. For DACOREF, we propagate
the label to the relevant span. Due to several in-
stances of the label not being on the core node, this
is done manually by one annotator. The spans en-
compass the relevant noun phrases. When linking

https://github.com/mbkromann/copenhagen-dependency-treebank/blob/master/manual/cdt-manual.pdf
https://github.com/mbkromann/copenhagen-dependency-treebank/blob/master/manual/cdt-manual.pdf
https://github.com/mbkromann/copenhagen-dependency-treebank/blob/master/manual/cdt-manual.pdf
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verb phrases, the span covers the entire verb phrase.
This is different from Ontonotes (Weischedel et al.,
2013), where the span only covers the head verb.

Even though the DDT has been split into train,
development and test sets as part of the Universal
Dependencies (UD) conversion (Johannsen et al.,
2015), a new split is created for document-level
coreference resolution since the UD dataset scram-
bled the sentences across documents. The train
split contains 290 documents, the development set
23, and the test set 28 documents.

Coreference models We provide benchmark
scores for two strong neural models using three
different transformer representations. Lee et al.
(2017) (LEE2017) presented the first neural end-
to-end coreference model in which the spans are
learned in the same training pass as the pairwise
clustering. The pairwise clustering may produce
globally inconsistent clusters, and Lee et al. (2018)
(LEE2018) presented a higher-order upgrade that
did not only consider pairs of spans but a matrix of
all spans to counter global inconsistencies. Joshi
et al. (2019) showed that the model from Lee et al.
(2018) performed even better on English data when
using transformer-based models instead of the word
embeddings of the original implementations. We
follow their approach and try representations from
three different pre-trained models: Danish BERT
(DABERT)4 and two multilingual, cased models:
multilingual BERT (MBERT) (Devlin et al., 2019)
and the base model of XLM-Roberta (XLM-R)
(Conneau et al., 2020). Instead of the TensorFlow
implementations released by Joshi et al. (2019),
we use the PyTorch-based implementation from
AllenNLP 1.3.0.5 with PyTorch version 1.7.1. A
description of the tuning process is in Appendix A.
After model selection, we retrain the models for a
maximum of 1200 epochs with early stopping and
a patience of 10.

Coreference results The coreference benchmark
results are presented in Table 2. Models based on
the two multi-lingual, cased transformer models
perform a lot better than the uncased DABERT.
The best model is LEE2018 trained with XLM-R.

5 Entity linking

Entity linking annotation The resource was an-
notated with QIDs in the spring of 2020 with the

4https://github.com/botxo/nordic_bert
5https://github.com/allenai/allennlp

MODEL F1 P R MR

DABERT LEE2017 0.477 0.587 0.402 0.729
LEE2018 0.313 0.655 0.207 0.683

MBERT LEE2017 0.630 0.679 0.587 0.870
LEE2018 0.532 0.625 0.463 0.854

XLM-R LEE2017 0.623 0.668 0.585 0.822
LEE2018 0.640 0.699 0.592 0.880

Table 2: Coreference results: M(ention) R(ecall), aver-
age P(recision), R(ecall) and F1 across MUC, B3, and
CEAFe. The best result per column is boldfaced.

WikiData entries available at that time in a semi-
manual process: First, all tokens in named entities
were used to search the MediaWiki API. Given the
entire list of WikiData matches for each token, one
annotator decided which QID match was correct
for each. We did not search for entire mentions
since mentions were not always equal to the Wiki-
Data label and thus returned too many wrong QID
suggestions leaving this method inefficient. In the
case of multi-word entity names, we searched for
possible QID matches for each token and manually
selected the correct one. One annotator decided
in each case whether “Margrethe" referred to the
Danish queen, a foundation in her name or another
person/ship etc. This was checked by another an-
notator, who also manually added the QID to the
correct span in the text. Both were native speak-
ers of Danish. The average accuracy of the set of
QIDs per document of annotator 1 compared to
annotator 2 is 0.98 (std. 0.05). Furthermore, the
second annotation process also included adding
a generic QID for words that matched one of 47
categories (Ship Q11446, Award Q618779, Auto-
mobile model Q3231690, Hospital Q16917 etc.)
for which no specific Wikidata entry existed. The
list of all generic QIDs can be seen in Appendix B.
In total, 7,173 tokens were annotated with a QID.
2,193 unique QIDs were used.

