
Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL), pages 596–606
November 10–11, 2021. ©2021 Association for Computational Linguistics

596

Automatic Error Type Annotation for Arabic

Riadh Belkebir and Nizar Habash
Computational Approaches to Modeling Language (CAMeL) Lab

New York University Abu Dhabi
{rb4822,nizar.habash}@nyu.edu

Abstract

We present ARETA, an automatic error type
annotation system for Modern Standard Ara-
bic. We design ARETA to address Arabic’s
morphological richness and orthographic am-
biguity. We base our error taxonomy on the
Arabic Learner Corpus (ALC) Error Tagset
with some modifications. ARETA achieves
a performance of 85.8% (micro average F1
score) on a manually annotated blind test por-
tion of ALC. We also demonstrate ARETA’s
usability by applying it to a number of sub-
missions from the QALB 2014 shared task for
Arabic grammatical error correction. The re-
sulting analyses give helpful insights on the
strengths and weaknesses of different submis-
sions, which is more useful than the opaque
M2 scoring metrics used in the shared task.
ARETA employs a large Arabic morphological
analyzer, but is completely unsupervised oth-
erwise. We make ARETA publicly available.

1 Introduction

There has been a lot of interest recently in Auto-
matic Error Evaluation for many languages. Many
specialized shared tasks in grammatical error cor-
rection (GEC) and text normalization have used
tools like M2 Scorer (Dahlmeier and Ng, 2012)
and ERRANT (Bryant et al., 2017). In contrast
with the opaque results of M2 Scorer based on
extracted edits, ERRANT, designed primarily for
English, allows for deep interpretation of GEC er-
ror types since it gives more detailed explanations.
Error type explainability is helpful for many NLP
applications, including second language learning.

Arabic is a morphologically rich and complex
language with a high degree of ambiguity at the or-
thographic, morphological, syntactic, lexical and
semantic levels (Habash, 2010). Figure 1 presents
a motivating example for the complexity of Ara-
bic error type annotation (discussion in Section 2).
Previous Arabic text correction shared tasks like
QALB 2014 (Mohit et al., 2014) and QALB 2015

رمحأەرا%سلا!

,-
ءارمحلا ةرا%سلا .

bAlsyArh ÂHmr

fy AlsyArħ AlHmrA’

by-the-carfs redms

in the-carfs the-redfs

morph
changesortho

change

semantic
change

Figure 1: An example of aligned erroneous source and
reference phrases with three different error types.

(Rozovskaya et al., 2015) evaluated submissions
using the M2 Scorer. Alfaifi (2015) proposed a
taxonomy for Arabic error types and annotated the
Arabic Learner Corpus (ALC) using it; but, he
does not provide an error classification tool.

In this paper, we present ARETA, a system for
the extraction and annotation of error types in Ara-
bic. ARETA is inspired by ERRANT, but ad-
dresses the unique and complex challenges of Ara-
bic. We base our error taxonomy on the ALC Er-
ror Tagset (Alfaifi and Atwell, 2014; Alfaifi, 2015)
with some modifications. ARETA reaches a micro
average F1 score of 85.8% on an ALC blind test.
We also demonstrate ARETA’s usability on a num-
ber of submissions from QALB 2014 (Mohit et al.,
2014) shared task. While ARETA employs a large
Arabic morphological analyzer, it is completely
unsupervised otherwise. To our knowledge, this
is the first system of its kind for Arabic. We make
ARETA publicly available.1

The remainder of this paper is organized as fol-
lows. Sections 2 and 3 present a motivating ex-
ample, and related work, respectively. Section 4
describes our approach. Section 5 presents exper-
imental results and discussions.

1https://github.com/CAMeL-Lab/arabic_
error_type_annotation

https://github.com/CAMeL-Lab/arabic_error_type_annotation
https://github.com/CAMeL-Lab/arabic_error_type_annotation

597

2 A Motivating Example

Figure 1 shows an example of an erroneous Arabic
source phrase QÔg

@ èPAJ
�ËAK. bAlsyArh ÂHmr2 and

its correct reference Z @QÒmÌ'@
�
èPAJ
�Ë@ ú

	
¯ fy AlsyArh̄

AlHmrA’. The phrase, meaning ‘in the red car’, in-
cludes three error types.

• (+H. b+→ ú

	
¯ fy)

Semantic error: the preposition proclitic
+H. b+ ‘by/with’ is used instead of the free
preposition ú

	
¯ fy ‘in’.

• (èPAJ
�Ë@ AlsyArh→ �
èPAJ
�Ë@ AlsyArh̄)

Orthographic error: the Ta-Marbuta femi-
nine marker, �

è h̄, is misspelled as è h.

• (QÔg

@ ÂHmr→ Z @QÒmÌ'@ AlHmrA’)

Morphological errors: (a) masculine gender
is used instead of feminine, and (b) the defi-
nite article proclitic +È@ Al+ ‘the’ is dropped.

A simple Levenshtein edit distance (Leven-
shtein, 1966) between the source and reference
phrases suggests the reference is modified through
two word substitutions and one word deletion,
or three character substitutions and five character
deletions. In contrast, a linguistically motivated
error type classification is more insightful.

From the point of view of the source phrase,
there are two words, and they each get two error
tags according to the ALC error taxonomy (Ta-
ble 1). The first word èPAJ
�ËAK. bAlsyArh has an
attachable proclitic and as such includes both se-
mantic and orthographic errors. And the second
word QÔg

@ ÂHmr includes two morphological er-

rors (gender and definiteness). A system to iden-
tify the exact error types needs to be aware of
not only the complexity of Arabic morphology but
also the possibility of multiple co-occurring error
types. We address these issues in ARETA’s design.

3 Related Work

While M2 Scorer (Dahlmeier and Ng, 2012) has
been used for automatic evaluation of GEC shared
tasks in different languages (Ng et al., 2014, 2013;
Mohit et al., 2014; Rozovskaya et al., 2015), a lot
of attention has been paid to annotating and evalu-
ating the output of English text correction systems,
e.g., ERRANT (Bryant et al., 2017). There is still

2All Arabic script examples are paired with a strict 1-to-1
transliteration in the HSB scheme (Habash et al., 2007).

a lack of tools that allow such utility for other lan-
guages, including Arabic. In the rest of this sec-
tion, we present the main tools for evaluating and
annotating error types, some of the challenges of
Arabic processing, and the Arabic error taxonomy
which we modify.

