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In our analysis, we first evaluate the quality of the mapping in a retrieval task, then we shed
light on the semantic features that are better encoded in each embedding type. A large number
of probing tasks is finally set to assess how the original and the mapped embeddings perform in
discriminating semantic categories. For each probing task, we identify the most relevant semantic
features and we show that there is a correlation between the embedding performance and how they
encode those features. This study sets itself as a step forward in understanding which aspects of
meaning are captured by vector spaces, by proposing a new and simple method to carve human-
interpretable semantic representations from distributional vectors.

1. Introduction

One of the most influential and longstanding approaches to semantic representation
assumes that the conceptual content of lexical items is decomposable into semantic
features that identify meaning components, hence the name of featural, decomposi-
tional, or componential theories of meaning (Vigliocco and Vinson 2007). In linguistics,
features are typically represented by symbols (e.g., HUMAN, PATH, CAUSE) standing
for basic or primitive semantic dimensions (Jackendoff 1990; Wierzbicka 1996; Murphy
2010; Pustejovsky and Batiukova 2019). These “building blocks” of meaning are selected
a priori and structured into categorical representations defined by the presence or
absence of symbolic features, as in this semantic analysis of enter:

(1) enter [+MOVE, +PATH, -CAUSE, . . . ]

Besides the issue of establishing the criteria to define the repertoire of alleged seman-
tic primitives, discrete symbolic structures strive to cope with the gradient nature of
lexical meaning and cannot capture the varying degrees of feature prototypicality in
concepts (Murphy 2002). Second, the basic semantic features are normally too coarse-
grained to provide a full characterization of conceptual content (e.g., accounting for the
dimensions that distinguish painter from violinist). In cognitive psychology, instead of
using categorical representations formed by hand-selected components, it is customary
to represent concepts with verbal properties generated by native speakers to describe
a word meaning and collected in feature norms (e.g., McRae et al. 2005; Vinson and
Vigliocco 2008; Devereux et al. 2014). Each feature is associated with a weight corre-
sponding to the number of subjects that listed it for a given concept and is used to
estimate its salience in that concept. The following is a representation of car using a
subset of its feature distribution from the norms in McRae et al. (2005):

(2)
a_vehicle has_4_wheels is_ fast is_expensive

car 9 18 9 11

The main advantage of featural representations is that they are human-interpretable and
explainable: Features explicitly label the dimensions of word meanings and provide
explanatory factors of their semantic behavior (e.g., the similarity between violinist
and athlete can be explained by assuming that they both share the feature HUMAN).
Conversely, featural semantic representations raise several methodological concerns, as
they are either based on intuition and therefore highly subjective, or must be carried out
with a complex and time-consuming process of elicitation from human subjects, which
is hardly scalable to cover large areas of the lexicon. In fact, existing feature norms only
include some hundreds of lexical items, typically limited to concrete nouns.
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Semantic features have been widely used in computational linguistics and artificial
intelligence (AI), but their limits have eventually contributed to the success of a
completely different approach to semantic representation. This is based on data-
driven, low-dimensional, dense distributional vectors called word embeddings, which
represent lexical meaning as a function of the statistical distribution of words in texts.
Word embeddings are built by Distributional Semantic Models (DSMs) (Turney and
Pantel 2010; Lenci 2018) using various types of methods, ranging from the factorization
of co-occurrence matrices with Singular Value Decomposition (SVD) to neural language
models. Traditional DSMs have represented the content of lexical types through a single
vector that “summarizes” their whole distributional history, disregarding that word
tokens may have different meanings in different contexts. Things have recently changed
with the introduction of deep neural architectures for language modeling such as ELMo
(Peters et al. 2018) and BERT (Devlin et al. 2019), whose word representations have
helped achieve state-of-the-art results in a wide variety of supervised natural language
processing (NLP) tasks. These embeddings are “contextualized,” in the sense that the
model computes a different vector for each token of the same word, depending on the
sentence in which it occurs. The popularity of word embeddings, both contextualized
and not, is due to the fact that they allow for the fast construction of continuous
semantic representations that can be pretrained on large natural language corpora. The
vector-based encoding of meaning is easily machine-interpretable, as embeddings can be
directly fed into complex neural architectures and indeed boost performance in several
NLP tasks and applications.

