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1. Introduction

As an engineering field, research on natural language processing (NLP) is much more
constrained by currently available resources and technologies, compared with theo-
retical work on computational linguistics (CL). In today’s technology-driven society,
it is almost impossible to imagine the degree to which computational resources, the
capacity of secondary and main storage, and software technologies were restricted
when I embarked upon my research career 50 years ago. While these restrictions in-
evitably shaped my early research into NLP, my subsequent work evolved, according
to the significant progress made in associated technologies and related academic fields,
particularly CL.

Figure 1 shows the research topics in which I have been engaged. My initial NLP
research was concerned with a question answering system, which I worked on dur-
ing my M.Eng and D.Eng degrees. The research focused on reasoning and language
understanding, which I soon found was too ambitious and ill-defined. After receiving
my D.Eng., I changed my direction of research, and began to be engaged in process-
ing forms of language expressions, with less commitment to language understanding,
machine translation (MT), and parsing. However, I returned to research into reasoning
and language understanding in the later stage of my career, with clearer definitions of
tasks and relevant knowledge, and equipped with access to more advanced supporting
technologies.

In this article, I begin by briefly describing my views on mutual relationships among
disciplines related to CL and NLP, and then move on to discussing my own research.
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+ Question-Answering System (=1970s)
e Language and Knowledge
» Reasoning based on linguistic structures

« Machine Translation(=1980s~mid90s)
« Compositional Translation
« Transfer based on shallow semantic structures
» Lexicalized rules

« Parsing and HPSG(=1990s-2010)

« Computational Equivalence among different grammar formalisms
« Parsing based on grammar formalisms

« Structure-based Text Mining for Biology (=2000s~)
* Language and Domain Knowledge
« Information Extraction using linguistic structures

Figure 1
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Figure 2
Language-related disciplines.

2. NLP, CL, and Related Disciplines

Language is a complex topic to study, infinitely harder than I first imagined when I
began to work in the field of NLP.

There is a whole discipline on the study of language—namely, linguistics. Lin-
guistics is concerned not only with language per se, but must also deal with how
humans model the world.! The study of semantics, for example, must relate language
expressions to their meanings, which reside in the mental models possessed by humans.

Apart from linguistics, there are two fields of science that are concerned with
language, that is, brain science and psychology. These are concerned with how humans
process language. Then, there are two disciplines in which we are involved—namely,
CL and NLP.

Figure 2 is a schematic view of these research disciplines. Both of the lower disci-
plines are concerned with processing language, that is, how language is processed in
our minds or our brains, and how computer systems should be designed to process
language efficiently and effectively.

1 This statement is a bit of a simplification. Some formal semanticists, like R. Montague, do not assume a
“mental” model. They are interested in a universal theory of semantics of language. Language need not
be human language (Montague 1970).
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The top discipline, linguistics, on the other hand, is concerned with rules that
are followed by languages. That is to say, linguists study language as a system. This
schematic view is certainly oversimplified, and there are subject fields in which these
disciplines overlap. Psycholinguistics, for example, is a subfield of linguistics which is
concerned with how the human mind processes language. A broader definition of CL
may include NLP as its subfield.

In this article, for the sake of discussion, I adopt narrower definitions of linguistics
and CL. In this narrower definition, linguistics is concerned with the rules followed by
languages as a system, whereas CL, as a subfield of linguistics, is concerned with the
formal or computational description of rules that languages follow.?

CL, which focuses on formal/computational description of languages as a system,
is expected to bridge broader fields of linguistics with the lower disciplines, which are
concerned with processing of language.

Given my involvement in NLP, I would like to address the question of whether
the narrowly defined CL is relevant to NLP. The simple answer is yes. However, the
answer is not so straightforward, and requires us to examine the degree to which the
representations used to describe language as a system are relevant to the representations
used for processing language.

Although my colleagues and I have been engaged in diverse research areas, I pick
up only on a subset of these, to illustrate how I view the relationships between NLP and
CL. Due to the nature of the article, I ignore technical details and focus instead on the
motivation of the research and the lessons which I have learned through research.

3. Machine Translation

Background and Motivation. Following the ALPAC report (Pierce et al. 1966), research
into MT had been largely abandoned by academia, with the exception of a small number
of institutes (notably, GETA at Grenoble, France, and Kyoto University, Japan). There
were only a handful of commercial MT systems, being used for limited purposes. These
commercial systems were legacy systems that had been developed over years and had
become complicated collections of ad hoc programs. They had become too convoluted
to allow for changes and improvements. To re-initiate MT research in academia, we had
to have more systematic and disciplined design methodologies.