3.1 M2 Scorer, ERRANT, and SERRANT
The M2 Scorer (Dahlmeier and Ng, 2012) is a tool
used for evaluating GEC systems based on F1 or
F0.5 scores. It uses a method called MaxMatch
(M2) to compute the sequence of phrase-level ed-
its that achieve the highest overlap with the gold
(reference) annotation. Although the M2 Scorer
evaluates GEC systems based on extracted edits, it
does not provide error types based on the linguistic
features of the language.

ERRANT (Bryant et al., 2017) is a grammati-
cal ERRor ANnotation Toolkit that automatically
extracts edits from parallel original and corrected
sentences and classifies them using a rule-based
framework. It was first applied to the CoNLL-
2014 shared task (Ng et al., 2014) to carry out de-
tailed error type analyses. Most current GEC sys-
tems use ERRANT to annotate extracted edits and
evaluate system outputs. The ERRANT taxonomy
has 25 main error categories.

SERRANT (Choshen et al., 2021) is a sys-
tem for automatic classification of English gram-
matical errors that combines ERRANT (Bryant
et al., 2017) with SERCL, a taxonomy of Syntactic
Errors and an automatic Classification (Choshen
et al., 2020). SERRANT uses ERRANT’s anno-
tations when they are informative and those pro-
vided by SERCL otherwise.

While the M2 Scorer is generic and can be ap-
plied to many languages to extract edits and eval-
uate GEC system quality, ERRANT and SER-
RANT focus more on linguistic aspects and give
better explainability of error types. However,
these frameworks require knowledge about the tar-
geted language and are expensive to build. Fur-
thermore, the ambiguity challenges that are part
of the Arabic language make the task even more
challenging since the error types can be interpreted
differently for many words.

3.2 Arabic Language Processing Challenges
Arabic poses a number of challenges for natural
language processing in general and the task of
grammatical error correction and error type anno-
tation in particular (Habash, 2010). First, Arabic

598

Class Err Tag Description Arabic Example Transliteration

Orthography

OA Confusion in Alif, Ya and Alif-Maqsura علي ← على ςly → ςlý
OC Wrong order of word characters تبرینا ← تربینا tbrynA → trbynA
OD Additional character(s) یعدوم ← یدوم yςdwm → ydwm
OG Lengthening short vowels نقیمو ← نقیم nqymw → nqym
OH Hamza errors اكثر← أكثر Akθr → Âkθr
OM Missing character(s) سالین ← سائلین sAlyn → sAŷlyn
ON Confusion between Nun and Tanwin ثوبن ← ثوبٌ θwbn → θwbũ
OR Replacement in word character(s) مصلنا ← وصلنا mSlnA → wSlnA
OS Shortening long vowels أوقت ← أوقات Âwqt → ÂwqAt
OT Confusion in Ha, Ta and Ta-Marbuta مشاركھ ← مشاركة mšArkh → mšArkħ
OW Confusion in Alif Fariqa وكانو ← وكانوا wkAnw→ wkAnwA
OO Other orthographic errors - -

Morphology
MI Word inflection معروف ← عارف mςrwf → ςArf
MT Verb tense تفرحني ← أفرحتني tfrHny → ÂfrHtny
MO Other morphological errors - -

Syntax

XC Case رائع ← رائعاً rAŷς → rAŷςAã
XF Definiteness السن ← سن Alsn → sn
XG Gender الغربي ← الغربیة Alγrby → Alγrbyħ
XM Missing word Null ← على Null → ςlý
XN Number فكرتي ← أفكاري fkrty → ÂfkAry
XT Unnecessary word Null← على ςlý → Null
XO Other syntactic errors - -

Semantics
SF Conjunction error سبحان ← فسبحان sbHAn → fsbHAn
SW Word selection error من ← عن mn → ςn
SO Other semantic errors - -

Punctuation

PC Punctuation confusion المتوسط. ← المتوسط، AlmtwsT. → AlmtwsT,
PM Missing punctuation العظیم ← العظیم، AlςĎym → AlςĎym,
PT Unnecessary punctuation العام, ← العام AlςAm, → AlςAm
PO Other errors in punctuation - -

Merge MG Words are merged ذھبتالبارحة ← ذھبت البارحة ðhbtAlbArHħ → ðhbt AlbArHħ
Split SP Words are split المحا دثات ← المحادثات AlmHA dθAt → AlmHAdθAt

Table 1: The ALC error type taxonomy extended with merge and split classes. The error tags are listed alphabeti-
cally, except for the highlighted *Other tags, which we do not support in ARETA.

is morphologically rich. Words in Arabic inflect
for person (per), gender (gen), number (num), as-
pect (asp), voice (vox), mood (mod), state (stt)
and case (cas). Furthermore, Arabic uses a num-
ber of attachable proclitics (prc0-2) and enclitics
(enc0). Second, Arabic is orthographically very
ambiguous due to the use of optional diacritics,
which are almost always absent. Figure 2 demon-
strates the various analyzes associated with two
Arabic words. In some cases the analyses differ in
part of speech (POS). To address these challenges,
ARETA uses CAMeL Tools (Obeid et al., 2020),
an open source Python toolkit for Arabic language
processing. CAMeL Tools uses the CALIMA-Star
Arabic morphological analyzer (Taji et al., 2018)
and provides morphological disambiguation func-
tionality over it.

In developing ARETA, we took inspiration from

AMEANA (El Kholy and Habash, 2011), which
also relies on morphological analyzers to provide
morphological error analysis in the context of ma-
chine translation evaluation. However, ARETA ad-
dresses a wider range of error types, and is in-
tended to be more general.