Although word embeddings play an important role in the success of deep learning
models and do capture some aspects of lexical meaning, it is hard to understand
their actual semantic content. In fact, one notorious problem of embeddings is their
lack of human-interpretability: Information is distributed across vector dimensions that
cannot be labeled with specific semantic values. In neural word embeddings, the vector
dimensions are learned as network parameters, instead of being derived from explicit
co-occurrence counts between target words and linguistic contexts, making their in-
terpretation even more challenging. Scholars have argued that DSMs provide a holistic
representation of meaning, as the content of each word can exclusively be read off from
its position relative to other elements in the semantic space, while the coordinates of
such space are themselves arbitrary and without any intrinsic semantic value (Landauer
et al. 2007; Vigliocco and Vinson 2007; Sahlgren 2008). This makes embeddings “black
box” representations that can be understood only by observing their behavior in some
external task, but whose internal content defies direct inspection. A recent and widely
used tool to investigate the linguistic properties captured by embeddings are the so-
called probing tasks (Ettinger, Elgohary, and Resnik 2016; Adi et al. 2017; Conneau
et al. 2018; Kann et al. 2019). A probing task is a classification problem that targets a
specific linguistic aspect (word order, animacy, etc.). The name refers to the fact that the
classifier is used to “probe” embeddings for a particular piece of linguistic information.
The successful performance of an embedding model to address this task is then used to
infer that the vectors encode that information. However, as it was recently pointed out
by Shwartz and Dagan (2019), probing tasks are also a form of “black box” testing, since
they just provide indirect evidence about the embedding content.

The emergence of the interpretability problem in AI and NLP has motivated the
necessity of understanding which shades of semantics are actually encoded by word
embeddings, and has therefore refueled the debate about the relationship between
distributional representations and semantic features (Boleda and Erk 2015). “Opening
the black box” of deep learning methods has become an imperative in computational
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linguistics (Linzen, Chrupała, and Alishahi 2018; Linzen et al. 2019). Such research effort
aims at analyzing the specific information encoded by vector representations that may
help explain their behavior in downstream tasks and applications.

In this article, we contribute to this goal by showing that featural semantic represen-
tations can be used to interpret the content of word embeddings. In particular, we argue
that decoding semantic information from distributional vectors is strikingly similar to
the problem faced by neuroscience of how to “read off meaning” from distributed brain
activity patterns. Neurosemantic decoding is a research line that develops computa-
tional methods to identify the mental state represented by brain activity recorded with
neuroimaging techniques such as functional magnetic resonance imaging (fMRI) (e.g.,
recognizing that a given activation pattern produced by a stimulus picture or word cor-
responds to an apple). A common approach to address such tasks is to learn a mapping
between featural concept representations and a vector containing the corresponding
fMRI recorded brain activity (Naselaris et al. 2011; Poldrack 2011). These computational
models are able to predict the concept corresponding to a certain brain activation and
contribute to shedding light on the neural representation of semantic features.

In neurosemantic decoding, human-interpretable semantic vectors are used to de-
code the content of vectors of “brain-interpretable” signals activated by a certain stim-
ulus (cf. Section 2.2). In a similar way, we aim at decoding the semantic content of
word embeddings by learning a mapping onto vectors of human-interpretable fea-
tures. To this end, we use the semantic features introduced by Binder et al. (2016),
who proposed a set of cognitively motivated semantic primitives (henceforth, Binder
features) derived from a wide variety of modalities of neural information processing
(hence their definition as brain-based), and provided human ratings about the relevance
of each feature for a set of English words (henceforth, Binder data set). We use these
ratings to represent the words with continuous vectors of semantic features and to learn
a map from word embeddings dimensions to Binder features. Such mapping provides a
human-interpretable correlate of word embeddings that we use to address these issues:

1. identifying which semantic features are best encoded in word embeddings;

2. explaining the performance of embeddings in semantic probing tasks.