On the other hand, theoretical linguistics, initiated by Noam Chomsky (Chomsky
1957, 1965) had attracted linguists with a mathematical orientation, who were interested
in formal frameworks of describing rules followed by language. Those linguists with
interests in formal ways of describing rules were the first generation of computational
linguists.

Although computational linguists did not necessarily follow the Chomskyan way
of thinking, they shared the general view of treating language as a system of rules. They
had developed formal ways of describing rules of language and showed that these rules
consisted of different layers, such as morphology, syntax, and semantics, and that each
layer required different formal frameworks with different computational powers. Their
work had also motivated work on how one could process language by computerizing its
rules of language. This work constituted the beginning of NLP research, and resulted in

2 In this definition, I take research on parsing as part of NLP, since it is concerned with processing of
language. Research on parsing algorithms, however, may be quite different in nature from the
engineering side of NLP. Thus, the boundary between NLP and CL is not so clear-cut.
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the development of parsing algorithms for context-free language, finite-state machines,
and so forth.® It was natural to use this work as the basis for designing the second
generation of MT systems, which was initiated by an MT project (MU project, 1082-
1986) led by Prof. M. Nagao (Nagao, Tsujii, and Nakamura 1985).

Research Contributions. When I began research into MT in the late 1970s, there was
a common view largely shared by the community, which had been advocated by the
group of GETA, in France. The view was called the transfer approach of MT (Boitet
1987).

The transfer approach viewed translation as a process consisting of three phases:
analysis, transfer, and generation. According to linguists, a language is a system of rules.
The analysis and generation phases were monolingual phases that were concerned with
a set of rules for a single language, the analysis phase using the rules of the source
language and the generation phase using the rules of the target language. Only the
transfer phase was a bilingual phase.

Another view shared by the community was an abstraction hierarchy of represen-
tation, called the triangle of translation. For example, Figure 3(a)* shows the hierar-
chy of representation used in the Eurotra project, with their definition of each level
(Figure 3(b)).

By climbing up such a hierarchy, the differences among languages would become
increasingly small, so that the mapping (i.e., the transfer phase) from one language to
another would become as simple as possible. Independently of the target language, the
goal of the analysis phase was to climb up the hierarchy, while the aim of the generation
phase was to climb down the hierarchy to generate surface expressions in the target
language. Both phases are concerned only with rules of single languages.

In the extreme view, the top of the hierarchy was taken as the language-independent
representation of meaning. Proponents of the interlingual approach claimed that, if the
analysis phase reached this level, then no transfer phase would be required. Rather,
translation would consist only of the two monolingual phases (i.e., the analysis and
generation phases).

However, in Tsujii (1986), I claimed, and still maintain, that this was a mistaken
view about the nature of translation. In particular, this view assumed that a translation
pair (consisting of the source and target sentences) encodes the same “information”.
This assumption does not hold, in particular, for a language pair such as Japanese and
English, that belong to very different language families. Although a good translation
should preserve the information conveyed by the source sentence as much as possible
in the target sentence, translation may lose some information or add extra information.”

Furthermore, the goal of translation may not be to preserve information but to
convey the same pragmatic effects to readers of the translation.

3 The explanation here is simplified. The formal theory of language was not necessarily concerned with
human language. They revealed the relationship between classes of language and the computational
power of their recognizers. Parsing algorithms of formal languages were studied not necessarily for
human languages. Strictly speaking, this research was not conducted as NLP research.

4 The left side of this figure is the transfer with a pre- and post-cycle of adjustment. These two cycles are
required to treat language pairs like Japanese and English. The cycles adjust differences in
grammaticalization of the two languages. Differences are abundant when we treat languages that belong
to very different language families (Tsujii 1982).

5 Apart from the equality of information, the interlingual approach assumed that the
language-independent representation consists only of language-independent lexemes. This involved
implausible work of defining a set of language-independent concepts.
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(a) Hierarchy of Representation of the Transfer Approach
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dependency

Figure 3
(a) Hierarchy of representation of the transfer approach. (b) Hierarchy of representation
(Eurotra).

More seriously, the abstract level of representation such as Interface Structure® in
Eurotra focused only on the propositional content encoded in language, and tended to
abstract away other aspects of information, such as the speaker’s empathy, distinction
of old/new information, emphasis, and so on.