3.3 The Arabic Learner Corpus Error
Taxonomy

Alfaifi and Atwell (2014) proposed a taxonomy of
29 error tags for Arabic (See Table 1). They anno-
tated a portion of Arabic Learner Corpus (ALC)
dataset such that for each erroneous word, one of
the classes of error is given along with the word’s
correction. In Alfaifi and Atwell (2015) they pre-
sented a tool that facilitated semi-automatic error
tagging. The tagging feature worked as transla-
tion memory, where annotated words are saved in

599

a database, and recalled when seen again.
We base the error taxonomy we use in ARETA

on Alfaifi and Atwell (2014)’s comprehensive tax-
onomy with two modifications. First, we add two
error classes - merge (MG) and split (SP) to al-
low handling man-to-many word corrections. And
secondly we drop all of the Other error tags -
OO, MO, XO, SO and PO, corresponding to other
orthographic, morphological, syntactic, semantic
and punctuation errors, respectively. These errors
tags collectively accounted for 0.7% of all error
tags in the ALC, and would have added a lot of
complexity to our system. As such, ARETA’s full
taxonomy has 7 classes and 26 error tags. When
we evaluate ARETA against the ALC annotations,
we penalize ARETA for missing all the Other tags.

4 Approach

In this section, we present our approach to de-
veloping ARETA, an automatic error annotation
framework for Arabic. We organize this section in
three parts: basic word alignment, automatic error
annotation, and error-type-based evaluation.

Given a raw input sequence (Sraw), a system
output sequence (hypothesis) (Shyp), and a refer-
ence sequence (Sref), we want to be able to anno-
tate and evaluate the quality of the system output
(hypothesis) (Shyp).

4.1 Basic Word Alignment

Before we can annotate a word’s error type, we
need to align said word to its correction. The
first step is thus to word-align the two sequences
(source and target) whose differences we want to
annotate. These may be the pair of Sraw and Sref ,
Sraw and Shyp, or Shyp and Sref . Since this task
assumes the source and target to be of the same
language with some differences in spelling, it is
a simpler task than general word alignment (Och
and Ney, 2003). We start with character-level edit-
based alignment to align the characters, and then
we group them in words such that the source is
aligned to target as 1-to-many words (where many
include zero). We make extensive use of the CED
word alignment tool by Khalifa et al. (2021). We
refer in the next step to the generated word align-
ment using the nomenclature of Alignsource,target,
e.g., Alignraw,ref .

One limitation of the current implementation of
this step is that it cannot handle many-to-many
alignments; and as such split errors cannot be

modeled in ARETA unless they are independently
provided. The ALC data does not annotate split
nor merge errors, so this limitation has no effect on
it. However, when working with the QALB 2014
data, we exploited the shared task’s .m2 file infor-
mation which provided some of the merge align-
ment for raw and reference. These files were cre-
ated off the QAWI interface (Obeid et al., 2013)
which was used in the QALB project annotation
(Zaghouani et al., 2014).

We evaluate our word alignment against the
manual alignment in the ALC corpus’ raw and ref-
erence sequences. Our automatic word alignment
matches the manual alignment for 99.24% of the
words. The failed alignment cases include minor
word reordering such as 	á»

@ ÕË lm Âkn ‘not-past I-

be’ aligning with B
�

I
	
J» knt lA ‘I-was not’, where

the negation particles appear at either side of the
verb. Other failed alignment cases include inserted
words that could be paired with their left or the
right neighbors. For example, in the raw sequence
É¿

	
àA¿ð wkAn kl ‘and-it-was all’ which is paired

with reference É¿ ú

	
¯

�
I

	
J»ð wknt fy kl ‘and-I-was

in all’, the word ú

	
¯ fy is paired as �

I
	
J»ð wknt in the

manual alignment, but the automatic aligner pairs
it with É¿ kl. Both alignments are plausible.

4.2 Automatic Error Type Annotation

The input to the automatic error annotation pro-
cess is an alignment, e.g., Alignraw,ref . Then for
each aligned pair of words, the system tries to ex-
tract the error type. The system is divided into four
components to allow modeling combinations of
error tags, but with some constraints driven by effi-
ciency and control over the error tag search space.

First, the Punctuation component detects all
punctuation error tags (PC, PM, and PT) using reg-
ular expressions. The punctuation error tags can
be used with tags detected by other components.

Second, the Regex component uses regular ex-
pressions to detect all merges (MG) and splits
(SP), word insertions (XT) and deletions (XM), as
well as some orthographic errors (OC, OG, ON,
OS, and OW). In the current implementation, this
component is terminal if an error tag is identified.
Otherwise, we move to the third component if we
have a 1-to-1 word pairing, or to the fourth compo-
nent if we have a 1-to-many word pairing. Many-
to-many word pairings are not supported in this
version.

600

 Error: Analyses for أحمر ÂHmr
diac lex pos gloss prc2 prc1 prc0 per num gen asp vox mod stt cas enc0
أحَْمَرَ أحَْمَر adj red 0 0 0 na s m na na na c a 0
أحَْمَرُ أحَْمَر adj red 0 0 0 na s m na na na c n 0
أحَْمَرِ أحَْمَر adj red 0 0 0 na s m na na na c g 0
أحَْمَرَ أحَْمَر adj red 0 0 0 na s m na na na d a 0
أحَْمَرُ أحَْمَر adj red 0 0 0 na s m na na na d n 0
أحَْمَرِ أحَْمَر adj red 0 0 0 na s m na na na d g 0
أحَْمَرَ أحَْمَر adj red 0 0 0 na s m na na na i a 0
أحَْمَرُ أحَْمَر adj red 0 0 0 na s m na na na i n 0
أحَْمَرَ أحَْمَر adj red 0 0 0 na s m na na na i g 0
رَ أحَُمِّ حَمَّر verb redden;roast 0 0 0 1 s m i a s na na 0
رُ أحَُمِّ حَمَّر verb redden;roast 0 0 0 1 s m i a i na na 0
رْ أحَُمِّ حَمَّر verb redden;roast 0 0 0 1 s m i a j na na 0