The idea of mapping word embeddings onto semantic features is not by itself new
(Făgărăs, an, Vecchi, and Clark 2015; Utsumi 2020), but to the best of our knowledge
the present contribution is the first one to use mapped featural representations to
interpret the semantic information learned by probing classifiers and to explain the em-
bedding behavior in such tasks. Therefore, we establish a bridge between the research
on semantic features and the challenge of enhancing the interpretability of distributed
representations, by showing that featural semantic representations can work as an
important key to open the black boxes of word embeddings and of the tasks in which
they are used. As an additional element of novelty, we also apply the neural decod-
ing methodology to the recently introduced contextualized embeddings, to evaluate
whether and how they differ from static ones in encoding semantic information. It is
important to point out that we do not argue that Binder feature vectors should replace
distributional representations. The main claim of this article is rather that continuous
vectors of human-interpretable semantic features, such as Binder’s, are an important
tool to investigate what aspects of meaning distributional embeddings actually encode,
and they can be used to lay a bridge between symbolic and distributed semantic
representations.
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This article is organized as follows. Section 2 introduces the main typologies of
DSMs and reviews the related work on vector decoding. In Section 3, we describe the
Binder features, we present the method used to map word embeddings onto Binder
feature vectors, and we evaluate the mapping accuracy. In Section 4, we investigate
which Binder features are best encoded by each type of embedding. In Section 5 we
set up a series of probing tasks to verify how the original and mapped embeddings
encode semantic categories, such as animate/inanimate or positive/negative sentiment.
Some probing tasks focus on static embeddings, whereas others target the token vectors
produced by contextualized embeddings. The aim of the analysis is to identify the
most important semantic features for a given task and to investigate whether there is
a correlation between the system performance and how those features are encoded by
the embeddings.

2. Related Work

2.1 From Static Distributional Models to Contextualized Embeddings

We use the term word embedding to refer to any kind of dense, low-dimensional dis-
tributional vector. In the early days of Distributional Semantics, embeddings were built
by applying dimensionality reduction techniques derived from linear algebra, such as
SVD, to matrices keeping track of the co-occurrence information about the target terms
and some predefined set of linguistic contexts. Parameter tuning was mostly carried out
empirically, as it was driven by the model performance on specific tasks. This family of
DSMs is referred to as count models (Baroni, Dinu, and Kruszewski 2014).

The construction of distributional representations started to be conceived mainly
as the byproduct of a supervised language modeling task after the introduction of
the Word2Vec package (Mikolov et al. 2013). Low-dimensional distributional word
vectors are created by neural network algorithms by learning to optimally predict the
contexts of a target word, hence their name, predict models. “Neural” embeddings
have become an essential component for several NLP applications, also thanks to the
availability of many efficient and easy-to-use tools (Mikolov et al. 2013; Bojanowski
et al. 2017) that allow researchers to quickly obtain well-performing word represen-
tations. Indeed, an important finding of a first comparative evaluation between count
and predict models was that the latter achieve far superior performances in a wide
variety of tasks (Baroni, Dinu, and Kruszewski 2014). Although the result was claimed
to be due to the suboptimal choice of “vanilla” hyperparameters for the count models
(Levy, Goldberg, and Dagan 2015), it was still proof that predict models could be very
efficient even without any parameter tuning. Subsequent studies adopting cognitively
motivated benchmarks (e.g., based on priming, eye-tracking, or electroencephalogram
data) have also showed that word embeddings exhibit strong correlation with human
performance in psycholinguistic and neurolinguistic tasks (Søgaard 2016; Mandera,
Keuleers, and Brysbaert 2017; Bakarov 2018; Schwartz and Mitchell 2019; Hollenstein
et al. 2019). Finally, and significantly, Carota et al. (2017) found that the semantic simi-
larity computed via distributional models between action-related words correlates with
the fMRI response patterns of the brain regions that are involved in the processing of
this category of lexical items.