Construction of the DANED dataset Entity dis-
ambiguation is a binary classification variant of
entity linking. Given a sentence, the entity name
as printed in the sentence, and a QID; the model
classifies whether this QID is the mentioned entity
in the sentence. The task requires creating a new
classification dataset also containing negative ex-
amples. Only sentences from DACOREF that have
at least one QID annotation are part of the datasets.

We create the negative examples in the follow-
ing manner: For each token annotated with a QID
in the train, development, and test set, we search

https://github.com/botxo/nordic_bert
https://github.com/allenai/allennlp
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SENTENCE ENTITY QID KG CONTEXT LABEL

The same sentence could be heard
when Elvis had left the scene after a Las
Vegas show.

Elvis Q303 birth name Elvis Aaron Presley given name Elvis given name Aaron country of citizenship USA
place of birth Tupelo place of death Graceland spouse Priscilla Presley child Lisa Marie Presley
place of burial Graceland Commons category Elvis Presley LCAuth n78079487 VIAF 23404836
GND identificator 118596357 ISNI 0000 0001 2124 1960 ISNI 0000 0003 6863 8871 occupation
film actor occupation rock singer occupation screen writer occupation guitarist occupation soldier
occupation pianist occupation actor

1

The same sentence could be heard
when Elvis had left the scene after a Las
Vegas show.

Elvis Q5368160 Commons category Firefighting helicopters in Australia image N179AC-Elvis-739.jpg instance of
aircraft Freebase-ID /m/0271gwk

0

Table 3: Example of the representation of two samples for the NED model. All input to the model is in Danish;
only this example is shown in English.

WikiData using SPARQL for other matches than
the correct QID but with the same label name. If
possible, up to two negative examples per QID are
included. The same sentence occurs several times
in each split due to negative examples and possibly
multiple QIDs in the same sentence, but the same
sentence does not occur across splits.

We used the MediaWiki API to obtain all Wiki-
Data knowledge graph (KG) contexts in Danish for
both the positive and negative examples. Due to
model constraints, we cut off the properties after
512 characters. An example of the representation
of an instance is presented in Table 3.

The train-development-test split is determined
by the DACOREF splits and ended in a 78-9-13%
distribution. Class balance and split size after the
construction of negative samples and dataset size
are shown in Figure 2. This dataset is referred to
as DANED.

Train set augmentation We automatically con-
struct a large Danish NED dataset from Wikipedia,
DAWIKINED. We use a list of 391,102 Danish ar-
ticles names from the latest Wiki dump6. Initially,
we further gather 82,150 person names that have
Danish articles from the SPARQL endpoint. We
fetch the Wikipedia text using the SPARQL API for
each of the article names and split it into sentences
using the NLTK library. We then pick the longest
sentence that also contains the article title7. If pos-
sible, we fetch the corresponding QID, the corre-
sponding KG context and the description for this
entity and add it to the dataset. We fetch up to two
negative examples per QID. Final DAWIKINED
dataset size is in Figure 2.

NED model The model by Mulang’ et al. (2020)
takes the best model from Yang et al. (2019)

6https://dumps.wikimedia.org/dawiki/
7We use fuzzy string matching with a similarity threshold

of 85 to match the article name in the sentence because some
of the article names are slightly different when appearing in
the text, especially personal names.

daNED_train daNED_dev daNED_test daWikiNED
0
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Figure 2: Distribution of class labels and data set sizes
in the datasets for evaluating and training NED models.

called dynamic context augmentation with su-
pervised learning (DCA-SL) but fine-tunes trans-
former model representation during training. The
model leverages KG contexts from a knowledge
base during training and evaluation. Mulang’ et al.
(2020) reported state-of-the-art performance on
the AIDA-CONLL dataset (Hoffart et al., 2011).
During training, we fine-tune either DABERT and
XLM-R representations. In the code, we modify

TRAIN SET P R F1

XLM-R
DANED 0.76 0.90 0.82
DAWIKINED 0.64 0.62 0.63
BOTH 0.84 0.85 0.85

DABERT
DANED 0.8 0.91 0.85
DAWIKINED 0.82 0.54 0.65
BOTH 0.84 0.88 0.86

Table 4: NED results on the DANED test set. The best
result per column is boldfaced.
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that the KG context was not scrambled and reduced
to the vocabulary using the set() function but
keep the rest as-is. The tuning process is described
in Appendix C.