أحَْمَرَّ ٱحِْمَرّ verb turn_red;blush 0 0 0 1 s m i a j na na 0
أحَْمَرَّ ٱحِْمَرّ verb turn_red;blush 0 0 0 1 s m i a s na na 0
أحَْمَرُّ ٱحِْمَرّ verb turn_red;blush 0 0 0 1 s m i a i na na 0
احِْمَرَّ ٱحِْمَرّ verb turn_red;blush 0 0 0 3 s m p a i na na 0

 Reference: Analyses for الحمراء AlHmrA'
diac lex pos gloss prc2 prc1 prc0 per num gen asp vox mod stt cas enc0
الحَمْراءَ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na c a 0
الحَمْراءُ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na c n 0
الحَمْراءِ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na c g 0
الحَمْراءَ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na d a 0
الحَمْراءُ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na d n 0
الحَمْراءِ أحَْمَر noun_prop Alhambra 0 0 Al_det na s f na na na d g 0
الحَمْراءَ أحَْمَر adj red 0 0 Al_det na s f na na na c a 0
الحَمْراءُ أحَْمَر adj red 0 0 Al_det na s f na na na c n 0
الحَمْراءِ أحَْمَر adj red 0 0 Al_det na s f na na na c g 0
الحَمْراءَ أحَْمَر adj red 0 0 Al_det na s f na na na d a 0
الحَمْراءُ أحَْمَر adj red 0 0 Al_det na s f na na na d n 0
الحَمْراءِ أحَْمَر adj red 0 0 Al_det na s f na na na d g 0

Figure 2: Morphological changes between the words QÔg

@ ÂHmr ‘redms’ and Z @QÒmÌ'@ AlHmrA’ ‘the redfs’

Third, the Ortho-Morph component handles
the more challenging orthographic and morpho-
logical error types and their combination. This
component relies heavily on the CAMeL Tools’
morphological analyzer to handle Arabic’s rich
morphology and ambiguous orthography (Obeid
et al., 2020). The algorithm is as follows:

For each Pairi =< raw_wordi, ref_wordi >
in Alignraw,ref :

1. Generate the list of possible orthographic ed-
its (edit_list) that transforms raw_wordi to
ref_wordi.

2. Generate the possible subsets of elements of
edit_list including the empty set. We call
this list p_edits.

3. For each subset p_edk of p_edits, cal-
culate the morphological feature differ-
ences (morph_edits) between raw_wordi

and ref_wordi after applying p_edk to
raw_wordi.3 This generates a path of edits
path = [orth_edits + morph_edits].

4. Add path to the list of possible paths
(paths).

5. Return the shortest path from the list of pos-
sible paths (paths).

Figure 2 demonstrates the step of identify-
ing morph_edits between raw_word QÔg

@ ÂHmr

‘redms’ and ref_word Z @QÒmÌ'@ AlHmrA’ ‘the
redfs’. The green-shaded analyses represent the
subset of all analyses sharing the same lemma and
POS. The six linked pairs of analyses all have
the same smallest number of morph_edits (2):
prc0 : 0 → Al_det and gen : m→ f .

3morph_edits are calculated over analyses of
raw_wordi and ref_wordi that share the same lemma
(lex) and pos tags.

601

The final step in the third component uses
rules to map the set of edits in the shortest edit
path to corresponding error tags. For example,
any morph_edit involving gen will result in the
XG error tag, and any orth_edit involving a Ta-
Marbuta change results in the OT error tag. As
such, the example in Figure 2 receives the com-
plex error tag XF+XG (definiteness and gender).
In cases with only orth_edit, we map to addi-
tional/missing/replaced character error tags (OD,
OM , OR) when the percentage of affected raw
word characters is below 50%. In cases above that
heuristic threshold, we assign the word selection
error tag (SW).

Fourth, the Multi-Word component handles 1-
to-many word pairings by applying Arabic Tree-
bank (ATB) tokenization to both sides (Maamouri
and Bies, 2004; Habash, 2010). ATB tokenization
splits all clitics except for the definite article. We
generate the unique ATB tokenizations for all the
possible analyses using the CAMeL Tools mor-
phological analyzer (Obeid et al., 2020). At this
point, for each tokenized sequence pair (e.g., raw
and reference), we apply the basic word alignment
step (Section 4.1) locally, and pass the aligned
ATB tokens through components one, two and
three. The resulting error tags for the various
ATB tokens are joined and assigned to the word
that produced them. In the example in Figure 1,
the 1-to-many pairing of èPAJ
�ËAK. bAlsyArh and
�
èPAJ
�Ë@ ú

	
¯ fy AlsyArh̄ is handled by this compo-

nent, and receives the complex error tag SW+OT
(word selection and Ta-Marbuta).

4.3 Error-Type-based Evaluation

ARETA can be used to conduct error-type-based
evaluations in a number of configurations.

First, given reference error tags, as in triplets
of (Sraw, Sref , ErrorTag), we can evaluate how
well ARETA performs in automatic error-type an-
notation in terms of F1-score (Micro Avg, Macro
Avg, and Weighted Avg) of the different error tags.
See Section 5.2.

Second, in the case of no reference error tags,
we use our system to identify the reference error
tags using the pair (Sraw, Sref) and compare them
using F1 score to the predicted error tags using the
pair (Sraw, Shyp). See Section 5.3

Finally, ARETA can be also used to diagnose a
system’s output given the reference directly (Shyp,
Sref) to identify remaining error types.

5 Experiments

We present next two sets of experiments. First,
we evaluate the quality of error type annotation
in comparison to the ALC. Second, we calculate
the correlation between an evaluation metric based
on our error type prediction system and the M2

Scorer.

5.1 Datasets

To perform the experiments, we used two datasets.
First is the Arabic Learner Corpus (Alfaifi and
Atwell, 2014), which contains 10K words anno-
tated for error type and corrections. The number of
changed raw words is 1,688 (∼16.8%), of which
75% appear only one time and 12% appear two
times. Because of this sharp-tailed Zipfian distri-
bution and limited training instances, we expect it
to be hard to learn from this data using machine
learning systems. We split the data into two parts:
Dev and Test by randomly selecting complete doc-
uments from the corpus (10 for Dev and 10 for
Test).4 Dev was used while building ARETA.