Another novelty recently came out from the research on deep neural networks for
language modeling. For both count and predict models, a common and longstanding
assumption was the building of a single, stable representation for each word type in the
corpus. In the latest generation of embeddings, instead, each occurrence of a word in a
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specific sentence context gets a unique representation (Peters et al. 2018). Such models
typically rely on an encoder (i.e., a LSTM or a Transformer) trained on large amounts of
textual data, and the word vectors are learned as a function of the internal states of the
encoder, such that a word in different sentence contexts determines different activation
states and is represented by a distinct vector (McCann et al. 2017; Peters et al. 2018;
Howard and Ruder 2018; Devlin et al. 2019; Yang et al. 2019). Thus, the embeddings
produced by these new frameworks are said to be contextualized, as opposed to the
static vectors produced by the earlier frameworks, and they aim at modeling the specific
sense assumed by the word in context (Wiedemann et al. 2019). Interestingly, the distinc-
tion between traditional and contextualized embeddings has been recently discussed
by drawing a parallel between the prototype and exemplar models of categorization in
cognitive psychology (Sikos and Padó 2019).

Two very popular models for obtaining contextualized word embeddings are ELMo
(Peters et al. 2018) and BERT (Devlin et al. 2019). ELMo is based on a two-layer LSTM
trained as the concatenation of a forward and a backward language model, BERT on a
stack of Transformer layers (Vaswani et al. 2017) trained jointly in a masked language
model and a next sentence prediction task. The semantic interpretation of the dimen-
sions of contextualized embeddings is still an open question. The classical approach to
analyze the syntactic and semantic information encoded by these representations is to
test them in some probing tasks (Tenney et al. 2019; Liu et al. 2019; Hewitt and Manning
2019; Kim et al. 2019; Kann et al. 2019; Yaghoobzadeh et al. 2019; Jawahar et al. 2019). In
this contribution we adopt a different approach to the problem, mainly inspired by the
literature on neurosemantic decoding.

2.2 Interpreting Vector Representations

Like word embeddings, the brain encodes information in distributed activity patterns
that defy direct interpretation. The general goal of neurosemantic decoding is to de-
velop computational methods to infer the content of brain activities associated with a
certain word or phrase (e.g., to recognize that a pattern of brain activations corresponds
to the meaning of the stimulus word dog, instead of car). One of the most common
approaches to neural decoding consists in learning to map vectors of fMRI signals
onto vectors of semantic dimensions. If the mapping is successful, we can infer that
these dimensions are encoded in the brain. Mitchell et al. (2008) pioneered such a
method by training a linear regression model from a set of words with their fMRIs. The
trained model was then asked to predict the activations for unseen words. Approaches
differ for the type of semantic representation adopted to model brain data. Mitchell
et al. (2008) used a vector of features corresponding to textual co-occurrences with 25
verbs capturing basic semantic dimensions (e.g., hear, eat). Chang, Mitchell, and Just
(2011) instead represented words with vectors of verbal properties derived from feature
norms, and Anderson et al. (2016) with vectors of Binder features (cf. Section 3.2).

After the popularization of DSMs, the use of word embeddings for neurosemantic
decoding has become widespread. Actually, the decoding task itself has turned into
an important benchmark for DSMs, since it is claimed to represent a more robust
alternative to the traditional use of behavioral data sets (Murphy, Talukdar, and Mitchell
2012). Some of these studies used fMRI data to learn a mapping from the classical count-
based distributional models (Devereux, Kelly, and Korhonen 2010; Murphy, Talukdar,
and Mitchell 2012), from both count and prediction vectors (Bulat, Clark, and Shutova
2017b; Abnar et al. 2018), from contextualized vectors (Beinborn, Abnar, and Choenni
2019), or from topic models (Pereira, Detre, and Botvinick 2011; Pereira, Botvinick, and
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Detre 2013). This methodology has recently been extended beyond words to represent
the meanings of entire sentences (Anderson et al. 2016; Pereira et al. 2018; Sun et al.
2019), even in the presence of complex compositionality phenomena such as negation
(Djokic et al. 2019), or to predict the neural responses to complex visual stimuli (Güçlü
and van Gerven 2015). Athanasiou, Iosif, and Potamianos (2018) showed that neural
activation semantic models built out of these mappings can also be used to successfully
carry out NLP tasks such as similarity estimation, concept categorization, and textual
entailment.