To climb up the hierarchy led to loss of information in lower levels of representation.
In Tsujii (1986), instead of mapping at the abstract level, I proposed “transfer based on
a bundle of features of all the levels”, in which the transfer would refer to all levels of
representation in the source language to produce a corresponding representation in the
target language (Figure 4). Because different levels of representation require different
geometrical structures (i.e., different tree structures), the realization of this proposal
had to wait for development of a clear mathematical formulation of feature-based

6 IS (Interface Structure) is dependent on a specific language. In particular, unlike the interlingual
approach, Eurotra did not assume language-independent leximemes in ISs so that the transfer phase
between the two ISs (source and target ISs) was indispensable. See footnote 5.
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Figure 4
Description-based transfer (Tsujii 1986).

representation with reentrancy, which allowed multiple levels (i.e., multiple trees) to
be represented with their mutual relationships (see the next section).

Another idea we adopted to systematize the transfer phase was recursive transfer
(Nagao and Tsujii 1986), which was inspired by the idea of compositional semantics
in CL. According to the views of linguists at the time, a language is an infinite set of
expressions which, in turn, is defined by a finite set of rules. By applying this finite
number of rules, one can generate infinitely many grammatical sentences of the lan-
guage. Compositional semantics claimed that the meaning of a phrase was determined
by combining the meanings of its subphrases, using the rules that generated the phrase.
Compositional translation applied the same idea to translation. That is, the translation
of a phrase was determined by combining the translations of its subphrases. In this way,
translations of infinitely many sentences of the source language could be generated.

Using the compositional translation approach, the translation of a sentence would
be undertaken by recursively tracing a tree structure of a source sentence. The trans-
lation of a phrase would then be formulated by combining the translations of its sub-
phrases. That is, translation would be constructed in a bottom up manner, from smaller
units of translation to larger units.

Furthermore, because the mapping of a phrase from the source to the target would
be determined by the lexical head of the phrase, the lexical entry for the head word
specified how to map a phrase to the target. In the MU project, we called this lexicon-
driven, recursive transfer (Nagao and Tsujii 1986) (Figure 5).
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*IT i1

Translation of a phrase
is composed based on
translations of its
subphrases

In a bottom-up manner

Cose Relation Surface Marker

How to compose the
translation in the target is
specified in the lexicon of
the head word of the phrase

Figure 5
Lexicon-driven recursive structure transfer (Nagao and Tsujii 1986).

Taro-ha Paris-de 1nenkan asondeita. Taro spent a year in Paris
Taro-ha kouen-de asonndeita. Taro played in a park
Taro-ha konbini-de assondeita. » Taro hanged around in a convenience store
Asobu—to spend time without doing useful things Asobu—to play
to have fun to have fun

to hang around
to spend time

Figure 6
Disambiguation at lexical transfer.

Compared with the first-generation MT systems, which replaced source expressions
with target ones in an undisciplined and ad hoc order, the order of transfer in the MU
project was clearly defined and systematically performed.

Lessons. Research and development of the second-generation MT systems benefitted
from research into CL, allowing more clearly defined architectures and design princi-
ples than first-generation MT systems. The MU project successfully delivered English-
Japanese and Japanese-English MT systems within the space of four years. Without
these CL-driven design principles, we could not have delivered these results in such
a short period of time.

However, the differences between the objectives of the two disciplines also became
clear. Whereas CL theories tend to focus on specific aspects of language (such as
morphology, syntax, semantics, discourse, etc.), MT systems must be able to handle
all aspects of information conveyed by language. As discussed, climbing up a hierarchy
that focuses on propositional content alone does not result in good translation.

A more serious discrepancy between CL and NLP is the treatment of ambiguities
of various kinds. Disambiguation is the single most significant challenge in most NLP
tasks; it requires the context in which expressions to be disambiguated occur to be
processed. In other words, it requires understanding of context.
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Typical examples of disambiguation are shown in Figure 6. The Japanese word asobu
has a core meaning of “spend time without engaging in any specific useful tasks”, and
would be translated into “to play”, “to have fun”, “to spend time”, “to hang around”,
and so on, depending on the context (Tsujii 1986).

Considering context for disambiguation contradicts with recursive transfer, since
it requires larger units to be handled (i.e., the context in which a unit to be translated
occurs). The nature of disambiguation made the process of recursive transfer clumsy.
Disambiguation was also a major problem in the analysis phase, which I discuss in the
next section.

The major (although hidden) general limitation of CL or linguistics is that it
tends to view language as an independent, closed system and avoids the problem of
understanding, which requires reference to knowledge or non-linguistic context.” How-
ever, many NLP tasks, including MT, require an understanding or interpretation of
language expressions in terms of knowledge and context, which may involve other
input modalities, such as visual stimuli, sound, and so forth. I discuss this in the section
on the future of research.

4. Grammar Formalisms and Parsing

Background and Motivation. At the time I was engaged in MT research, new develop-
ments took place in CL, namely, feature-based grammar formalisms (Kriege 1993).