The second dataset is the QALB 2014 Shared
Task test set and some of the submitted systems’
outputs (Mohit et al., 2014). We use it to evalu-
ate the correlation between the M2 Scorer and our
metrics: F1-score (Micro Avg, Macro Avg, and
Weighted Avg) of the different error tags.

5.2 ALC Automatic Error Annotation

Table 2 presents the results of evaluating ARETA’s
performance in identifying error tags on the Dev
and Test portions of the ALC data set.

We compare four settings that vary in terms of
the number of analyses from the CAMeL Tools
morphological analyzer (Obeid et al., 2020): using
the top 1, 2, or 3 analyses from the MLE disam-
biguator, or using all analyses (16 analyses/word).
On average, using the top 1, 2 or 3 analyses took
about the same time (∼16 secs to run Dev), while
the full analyzer took 44% more time (∼23 secs to
run on Dev).5 Consistently, in both Dev and Test,
using more analyses improves the performance of
ARETA across all metrics. ARETA’s best setting
(All) matches the ALC annotation with 89.2% (F1
Micro Avg) on Dev, and 85.8% (F1 Micro Avg) on

4The Dev set consists of the files with the prefix: S038,
S437, S448, S498, S505, S664, S785, S793, S927 and
S931. The Test set consists of the files with the prefix:
S037_(T1|T2), S274, S301, S496, S662, S670, S799, and
S938_(T1|T2).

52.4 GHz 8-Core Intel Core i9 machine.

602

Dev Test
Err Tag Top 1 Top 2 Top 3 All Support % Err Tag Top 1 Top 2 Top 3 All Support % Dev Test Full Weighted

OA 80.0 80.0 80.0 80.0 0.3 OA 83.3 83.3 83.3 72.7 0.6 Full Support Full Support Components DEV TEST

OC 100.0 100.0 100.0 100.0 0.3 OC 88.9 88.9 88.9 88.9 1.6 Component Punctuation PC 92.3 3.3 80.0 1.9 Punctuation 97.97 95.69

OD 50.8 61.2 66.7 72.7 1.8 OD 52.2 49.2 49.2 52.8 2.3 PT 60.0 0.6 52.2 0.6 Regex 88.31 86.75

OG 0.0 0.0 0.0 0.0 0.0 OG 33.3 40.0 40.0 50.0 0.2 PM 99.4 27.9 98.3 22.3 Morph-Ortho 85.91 82.99

OH 88.4 90.4 91.4 93.8 14.2 OH 94.1 94.3 94.7 96.1 24.1
OM 54.7 58.6 61.1 76.1 3.7 OM 62.9 65.1 67.5 71.2 3.7 Component Regex MG - - - -

ON 0.0 0.0 0.0 0.0 0.0 ON 66.7 66.7 66.7 66.7 0.1 SP - - - -

OR 63.8 65.7 66.7 72.1 3.1 OR 62.5 65.9 66.7 62.9 4.4 XT 89.2 4.8 91.2 6.0

OS 0.0 0.0 0.0 0.0 0.0 OS 0.0 0.0 0.0 0.0 0.0 XM 87.8 5.5 82.4 4.6

OT 97.4 98.3 98.3 98.3 6.5 OT 93.3 93.3 91.5 93.1 3.3 OC 100.0 0.3 88.9 1.6

OW 66.7 66.7 66.7 66.7 0.2 OW 0.0 0.0 0.0 0.0 0.0 OG 0.0 0.0 50.0 0.2

OO 0.0 0.0 0.0 0.0 0.1 OO 0.0 0.0 0.0 0.0 0.1 ON 0.0 0.0 66.7 0.1

MI 19.0 19.0 22.7 38.5 1.3 MI 5.7 10.5 10.5 16.0 1.3 OS 0.0 0.0 0.0 0.0

MT 85.7 93.3 93.3 93.3 0.9 MT 66.7 66.7 80.0 90.9 0.6 OW 66.7 0.2 0.0 0.0

MO 0.0 0.0 0.0 0.0 0.0 MO 0.0 0.0 0.0 0.0 0.0
XC 47.6 54.8 59.5 85.4 4.2 XC 64.0 67.9 70.2 82.1 3.1 Component Morph-Ortho MI 38.5 1.3 16.0 1.3

XF 72.5 87.2 96.5 97.7 4.8 XF 77.9 82.5 90.7 93.5 4.9 MT 93.3 0.9 90.9 0.6

XG 70.2 71.2 71.2 84.1 4.0 XG 74.3 72.2 74.3 70.6 2.0 OA 80.0 0.3 72.7 0.6

XM 79.5 81.3 81.3 87.8 5.5 XM 79.0 80.5 81.0 82.4 4.6 OD 72.7 1.8 52.8 2.3

XN 71.4 75.0 75.0 58.3 1.0 XN 50.0 44.4 40.0 25.0 0.5 OH 93.8 14.2 96.1 24.1

XT 89.2 87.1 89.2 89.2 4.8 XT 86.2 86.2 87.3 91.2 6.0 OM 76.1 3.7 71.2 3.7

XO 0.0 0.0 0.0 0.0 1.0 XO 0.0 0.0 0.0 0.0 0.2 OR 72.1 3.1 62.9 4.4

SW 69.7 71.3 71.3 79.6 9.3 SW 69.4 70.7 72.2 77.6 7.6 OT 98.3 6.5 93.1 3.3

SF 50.0 50.0 50.0 91.7 1.3 SF 40.9 40.9 40.9 80.0 3.7 SF 91.7 1.3 80.0 3.7

SO 0.0 0.0 0.0 0.0 0.0 SO 0.0 0.0 0.0 0.0 0.0 SW 79.6 9.3 77.6 7.6

PC 92.3 92.3 92.3 92.3 3.3 PC 80.0 80.0 80.0 80.0 1.9 XF 97.7 4.8 93.5 4.9

PT 60.0 60.0 60.0 60.0 0.6 PT 52.2 52.2 52.2 52.2 0.6 XG 84.1 4.0 70.6 2.0

PM 99.4 99.4 99.4 99.4 27.9 PM 98.3 98.3 98.3 98.3 22.3 XN 58.3 1.0 25.0 0.5

PO 0.0 0.0 0.0 0.0 0.0 PO 0.0 0.0 0.0 0.0 0.0 XC 85.4 4.2 82.1 3.1

Micro Avg 80.5 82.6 83.9 89.2 100.0 Micro Avg 81.1 81.8 82.7 85.8 100.0
Macro Avg 52.0 53.9 54.9 59.2 100.0 Macro Avg 51.1 51.7 52.6 55.0 100.0

Weighted Avg 81.3 83.4 84.5 89.1 100.0 Weighted Avg 81.6 82.4 83.3 86.4 100.0

Table 2: Comparing the F1 score results for error tag annotation on ALC Dev and Test sets using different number
of analyses from the morphological analyzer.