Despite the analogy, it is important to underline a crucial difference between our
work and neurosemantic decoding. In the latter, word embeddings are used as proxies
for semantic representations to decode brain patterns that are not directly human-
interpretable. Our aim is instead to decode the content of word embeddings themselves.
We actually believe this enterprise to be also relevant for (and to a certain extent a
precondition to) the task of decoding brain states. In fact, if we want to use embeddings
for neural decoding, it is essential to have a better understanding of the semantic content
hidden in distributional representations. Otherwise, the risk is to run into the classical
fallacy of obscurum per obscurius, in which one tries to explain something unknown
(brain activations), with something that is even less known (word embeddings).

Another related line of work makes use of property norms for grounding distribu-
tional models in perceptual data, and to map them onto interpretable representations
(Făgărăs, an, Vecchi, and Clark 2015; Bulat, Kiela, and Clark 2016; Derby, Miller, and
Devereux 2019), an approach that has been proven useful, among other things, also
for the detection of cross-domain mappings in metaphors (Bulat, Clark, and Shutova
2017a). Similarly, other studies focused on conceptual categorization proposed to learn
mappings from distributional vectors to spaces of higher-order concepts (Şenel et al.
2018; Schwarzenberg, Raithel, and Harbecke 2019).

Finally, Utsumi (2018, 2020) carried out an analysis of the semantic content of non-
contextualized word embeddings, which is close in spirit to our correlation analyses in
Section 4. However, our study significantly differs from Utsumi’s for its goals and scope.
Whereas Utsumi (2020) only aims at understanding the semantic knowledge encoded
in distributional vectors, we add to this the idea of using the decoded embeddings
to explain and to interpret their performance in probing semantic tasks (Section 5).
Moreover, our study involves a larger array of DSMs and it is the first one to include
state-of-the-art contextualized embeddings.1

3. Decoding the Semantic Content of Word Embeddings

We decode the meaning of word embeddings e1, . . . , en by mapping them onto vectors
of human-interpretable semantic features f1, . . . , fn. We henceforth use the term dimen-
sion to refer to embedding components, and we reserve the term (semantic) feature only
for interpretable meaning components. First, we present the DSMs we have used in
our experiments (Section 3.1), then we introduce the Binder features (Section 3.2), we
illustrate the mapping method (Section 3.3), and we evaluate its quality (Section 3.4).

1 After the article submission, we learned about the contribution by Turton, Vinson, and Smith (2020), who
also presented a set of regression experiments to map word embeddings onto the Binder feature space.
Similarly to Utsumi (2020), however, their analysis is limited to traditional, non-contextualized
embedding models.
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3.1 Word Embedding Models

Because we aim at providing a systematic comparison of the most common DSMs, we
evaluate a large pool of standard, non-contextualized word embedding models. We
trained 300-dimensional vectors on a corpus of about 3.9 billion tokens, obtained from
the concatenation of ukWaC (Baroni et al. 2009) and a 2018 dump of Wikipedia. All
vectors share the same vocabulary of ca. 345K unlemmatized tokens, corresponding to
the words with a minimum frequency of 100 in the training corpus.