Atits early stage, transformational grammar in theoretical linguistics by N. Chomsky
assumed that sequential stages of application of tree transformation rules linked the
two levels of structures, that is, deep and surface structures. A similar way of thinking
was also shared by the MT community. They assumed that climbing up the hierarchy
would involve sequential stages of rule application, which map from the representation
at one level to another representation at the next adjacent level.® Because each level of
the hierarchy required its own geometrical structure, it was not considered possible to
have a unified non-procedural representation, in which representations of all the levels
co-exist.

This view was changed by the emergence of feature-based formalisms that used
directed acyclic graphs (DAGs) to allow reentrancy. Instead of mappings from one level
to another, it described mutual relationships among different levels of representation
in a declarative manner. This view was in line with our idea of description-based
transfer, which used a bundle of features of different levels for transfer. Moreover, some
grammar formalisms at the time emphasized the importance of lexical heads. That is,
local structures of all the levels are constrained by the lexical head of a phrase, and these
constraints are encoded in lexicon. This was also in line with our lexicon-driven transfer.

A further significant development in CL took place at the same time. Namely, a
number of sizable tree bank projects, most notably the Penn Treebank and the Lan-
caster/IBM Treebank, had reinvigorated corpus linguistics and started to have signifi-
cant impacts on research into CL and NLP (Marcus et al. 1994). From the NLP point of

7 This is overgeneralization. Theoretical linguistics by N. Chomsky explicitly avoided problems related
with interpretation and treated language as a closed system. Other linguistic traditions have had more
relaxed, open attitudes.

8 Note that transformational grammar considered a set of rules applied to generate surface structures from
the deep structure. On the hand, the “climbing-up the hierarchy” model of analysis considered a set of
rules to reveal the abstract level of representation from the surface level of representation. The directions
are opposite. Ambiguities did not cause problems in transformational grammar.
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view, the emergence of large tree banks led to the development of powerful tools (i.e.,
probabilistic models) for disambiguation.’

We started research that would combine these two trends to systematize the analysis
phase—that is, parsing based on feature-based grammar formalisms.

Research Contributions. It is often claimed that ambiguities occur because of insuffi-
cient constraints. In the analysis phase of the “climbing up the hierarchy” model, lower
levels of processing could not refer to constraints in higher levels of representation. This
was considered the main cause of the combinatorial explosion of ambiguities at the
early stages of climbing up the hierarchy. Syntactic analysis could not refer to semantic
constraints, meaning that ambiguities in syntactic analysis would explode.

On the other hand, because the feature-based formalisms could describe constraints
at all levels in a single unified framework, it was possible to refer to constraints at all
levels, to narrow down the set of possible interpretations.

However, in practice, the actual grammar was still vastly underconstrained. This
was partly because we do not have effective ways of expressing semantic and pragmatic
constraints. Computational linguists were interested in formal declarative ways for re-
lating syntactic and semantic levels of representation, but not so much in how semantic
constraints are to be expressed. To specify semantic or pragmatic constraints, one may
have to refer to the mental models of the world (i.e., how humans see the world), or
discourse structures beyond single sentences, and so on. These fell outside of the scope
of CL research at the time, whose main focus is on grammar formalisms.

Furthermore, it is questionable whether semantics or pragmatics can be used as
constraints. They may be more concerned with the plausibility of an interpretation than
the constraints which an interpretation should satisfy (for example, see the discussion
in Wilks [1975]).

Therefore, even for parsing using feature-based formalisms, issues of disambigua-
tion and how to handle the explosion of ambiguities remained major issues for NLP.

Probabilistic models were one of the most powerful tools for disambiguation and
handling the plausibility of an interpretation. However, probabilistic models for simpler
formalisms, such as regular and context-free grammars, had to be changed for more
complex grammar formalisms. Techniques for handling combinatorial explosion, such
as packing, had to be reformulated for feature-based formalisms.

Furthermore, although feature-based formalisms were neat in terms of describing
constraints in a declarative manner, the unification operation, which was a basic op-
eration for treating feature-based descriptions, was computationally very expensive. To
deliver practical NLP systems, we had to develop efficient implementation technologies
and processing architectures for feature-based formalisms.

The team at the University of Tokyo started to study how we could transform a
feature-based grammar (we chose HPSG) into effective and efficient representations for
parsing. The research included:

1. Design of an abstract machine for processing of typed-feature structures
and development of a logic programming system—LiLFeS (Makino et al.
1998; Miyao et al. 2000).