Test. For some specific error tags the performance
drops with more analyses, due to the larger search
space introduced by the analyzer.

We observe that among the top five tags
in terms of frequency in Dev, ARETA detects,
with high accuracy, errors involving punctuation
(PM), Hamzas (OH), and Ha/Ta/Ta-Marbuta
(OT); however the performance on word selec-
tion (SW) and missing words (XM) are lower.
The distribution of error tags varies between Dev
and Test sets: there is a 91.3% correlation between
the support of the tags in the two sets, but the top
three error tags are the same in both (PM , OH ,
and SW). The top five tags in terms of frequency
in Test also include unnecessary words XT and
definiteness XF , both of which perform relatively

well. The F1 Macro Average of the top five error
tags (in terms of support) is 91.8% for Dev, and
91.3% for Test.

If we group the error tags by the components
that handle them, the F1 weighted averages for
Punctuation (PC, PM , PT), Regex (OC, OG,
ON , OS, OW , XM , XT), and Ortho-Morph
components (MI , MT , OA, OD, OH , OM ,
OR, OT , SF , SW , XC, XF , XG, XN), are
98.0, 88.3 and 85.9, for Dev, and 95.7, 86.7 and
83.0, for Test, respectively.

Table 2 does not include split and merge error
tags as they are not present in the ALC corpus.
We include all the *O Other error tags even though
ARETA does not handle them, for completeness.

603

F1 Score
System Micro Avg Rank Macro Avg Rank Weighted Avg Rank M2 Scorer Rank

CLMB-1 66.9 3 38.7 2 66.0 1 67.9 1
CLMB-2 64.6 7 37.5 3 64.3 3 66.3 2
CLMB-3 65.1 6 35.1 4 64.4 2 65.2 5
CMUQ-1 67.4 2 32.4 5 64.2 4 65.4 4
CP13-1 54.3 9 23.0 9 51.5 9 51.8 9
CP13-2 62.0 8 26.7 8 57.4 8 58.6 8
CUFE-1 67.9 1 46.8 1 60.4 7 65.7 3
GLTW-1 34.9 10 17.3 10 29.4 10 35.4 10
GLTW-2 19.7 11 11.7 11 15.2 11 21.0 11
GWU-1 65.4 4 28.3 7 62.6 6 62.3 6
GWU-2 65.4 5 28.4 6 62.6 5 62.2 7

Table 3: Comparing submitted systems from QALB 2014 shared task using M2 Scorer and F1-based metrics of
ARETA’s tags. Systems rankings are presented in italics.

Micro Avg Macro Avg Weighted Avg
Avg ranking difference 1.45 0.72 0.91
F1 correlation 99.30% 87.30% 99.36%
Ranking correlation 79.09% 95.45% 86.36%

Table 4: Correlation between the M2 Scorer and ARETA’s F1-based metrics and rankings in Table 3.

5.3 Revisiting the QALB 2014 Shared Task
Submissions

Our System vs M2 Scorer We compare the M2

Scorer results on the QALB 2014 (Mohit et al.,
2014) shared task submissions with F1-based met-
rics over the error tags produced by ARETA. We
calculate the reference error tags using the (Sraw,
Sref) pairs, and compare them to the predicted
error tags using the pair (Sraw, Shyp). The sys-
tems outputs we have access to are: CLMB (Ro-
zovskaya et al., 2014), CMUQ (Jeblee et al.,
2014), CP13 (Tomeh et al., 2014), CUFE (Nawar
and Ragheb, 2014), GLTW (Zerrouki et al., 2014)
and GWU (Attia et al., 2014).

Table 3 presents these results and their associ-
ated system rankings. Table 4 compares the F1-
based metrics with the M2 Scorer results presented
in Table 3 across all of the system outputs using
Pearson correlation over F1 scores and rankings,
and the average absolute ranking difference. We
observe a high correlation between the Weighted
Avg and M2 Scorer as well as the Micro Avg and
M2 Scorer. In terms of ranking, the Macro Avg has
the highest correlation and lowest average ranking
difference with M2 Scorer.

According to the F1 Weighted Avg, the best per-
forming system is CLMB-1. This matches with

the M2 Scorer ranking. But according to the F1
Macro Avg and Micro Avg, CUFE-1 is the best
system. We investigate the differences between
these and other systems next using ARETA’s rich
error tag set.

Error Type Analysis To understand the error
patterns of the QALB 2014 shared task submit-
ted systems, we perform a detailed error analysis
comparing these systems over all of the produced
ARETA error tags. Table 5 presents these results
ordered by support. Only 24 of ARETA’s 26 error
tags are generated for this data set. The two miss-
ing tags are for Nun/Tanwin confusion (ON) and
long-vowel shortening (OS).

We observe that the best performing system on
most error types is CUFE-1 (Nawar and Ragheb,
2014). Interestingly, the best performing system
in terms of F1 Weighted Avg is CLMB-1, but it is
the best on only one minor error tag (OG). GWU-
1 and GWU-2 are the best systems in correcting
missing punctuation (PM), but on average they
are mid-ranked.