Our “model zoo” includes both predict models (SGNS and FastText) and count
models (PPMI and GloVe). SGNS (Mikolov et al. 2013) is the Skip-Gram with Negative
Sampling algorithm, which learns word embeddings that predict the context lexemes
co-occurring with the targets. FastText (Bojanowski et al. 2017) is a variation of SGNS
that uses subword information and represents word types as the sum of their n-gram
embeddings. GloVe (Pennington, Socher, and Manning 2014) is a matrix model that uses
weighted regression to find embeddings that minimize the squared error of the ratios of
co-occurrence probabilities. PPMI (Bullinaria and Levy 2012) consists of a co-occurrence
matrix weighted with Positive Pointwise Mutual Information and reduced with SVD.
Although the latter DSM type could be considered out of date, we decided to include it
in our experiments, since Levy, Goldberg, and Dagan (2015) have shown that it can be
competitive with predict models, given a proper hyperparameter optimization.

Four DSMs are window-based (the w2 models select co-occurrences with a context
window of 2 words to either side of the target), and four are syntax-based. The synt
models use contexts typed with syntactic dependencies (e.g., eat-nobj), while the synf
models use syntactically filtered, untyped contexts. Dependencies were extracted from
the training corpus parsed with CoreNLP (Manning et al. 2014). As suggested by Levy,
Goldberg, and Dagan (2015) for the parameter tuning of count models, we used the
context distribution smoothing of 0.75 for PPMI and we dropped the singular value
matrix produced by SVD. We also applied to PPMI and GloVe the subsampling method
proposed in Mikolov et al. (2013). A summary of all the models with their respective
training hyperparameters is provided in Table 1.

The contextualized embedding models are ELMo2 and BERT (the BERT-Large un-
cased version).3 Because they produce token vectors, following the method proposed by
Bommasani, Davis, and Cardie (2020) and Vulić et al. (2020), we created type represen-
tations by randomly sampling 1,000 sentences for each target word from the Wikipedia
corpus. We generated a contextualized embedding for each word token by feeding the
sentence to the publicly available pre-trained models of ELMo and BERT and taking the
token vector of the output layer. Finally, an embedding for each word was obtained by
averaging its 1,000 contextualized vectors. Averaging contextualized embeddings has
been shown to produce vectors that are competitive or even better than those produced
by static DSMs. Moreover, this choice is consistent with the hypothesis that context-
independent conceptual representations are abstractions from token exemplar concepts
(Yee and Thompson-Schill 2016).4 As a baseline, we also built models based on 300-
dimensional randomly generated vectors (Random).

2 https://tfhub.dev/google/elmo/3.
3 We used the pipelines included in the spacy-transformers package

(https://spacy.io/universe/project/spacy-transformers).
4 One reviewer correctly points out that we could have queried ELMO and BERT with the very same

sentences used by Binder et al. (2016) to clarify the relevant word sense to the workers in the rating tasks
(cf. Section 3.2). Unfortunately, these sentences were not released together with the data set.

670

https://tfhub.dev/google/elmo/3
https://spacy.io/universe/project/spacy-transformers


Chersoni et al. Decoding Word Embeddings

Table 1
List of the embedding models used for the study, together with their hyperparameter settings.

Model Hyperparameters

PPMI.w2

345K window-selected context words, window of width 2
weighted with Positive Pointwise Mutual Information (PPMI)

reduced with Singular Value Decomposition (SVD)
subsampling method from Mikolov et al. (2013).

PPMI.synf

345K syntactically filtered context words
weighted with Positive Pointwise Mutual Information (PPMI)

reduced with Singular Value Decomposition (SVD)
subsampling method from Mikolov et al. (2013).

PPMI.synt

345K syntactically typed context words
weighted with Positive Pointwise Mutual Information (PPMI)

reduced with Singular Value Decomposition (SVD)
subsampling method from Mikolov et al. (2013).

GloVe Window of width 2
subsampling method from Mikolov et al. (2013).

SGNS.w2
Skip-gram with negative sampling

window of width 2, 15 negative examples
trained with the word2vec library (Mikolov et al. 2013).