9 There had been attempts to construct probabilistic models without supervision of annotated tree banks
(for example, Fujisaki [1984]). They used EM algorithms such as the inside-outside algorithm. However,
they could not have brought significant results on their own. Significant progresses were made possible
by large treebanks (for example, Fujisaki (1984)).
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Grammar Formalisms
HPSG, XTAG, LTAG, LFG, CCG
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on local context of tags on phrase structures . Disambiguation by local context

Figure 7
Staged architecture of parsing.

2. Transforming HPSG grammar into a more processing-oriented
representation, such as extracting CFG skeletons (Torisawa and Tsujii 1996;
Torisawa et al. 2000) and supertags from original HPSG.

3. Packing of feature structures (feature forest) and long-linear probabilistic
models (Miyao and Tsujii 2003, 2005, 2008).

4. A staged architecture of parsing based on transformation of grammar
formalisms and their probabilistic modeling (Matsuzaki, Miyao and
Tsujii 2007; Ninomiya et al. 2010).

A simplified representation of our parsing model is shown in Figure 7. Given a
sentence, its representation of all the levels was constructed at the final stage by using
the HPSG grammar. Disambiguation took place mainly in the first two phases. The
first phase was a supertagger that would disambiguate supertags assigned to words
in a sentence. Supertags were derived from the original HPSG grammar and a set
of supertags were attached to a word in its lexicon. A suppertagger would choose
the most probable sequence of supertags for the given sequence of words. The task
was a sequence labeling task, which could be carried out in a very efficient manner
(Zhang, Matsuzaki, and Tsujii 2009). This means that the surface local context (i.e.,
local sequences of supertags) was used for disambiguation, without constructing actual
DAG:s of features.

The second phase was CFG filtering. A CFG skeleton, which also was derived from
the HPSG grammar, was used to check whether sequences of supertags chosen by
the first phase could reach a successful derivation tree. The supertagger did not build
actual parse trees explicitly to check whether a chosen sequence could reach legitimate
derivation trees or not. The second phase of CFG filtering would filter out supertag
sequences that could not reach legitimate trees.

The final phase not only built the final representation of all the levels, but it also
checked extra constraints specified in the original grammar. Because the first two phases
only use partial constraints specified in the HPSG grammar, the final phase would reject
results produced by the first two phases if they failed to satisfy these extra constraints.
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In this case, the system would backtrack to the previous phases to obtain the next
candidate.

All of these research efforts collectively produced a practical efficient parser based
on HPSG (Enju).

Lessons. As in MT, CL theories were effective for the systematic development of NLP
systems. Feature-based grammar formalisms drastically changed the view of parsing
as “climbing up the hierarchy”. Moreover, mathematically well-defined formalisms
helped the systematic implementation of efficient implementations of unification, trans-
formation of grammar into supertags, CFG skeletons, and so forth. These formalisms
also provided solid ground for operations in NLP such as packing of feature structures,
and so on, which are essential for treating combinatorial explosion.

On the other hand, direct application of CL theories to NLP did not work, since
this would result in extremely slow processing. We had to transform them into more
processing-oriented formats, which required significant efforts and time on the NLP
side. For example, we had to transform the original HPSG grammar into processing-
oriented forms, such as supertags, CFG skeletons, and so on. It is worth noting that,
while the resultant architecture was similar to the climbing-up hierarchy processing,
each stage in the final architecture was clearly defined and related to each other through
the single declarative grammar.

I also note that advances in the fields of computer science/engineering sig-
nificantly changed what was possible to achieve in NLP. For example, the design
of an abstract machine and its efficient implementation for unification in LiLFeS
(Makino et al. 1998), effective support systems for maintaining large banks of parsed
trees (Ninomiya, Makino, and Tsujii 2002; Ninomiya, Tsujii, and Miyao 2004), and
so forth, would be impossible without advances in the broader fields of computer
science/engineering and without much improved computational power (Taura et al.
2010).

On the other hand, disambiguation remained the major issue in NLP. Probabilistic
models enabled major breakthroughs in terms of solving the problem. Compared with
the fairly clumsy rule-based disambiguation that we adopted for the MU project,'’
probabilistic modeling provided the NLP community with systematic ways of handling
ambiguities. Combined with large tree banks, objective quantitative comparison of
different models also became feasible, which made systematic development of NLP
systems possible. However, the error rate in parsing remained (and still remains) high.

While reported error rates are getting lower, measuring the error rate in terms of the
number of incorrectly recognized dependency relations was misleading. At the sentence
level, the error rate remains high. That is, a sentence in which all dependency relations
are correctly recognized remains very rare. Because most of dependency relations are
trivial (i.e., pairs of adjacent words or pairs of close neighbors), errors in semantically
critical dependencies, such as PP-attachments, scopes of conjunction, etc., remain abun-
dant (Hara, Miyao, and Tsujii 2009).