The PM and OH are the classes representing
most errors from QALB 2014 test set. The results
also show that most systems struggle to correct
morpho-syntactic errors like gender change (XG)
and definiteness change (XF). On the other hand,

604

F1 Score
Err Tag CLMB-1 CLMB-2 CLMB-3 CMUQ-1 CP13-1 CP13-2 CUFE-1 GLTW-1 GLTW-2 GWU-1 GWU-2 Support %

PM 51.7 50.6 51.2 53.2 46.4 46.6 23.4 0.0 0.0 54.8 54.8 33.0
OH 95.1 93.1 94.3 95.2 83.1 94.1 95.2 59.3 19.1 92.3 92.3 29.3
SP 91.4 88.9 88.4 90.5 40.4 40.2 96.8 86.9 85.0 91.6 91.6 4.7
OT 90.8 88.7 90.0 88.1 52.4 79.8 96.4 64.2 42.5 85.0 85.0 4.2
PC 40.5 40.3 40.3 53.1 52.3 53.0 56.5 12.7 12.7 54.4 54.4 4.2
XC 23.4 23.1 24.1 26.2 12.8 23.6 35.8 13.4 13.4 16.9 16.9 3.2
OR 58.4 53.0 50.9 47.6 24.6 38.8 74.5 13.0 3.9 43.7 43.6 3.2
PT 38.0 37.8 37.5 14.5 12.1 11.6 18.1 38.7 38.1 6.7 6.7 2.8

MG 74.5 71.6 74.4 45.9 28.7 35.6 87.3 37.0 18.1 67.0 67.2 2.6
OM 42.6 38.4 26.2 30.0 21.6 21.6 57.0 4.9 0.0 22.3 22.4 2.3
OD 46.6 50.8 44.7 35.2 20.9 25.7 69.0 16.4 12.7 34.0 33.8 2.0
OA 80.8 74.4 77.5 82.3 64.0 74.3 74.2 55.5 35.3 63.8 63.8 1.6
SW 42.6 32.1 37.1 38.0 37.1 38.9 55.7 2.1 2.1 24.7 25.1 1.6
XM 31.6 29.8 25.4 18.0 12.4 12.6 66.2 7.0 2.2 16.1 16.8 1.4
XN 24.3 23.7 21.8 17.8 15.6 18.7 29.3 0.0 0.0 13.8 13.7 0.9
OW 68.5 79.4 62.5 58.5 31.7 32.6 84.0 0.0 0.0 0.0 0.0 0.6
XT 32.3 29.2 21.6 14.5 6.2 7.2 57.8 12.2 10.7 22.5 22.2 0.6
MI 40.0 34.4 34.4 33.1 10.3 28.4 41.5 32.1 20.2 30.3 30.1 0.5
XG 3.0 3.4 3.1 0.0 0.0 0.0 18.8 0.0 0.0 2.6 2.6 0.3
XF 7.8 11.1 0.0 0.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 0.3
OG 46.7 44.1 41.4 33.3 34.0 24.0 43.8 4.4 0.0 14.1 14.1 0.3
OC 14.3 14.3 0.0 0.0 14.3 14.3 63.8 8.0 0.0 8.3 8.3 0.1
SF 0.0 0.0 0.0 0.0 0.0 0.0 11.8 0.0 0.0 0.0 0.0 0.1
MT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ~0.0

0.0Micro Avg 66.9 64.6 65.1 67.4 54.3 62.0 67.9 34.9 19.7 65.4 65.4 100.0
Macro Avg 38.7 37.5 35.1 32.4 23.0 26.7 46.8 17.3 11.7 28.3 28.4 100.0

Weighted Avg 66.0 64.3 64.4 64.2 51.5 57.4 60.4 29.4 15.2 62.6 62.6 100.0
M2 Ranking 1 2 5 4 9 8 3 10 11 6 7

Table 5: Comparing different system submissions on the QALB 2014 test set (classes are ordered by support).

most systems are good at correcting orthographic
errors such as Hamza (OH) and Ta-Marbuta (OT)
with high accuracy.

This analysis demonstrate how ARETA can be
helpful to evaluate and diagnose errors when
building Arabic GEC systems. It also motivates
interesting possibilities of system combination to
reach a higher performance.

6 Conclusion and Future Work

In this paper, we presented ARETA, a publicly
available automatic error type annotation system
for Modern Standard Arabic targeting a modified
error taxonomy based on the ALC error tagset.
We validated ARETA’s performance using a manu-
ally annotated blind test, where it achieved 85.8%
(Micro Avg F1 score). We also demonstrated
ARETA’s usability in providing insightful error
analyses over the submissions of the QALB 2014
shared task on Arabic text correction.

In the future, we plan to develop a new taxon-
omy that resolves overlapping and ambiguous er-
ror types in the ALC error tagset, and that includes

more error types such as syntactic agreement and
reordering operations. We also plan to use syn-
tactic parsers, such as (Shahrour et al., 2016), to
model long distance dependency errors. Naturally,
we will continue to improve the various compo-
nents of ARETA, e.g., extending the handling of
many-to-many word pairs, and improving specific
error types.

Acknowledgments

We would like to thank Salam Khalifa, Ossama
Obeid, and Bashar Alhafni for helpful conversa-
tions and support.

References

Abdullah Alfaifi and Eric Atwell. 2014. An evaluation
of the Arabic error tagset v2. In Proceedings of the
AACL 2014-The American Association for Corpus
Linguistics conference. The American Association
for Corpus Linguistics.

Abdullah Alfaifi and Eric Atwell. 2015. Computer-
aided error annotation: a new tool for annotating

605

Arabic error. In 8th Saudi Students Conference,
Queen Elizabeth II Conference Centre, London.

Abdullah Yahya G Alfaifi. 2015. Building the Arabic
Learner Corpus and a System for Arabic Error An-
notation. Ph.D. thesis, University of Leeds.

Mohammed Attia, Mohamed Al-Badrashiny, and
Mona Diab. 2014. GWU-HASP: Hybrid Arabic
spelling and punctuation corrector. In Proceed-
ings of the EMNLP 2014 Workshop on Arabic Natu-
ral Language Processing (ANLP), pages 148–154,
Doha, Qatar. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 793–805, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Leshem Choshen, Dmitry Nikolaev, Yevgeni Berzak,
and Omri Abend. 2020. Classifying syntactic errors
in learner language. In Proceedings of the 24th Con-
ference on Computational Natural Language Learn-
ing, pages 97–107, Online. Association for Compu-
tational Linguistics.