SGNS.synf
Skip-gram with negative sampling

syntactically-filtered context words, 15 negative examples
trained with the word2vecf library (Levy and Goldberg 2014).

SGNS.synt
Skip-gram with negative sampling

syntactically-typed context words, 15 negative examples
trained with the word2vecf library (Levy and Goldberg 2014).

FastText
Skip-gram with negative sampling and subword information

window of width 2, 15 negative examples
trained with the fasttext library (Bojanowski et al. 2017).

ELMo
Pretrained ELMo embeddings (Peters et al. 2018),

available at https://allennlp.org/elmo,
original model trained on the 1 Billion Word Benchmark (Chelba et al. 2013).

BERT

Pretrained BERT-Large embeddings (Devlin et al. 2019)
available at https://github.com/google-research/bert

model trained on the concatenation of the Books corpus
(Zhu et al. 2015) and the English Wikipedia.

3.2 The Binder Data Set: Features for Brain-Based Semantics

Binder et al. (2016) proposed a brain-based semantics consisting of conceptual primi-
tives defined in terms of the modalities of neural information processing. This study aimed
at developing a representation that captured aspects of experience that are central in
the acquisition of concepts. The authors organized human experience in 14 different
domains (see Table 2), each one corresponding to a variable number of features for
which some specialized neural processor has been identified and described in the
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Table 2
List of the domains and meaning components (features) in Binder et al. (2016).

Domain Meaning components (features)

Vision VISION, BRIGHT, DARK, COLOUR, PATTERN, LARGE, SMALL, MOTION,
BIOMOTION, FAST, SLOW, SHAPE, COMPLEXITY, FACE, BODY

Somatic TOUCH, TEMPERATURE, TEXTURE, WEIGHT, PAIN
Audition AUDITION, LOUD, LOW, HIGH, SOUND, MUSIC, SPEECH
Gustation TASTE
Olfaction SMELL
Motor HEAD,UPPER LIMB, LOWER LIMB, PRACTICE
Spatial LANDMARK, PATH, SCENE, NEAR, TOWARD, AWAY, NUMBER
Temporal TIME, DURATION, LONG, SHORT
Causal CAUSED, CONSEQUENTIAL
Social SOCIAL, HUMAN, COMMUNICATION, SELF
Cognition COGNITION

Emotion BENEFIT, HARM, PLEASANT, UNPLEASANT, HAPPY,
SAD, ANGRY, DISGUSTED, FEARFUL, SURPRISED

Drive DRIVE, NEEDS
Attention ATTENTION, AROUSAL

neuroscientific literature (Binder et al. 2016). In total, the brain-based semantics con-
sists of 65 cognitively motivated features, which we henceforth refer to as the Binder
features.

For their collection of ratings, Binder et al. (2016) selected 242 words of the Knowl-
edge Representation in Neural Systems project (Glasgow et al. 2016), including 141 nouns,
62 verbs, and 39 adjectives, plus 293 additional nouns in order to include more abstract
nouns, for a total of 535 words. Rated words belong to various concept types. A
summary of the concept types, parts-of-speech, and the number of words per type is
provided in Table 4. For each of these words, ratings on a 0–6 scale were collected with
Amazon Mechanical Turk, in order to assess the degree to which humans associate their
meaning with particular kinds of experience. Words were rated across multiple sessions:
Each participant was assigned one word per session and provided ratings for all the se-
mantic features (cf. Table 3 for an example). Because there are several ambiguous words
in the data, participants were presented with an example sentence that allowed the cor-
rect identification of the target word sense. The reported mean intraword individual-to-
group correlation of the collected ratings is 0.78 (median 0.80). Interestingly, the concept
representations based on the elicited features were compared with their distributional
representations, obtained via Latent Semantic Analysis (Landauer and Dumais 1997),
showing that brain-based features are more efficient in separating conceptual categories.

Table 3
A sample of the rated Binder features for dog and love.