10 The MU project, like the GETA group in France, took the approach of “procedural grammar” in which
rules for disambiguation check the context explicitly to choose plausible interpretation. Without
probabilistic models, the approach would be the only option for delivering working systems. However,
the analysis phase in this approach becomes clumsy and convoluted (Tsujii, Nakamura, and Nagao 1984;
Tsujii et al. 1988).
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Even using probabilistic models, there are obvious limits to disambiguation perfor-
mance, unless a deeper understanding is taken into account. This leads me to the next
research topic: language and knowledge.

5. Text Mining for Biomedicine

Background and Motivation. I was interested in the topic of how to relate language
with knowledge at the very beginning of my career. At the time, my naiveté led me to
believe initially that a large collection of text could be used as a knowledge base and was
engaged in research of a question-answering system based on a large text base (Nagao
and Tsujii 1973, 1979). However, resources such as a large collection of text, storage
capacity, processing speed of computer systems, and basic NLP technologies, such as
parsing, were not available at the time.

I'soon realized, however, that the research would involve a whole range of difficult
research topics in artificial intelligence, such as representation of common sense, human
ways of reasoning, and so on. Moreover, the topics had to deal with uncertainty and
peculiarities of individual humans. Knowledge or the world models that individual
humans have may differ from one person to another. I felt that the research target was
ill-defined.

However, through research in MT and parsing in the later stages of my career,
I started to realize that NLP research is incomplete if it ignores how knowledge is
involved in processing, and that challenging NLP problems are all related to issues of
understanding and knowledge. At the same time, considering NLP as an engineering
field, I took it to be essential to have a clear definition of knowledge or information with
which language is to be related. I would like to avoid too much vagueness of research
into commonsense knowledge and reasoning and to restrict our research focus to the
relationship between language and knowledge. As a research strategy, I chose to focus
on the biomedicine as the application domain. There were two reasons for the choice.

One reason was that microbiology colleagues at the two universities with which
I was affiliated told me that, in order to understand life-related phenomena, it had
become increasingly important for them to organize pieces of information scattered in a
large collection of published papers in diverse subject fields such as microbiology, med-
ical sciences, chemistry, and agriculture. In addition to the large collection of papers,
they also had diverse databases that had to be linked with each other. In other words,
they had a solid body of knowledge shared by domain specialists that was to be linked
with information in text.

The other reason was that there were colleagues at the University of Manchester
who were interested in sublanguages. According to the discussion on information for-
mats in a medical sublanguage by the NYU group (Sager 1978) and research into med-
ical terminology at the University of Manchester, focusing on relations between terms
and concepts (Ananiadou 1994; Frantzi and Ananiadou 1996; Mima et al. 2002), the
biomedical domain had been a natural choice of sublanguage research. The important
point here was that information formats in a sublanguage and terminology concepts
were defined by the target domain, and not by NLP researchers. Furthermore, domain
experts had actual needs and concrete requirements to help solve their own problems
in the target domains.

Research Contributions. Although there had been quite a large amount of research into
information retrieval and text mining for the biomedical domain, there had been no
serious efforts to apply structure-based NLP techniques to text mining in the domain.
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To address this, the teams at the University of Manchester and the University of Tokyo
jointly launched a new research program in this direction.

Because this was a novel research program, we first had to define concrete tasks to
solve, to prepare resources, and to involve not only NLP researchers, but also experts in
the target domains.

Regarding the involvement of NLP researchers and domain experts, we found
that a few groups in the world also began to be interested in similar research topics.
In response to this, we organized a number of research gatherings in collaboration
with colleagues around the world, which led to establishment of a SIG (SIGBIOMED)
at ACL. The first workshop took place in 2002, collocated with the ACL conference
(Workshop 2002). The SIG now organizes annual workshops and co-located shared
tasks. It has been expanding rapidly and has become one of the most active SIGs in NLP
applications. The research field of application of structure-based NLP to text-mining
is broadening to cover clinical/medical domains (Xu et al. 2012; Sohrab et al. 2020),
chemistry, and material science domains (Kuniyoshi et al. 2019).

Research contributions by the two teams include the GENIA corpus (Kim et al. 2003;
Thompson, Ananiadou, Tsujii 2017), a large repository of acronyms with their original
terms (Okazaki, Ananiadou, and Tsujii 2008, 2010), the GENIA POS tagger (Tsuruoka
et al. 2005), the BRAT annotation tool (Stenetorp et al. 2012), a workflow design tool for
information extraction (Kano et al. 2011), an intelligent search system based on entity
association (Tsuruoka, Tsujii, Ananiadou 2008), and a system for pathway construction
(Kemper et al. 2010).