Leshem Choshen, Matanel Oren, Dmitry Nikolaev, and
Omri Abend. 2021. SERRANT: a syntactic clas-
sifier for English Grammatical Error Types. arXiv
preprint arXiv:2104.02310.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Com-
putational Linguistics.

Ahmed El Kholy and Nizar Habash. 2011. Auto-
matic Error Analysis for Morphologically Rich Lan-
guages. In Proceedings of the Machine Translation
Summit (MT Summit).

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods, pages 15–22. Springer, Netherlands.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing, volume 3. Morgan & Clay-
pool Publishers.

Serena Jeblee, Houda Bouamor, Wajdi Zaghouani,
and Kemal Oflazer. 2014. CMUQ@QALB-2014:
An SMT-based system for automatic Arabic error
correction. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages 137–142, Doha, Qatar. Association
for Computational Linguistics.

Salam Khalifa, Ossama Obeid, and Nizar Habash.
2021. Character Edit Distance Based Word Align-
ment. https://github.com/CAMeL-Lab/
ced_word_alignment.

V. I. Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Mohamed Maamouri and Ann Bies. 2004. Developing
an Arabic Treebank: Methods, Guidelines, Proce-
dures, and Tools. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based
Languages (CAASL), pages 2–9, Geneva, Switzer-
land.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wa-
jdi Zaghouani, and Ossama Obeid. 2014. The
first QALB shared task on automatic text correc-
tion for Arabic. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages 39–47, Doha, Qatar. Association for
Computational Linguistics.

Michael Nawar and Moheb Ragheb. 2014. Fast and
robust Arabic error correction system. In Proceed-
ings of the EMNLP 2014 Workshop on Arabic Natu-
ral Language Processing (ANLP), pages 143–147,
Doha, Qatar. Association for Computational Lin-
guistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Nat-
ural Language Learning: Shared Task, pages 1–
14, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12, Sofia, Bulgaria. Association for
Computational Linguistics.

Ossama Obeid, Wajdi Zaghouani, Behrang Mohit,
Nizar Habash, Kemal Oflazer, and Nadi Tomeh.
2013. A Web-based Annotation Framework For
Large-Scale Text Correction. In Proceedings of
the International Joint Conference on Natural Lan-
guage Processing (IJCNLP), pages 1–4, Nagoya,
Japan.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash.
2020. Camel tools: An open source python toolkit
for arabic natural language processing. In Proceed-
ings of the 12th language resources and evaluation
conference, pages 7022–7032.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–52.

Alla Rozovskaya, Houda Bouamor, Nizar Habash, Wa-
jdi Zaghouani, Ossama Obeid, and Behrang Mohit.
2015. The second QALB shared task on automatic
text correction for Arabic. In Proceedings of the
Second Workshop on Arabic Natural Language Pro-
cessing, pages 26–35, Beijing, China. Association
for Computational Linguistics.

https://doi.org/10.3115/v1/W14-3620
https://doi.org/10.3115/v1/W14-3620
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/2020.conll-1.7
https://doi.org/10.18653/v1/2020.conll-1.7
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://doi.org/10.3115/v1/W14-3618
https://doi.org/10.3115/v1/W14-3618
https://doi.org/10.3115/v1/W14-3618
https://github.com/CAMeL-Lab/ced_word_alignment
https://github.com/CAMeL-Lab/ced_word_alignment
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3619
https://doi.org/10.3115/v1/W14-3619
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://www.aclweb.org/anthology/W13-3601
https://www.aclweb.org/anthology/W13-3601
https://doi.org/10.18653/v1/W15-3204
https://doi.org/10.18653/v1/W15-3204

606

Alla Rozovskaya, Nizar Habash, Ramy Eskander,
Noura Farra, and Wael Salloum. 2014. The
Columbia system in the QALB-2014 shared task
on Arabic error correction. In Proceedings of the
EMNLP 2014 Workshop on Arabic Natural Lan-
guage Processing (ANLP), pages 160–164, Doha,
Qatar. Association for Computational Linguistics.

Anas Shahrour, Salam Khalifa, Dima Taji, and Nizar
Habash. 2016. CamelParser: A system for Arabic
syntactic analysis and morphological disambigua-
tion. In Proceedings of the International Con-
ference on Computational Linguistics (COLING),
pages 228–232.

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl
Eryani, and Nizar Habash. 2018. An Arabic mor-
phological analyzer and generator with copious fea-
tures. In Proceedings of the Fifteenth Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 140–150, Brussels, Bel-
gium. Association for Computational Linguistics.

Nadi Tomeh, Nizar Habash, Ramy Eskander, and
Joseph Le Roux. 2014. A pipeline approach to su-
pervised error correction for the QALB-2014 shared
task. In Proceedings of the EMNLP 2014 Workshop
on Arabic Natural Language Processing (ANLP),
pages 114–120, Doha, Qatar. Association for Com-
putational Linguistics.

Wajdi Zaghouani, Behrang Mohit, Nizar Habash,
Ossama Obeid, Nadi Tomeh, Alla Rozovskaya,
Noura Farra, Sarah Alkuhlani, and Kemal Oflazer.
2014. Large Scale Arabic Error Annotation: Guide-
lines and Framework. In Proceedings of the
Language Resources and Evaluation Conference
(LREC), Reykjavik, Iceland.

Taha Zerrouki, Khaled Alhawiti, and Amar Balla.
2014. Autocorrection of Arabic common errors for
large text corpus. In Proceedings of the EMNLP
2014 Workshop on Arabic Natural Language Pro-
cessing (ANLP), pages 127–131.

https://doi.org/10.3115/v1/W14-3622
https://doi.org/10.3115/v1/W14-3622
https://doi.org/10.3115/v1/W14-3622
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.3115/v1/W14-3614
https://doi.org/10.3115/v1/W14-3614
https://doi.org/10.3115/v1/W14-3614