NED results Table 4 presents the results of the
NED evaluation. DABERT is slightly better than
XML-R. We observe that the augmented training
with DAWIKINED seems to help both models. The
best model builds on DABERT and trains on the
DANED train set and DAWIKINED (BOTH).

6 Conclusion

We have presented a semi-manual conversion of
coreference relations into coreference clusters and
a novel entity linking annotation for Danish. The
latter annotation is transformed into a named entity
disambiguation dataset, and we further described
the automatic construction of a Danish Wikipedia
named entity disambiguation dataset. We have re-
ported the first benchmarks for Danish coreference
resolution and an evaluation of our named entity
disambiguation dataset with train set augmentation.
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A Tuning of coreference models

We tune the task learning rate (LR) and the trans-
former LR. Models are tuned individually using
full grid search with early stopping for 50 epochs
and a patience of 10 epochs. Tuned models are
trained on the DACOREF train set, and the best
settings are selected based on the DACOREF devel-
opment set. Tuning the values with one step on the
logarithmic scale hurt the model, so we tuned on
smaller steps as outlined in Table 5.

The remaining parameters were kept fixed ac-
cording to the original parameters. The develop-
ment set was used both for early stopping and to
select the best model. The criterion for model se-
lection was the average F1 score over MUC, CEAF,
and B3 F1 scores.

MODEL TASK LR TRANSFORMER LR

LEE2017 {9e−02, 1e−03, 2e−03} {1e−05, 2e−05, 3e−05}
LEE2018 {2e−04, 3e−04, 4e−04} {1e−05, 2e−05, 3e−05}

Table 5: Grid search parameters for tuning coreference
models

B Generic QID’s in entity linking
annotation

Family name Q101352
Unisex nickname Q49614
Female given name Q11879590
Male given name Q12308941
Unisex name Q3409032
Artist name Q483501
Magazine Q41298
Hotel Q27686
Work of art Q838948
Governmental administrative unit in Denmark
Q21268738
Municipal Police Q1758690
Road Q34442
Cohousing Q1107167
Postal address Q319608
Museum Q33506
Security (tradeable financial asset) Q169489
Geographic location Q2221906
Radio program Q1555508
Tv program Q15416
Product/goods Q2424752
Department within organisation Q2366457
Organization Q43229
Sports venue Q1076486
Dish Q746549 (only one instance)

Event Q1656682
Fleet Q189524
University Q3918
Disease Q12136
Coast Q93352
Ship Q11446
Award Q618779
Automobile model Q3231690
Project (also Inquiry) Q170584
Hospital Q16917
Amusement ride Q1144661
Sports team Q12973014
Building Q41176
Bill (proposed law) Q686822
Restaurant Q11707
People/ethnic group Q2472587
Educational institution Q2385804
Shop Q213441
Publication Q732577
Legislation Q49371
Night club Q622425
Newspaper Q11032
Prison Q40357
Army Q37726.

C Tuning of NED models

For training, we use the default settings from Mu-
lang’ et al. (2020) apart from the following values:
train batch size, number of training epochs, LR, and
warm-up ratio. Values are trained on the DANED
train set, and the best models are selected based on
the development set F1 score.

We tuned models using both pre-trained repre-
sentations individually without any train set aug-
mentation. The optimal hyperparameters are sub-
sequently used for all models with this transformer
architecture. During tuning, the models are trained
with the following hyperparameters apart from the
default settings: batch size of 8, for 1 epoch, the
learning rate set to 4e-5, and the warm-up ratio set
to 0.06. For hyperparameter tuning, we change one
of the hyper-parameters from the default hyperpa-
rameter setting. Below are the tried values. The
best value, which accidentally is the same for both
transformer representations, is marked with bold:

• train batch size: 8, 16

• num train epochs: 4, 8

• learning rate: 4e-05, 4e-06

• warmup ratio: 0.07, 0.08, 0.1