The GENIA annotated corpus is one of the most frequently used corpora in the
biomedical domain. To see what information domain experts considered important in
text and how it was encoded in language, we annotated 2000 abstracts, not only from
the linguistic point of view but also from the viewpoint of domain experts. Two types
of annotations, namely, linguistic annotations (POS, and syntactic trees) and domain-
specific annotations (biological entities, relations, and events) were added to the corpus
(Ohta et al. 2006).

Domain-specific annotations were linked with ontologies of the target domain
(GENE ontology, anatomy ontology, etc.) which had been constructed by the target
domain communities to share information in diverse databases.

To involve domain experts in annotation, we developed a user-friendly anno-
tation tool with intuitive visualization (BRAT), which is now used widely by the
NLP community. In close cooperation with domain experts, we defined a set of NLP
tasks (Hirshman et al. 2002; Ananiadou, Friedman, and Tsujii 2004; Ananiadou, Kell,
and Tsujii 2006; Ananiadou et al. 2020), and developed a set of basic IE tools (Nobata
et al. 2008; Miwa et al. 2009; Pyysalo et al. 2012) for solving them, which were to be
combined into workflows to meet specific needs of individual groups of domain experts
(Kano et al. 2011; Rak et al. 2012).

As a result of this work, we recognized large discrepancies between linguistic units
such as words, phrases, and clauses, and domain-specific semantic units, such as named
entities, and relations and events that link them together (Figure 8). The mapping
between linguistic structures and the semantic ones defined by domain specialists was
far more complex than the mapping assumed by computational semanticists.

We soon realized that, as an NLP task, information extraction (IE) was very different
from MT. In particular, there were considerable differences between the information that
the authors intended to convey and encode in text and the information that the readers
(i.e., a group of domain experts) wanted to identify and extract from text. Regardless
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Event and Relation Extraction (Ananiadou et al. 2020).

of the information that the authors intended to convey, the reader would identify the
information that they were interested in.!!

These characteristics of IE as an NLP task made the mapping from language to
information very different from the transfer phase in MT, which attempts to covey the
same information in the source and target languages. While the task of named entity
recognition (NER) benefited from linguistic structures (i.e., noun phrases and their
coordination), linguistic structures would only give cues for the automatic recognition
of relations and events, and these cues were to be combined with other cues. The
mapping became similar to the transfer based on a bundle of features.

Like the transfer in the higher level of representation, we first used the HPSG
parser to climb up the hierarchy to the IS (which we called PAS [predicate-argument
structure]), from which we tried to identify a set of pattern-rules to extract events
(Figure 9) (Yakushiji 2001, 2006). We assumed that, although extraction patterns based
on surface sequences of words may be diverse,'? this diversity would reduce at a higher
level of abstraction—that is, the same approach to simple transfer at the abstract level.
Although this approach initially achieved reasonable performance, it soon reached its
limit; extracted patterns became increasingly clumsy and convoluted.

11 This means that the reader identifies information in text that may not be the main information the writer
intends to convey. The task of IE is essentially concerned with interpretation of text by the reader, and the
reader infers diverse sorts of information from text.

12 The information format in String Grammar by the NYU group tried to use surface patterns as rules of
sublanguage grammar. I thought this approach would not work on language in published papers.
Compared with language in medical records, language in published papers is not so restricted and
intertwined with rules of general language.
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As discussed above, we realized that this was because of the nature of IE tasks,
and switched to the approach based on a bundle of features (Figure 10) (Miwa et al.
2009). This shift continued further to the ongoing research, which uses a large language
model (BioBERT). In this recent work, linguistic information is assumed to be implicitly
embedded in the language model. The information is not represented explicitly in IE
systems (Figure 11) ( Ju, Miwa, and Ananiadou 2018; Trieu et al. 2020).

On the other hand, our interest in biomedical text mining extended beyond the
traditional IE tasks and moved toward coherent integration of extracted information. In
this integration, it became apparent that linguistic structures play more significant roles.

For example, claims about an event extracted from different articles often contradict
each other. As such, techniques for measuring the credibility or reliability of claims are
crucial.

In scientific fields such as biology and medical sciences, claims about an event
can be made affirmatively or speculatively, with different degrees of confidence. To
measure the degree of confidence of a claim, we have to examine the type of linguistic
structure in which the claim is embedded (Zerva et al. 2017; Zerva and Ananiadou 2018).
Additionally, depending on the position of an extracted event in a sentence, it may
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Event extraction using BERT (Trieu 2020).

be considered as a pre-supposed fact, hypothesis, and so forth. The manner in which
structural information recognized by a parser can be utilized to detect and integrate
contradicting claims remains an important research issue.

Another typical example of an integration problem is the automatic curation of
pathways, in which an NLP system is used to combine a set of different events extracted
from different articles to build a coherent network of events (Kemper et al. 2010). In
this task, a system must be able to decide whether two events reported in different
articles can be treated as the same event in a pathway. To do this, the system must be
able to detect the biological environments in which two reported events take place, by
considering the surrounding contexts of the events. This may also require linguistic
structures to be taken into account.

Lessons. By focusing on the biomedical domain, we introduced concrete forms of extra-
linguistic knowledge (i.e., domain ontologies built by the target domain communities)
and diverse databases, which include manually curated pathway networks. The task
of linking information in text with these resources helped to define concrete research
topics focusing on the relation between language and knowledge of the target do-
mains. Because scientific communities such as microbiologists have agreed views on
which pieces of information constitute their domain knowledge, we can avoid the
uncertainty and individuality of knowledge that may have hampered research in the
general domain.

Linguistic structures, with which NLP technologies such as parsing have previously
been concerned, play less important roles than we initially expected. Nevertheless,
ongoing research into the integration of extracted information has started to reassess
the importance of linguistic structures.

Another important finding is the nature of human reasoning. The CL and NLP
communities tend to consider reasoning as a kind of logical process based on symbolic
knowledge. However, the actual reasoning that the experts in the biomedical domain
perform may not be so symbolic in nature.

For example, we found that the reasoning carried out by domain experts on path-
ways is based on similarities between entities. For example, they infer that a protein
A is likely to be involved in an event by observing a reported fact that a protein B,
which is similar to protein A, is involved in the same type of event. The similarity
between protein A and B is based on the similarities between their 3D structures.
Because such similarities among proteins are scarcely manifested in their occurrences
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in text, large language models trained on a large collection of papers would be unable
to capture their similarities. Symbolic domain ontologies (i.e., a classification scheme of
biological entities) also fail to capture such fine-grained similarities. Accordingly, it may
be necessary to use heterogenous sources of information, such as databases of protein
structures, large collections of pathways, and so on, to capture such semantic similarities
among entities and to carry out reasoning based on them.

6. Future — Conclusions

We have witnessed the rapid progress and significant changes that neural network
(NN) models and deep learning (DL) have brought to the field of NLP. This is a typical
example in which advances in broader fields of computer science/engineering open up
new opportunities to change and enhance the NLP field.

The changes brought by NN and DL are broad and have had a profound impact not
only on NLP but also visual/image processing, speech/signal processing, and many
other areas of artificial intelligence. It is a paradigm shift.

The new paradigm has significantly improved the performance of diverse NLP
tasks. Furthermore, I expect it will contribute significantly toward solving the most
challenging NLP problems, by integrating NLP with the processing of other information
modalities (images, sounds, haptics, etc.), and with knowledge processing, and so on.

In technological fields such as image and speech processing, reasoning based on
knowledge traditionally used different modeling and processing techniques. They now
share the same technological basis of NN and DL. It is becoming much easier to inte-
grate heterogeneous forms of processing, meaning that carrying out NLP in multimodal
contexts and NLP with knowledge bases are far more feasible than we previously
thought. The research teams of the institutions with which I am affiliated are now
working on these directions (Kumar Sahu et al. 2019; Iso et al. 2020; Christopoulou,
Miwa, and Ananiadou 2021).

On the negative side, NLP based on large language models is increasingly separat-
ing itself from other research disciplines that involve the study of language. The black
box nature of NN and DL also makes the analytical methods way of assessing NLP
systems difficult.

Although the characteristics are very different, I fear that the paradigm may en-
counter similar difficulties to those suffered by first-generation MT systems. One could
improve the overall performance by tweaking computational models, but without
rational and systematic analysis of problems, this failed to solve real difficulties and
recognize the limit of the technology.

As revealed through detailed analysis of parsing errors, even when the overall
quantitative performance improved, semantically crucial errors of specific types re-
mained unsolved.

Without analysis based on theories provided by other language-related disciplines,
erratic and unexpected behaviors of NN-based NLP systems will remain and limit
potential applications.

On the other hand, CL tends to treat language as a closed system or focus on study
on specific aspects of regularities that language show. By examining what takes place in
NLP systems, together with NLP practitioners, CL researchers would be able to enrich
the scope of their theories and to provide a theoretical basis for analytic assessment of
NLP systems.

It is the time to re-connect NLP and CL.
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