Word VISION BRIGHT . . . COGNITION BENEFIT HARM PLEASANT UNPLEASANT

dog 5.3548 1.0968 . . . 0.3548 3.5806 2.8065 3.9355 0.7097
love 0.7931 0.4828 . . . 4.5172 4.9310 1.7586 5.4828 0.5172
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Table 4
Concept types, parts-of-speech (POS), and number of items in the data set by Binder et al. (2016).

Type-POS No. of items

Concrete Objects - Nouns 275
Living Things - Nouns 126
Other Natural Objects - Nouns 19
Artifacts - Nouns 130
Concrete Events - Nouns 60
Abstract Entities - Nouns 99
Concrete Actions - Verbs 52
Abstract Actions - Verbs 5
States - Verbs 5
Abstract Properties - Adjectives 13
Physical Properties - Adjectives 26

We have chosen the Binder features for our decoding experiments for three main
reasons. First of all, they are empirically motivated on the grounds of neurocognitive
evidence supporting their key role for conceptual organization. This allows us to test
the extent to which these central components of meaning are actually captured by word
embeddings. Second, despite being quite coarse-grained, Binder features differ from
human generated properties because the latter are actually linguistic structures that
often express complex concepts (e.g., used_ for_transportation as a property for airplane),
rather than core meaning components. Third, the Binder data set covers nouns, verbs,
and adjectives, and encompasses both concrete and abstract words, while no existing
feature norms have a comparable morphosyntactic or semantic variety. Of course, we do
not claim this to be the “definitive” semantic feature lists, but in our view it represents
the most complete repository of continuous featural representations available to date.
However, the analysis methodology we present in the next section is totally general,
and can be applied to any type of semantic feature vector.

3.3 Mapping Word Embeddings onto Semantic Features

For this study, we learn a mapping from an n-dimensional word embedding e (with
n equal to 300 for non-contextualized DSMs, 768 for BERT, and 1,024 for ELMo) onto
a 65-dimensional feature vector f whose components correspond to the ratings for the
Binder features. We henceforth refer to the mapped feature vectors as Binder vectors.
Our data set consists of 534 Binder words.5

In the previous literature, mainly two methods have been used to learn a mapping
between embeddings and discrete feature spaces: regression models (Făgărăs, an, Vecchi,
and Clark 2015; Pereira et al. 2018; Utsumi 2018, 2020) and feedforward neural networks
(Abnar et al. 2018; Utsumi 2018, 2020). We performed our experiments with a partial
least square regression model, with an appropriately chosen number k of regression
components. We tested with k = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The regression mod-
els have been implemented with the Python Scikit-learn package (Pedregosa et al.

5 One less than the original collection, because used appears twice, as verb and adjective.
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Figure 1
(top) Mean Squared Error (values have been summed across the Binder features) and (bottom)
explained variance for ELMo, BERT, and GloVe vectors per number of regression components.

2011).6 Identifying the best mapping model is not the main goal of the present work,
and we leave for further research the comparison with other methods.

3.4 Mapping Evaluation

For a preliminary evaluation of the mapping quality, we analyze the traditional metrics
of Mean Squared Error (MSE) and variance. First, we randomly split the data into
training and test sets, using an 80 : 20 ratio, and we measure the sum of MSE and the
variance in order to determine the optimal value for the parameter k (the number of
regression components). After choosing the optimal k, vectors of Binder features are
predicted with the leave-one-out training paradigm, as in Utsumi (2018, 2020): For
each word in the data set, we train a mapping between the embeddings and the gold

6 https://scikit-learn.org/stable/.
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Table 5
Mean Squared Error (summed across features) and explained Variance per model, mapping with
Partial Least Squares Regression and k = 30.

Model MSE Variance

PPMI.w2 0.16 0.50
PPMI.synf 0.15 0.54
PPMI.synt 0.16 0.48
GloVe 0.16 0.46
SGNS.w2 0.15 0.54
SGNS.synf 0.14 0.58
SGNS.synt 0.14 0.59
FastText 0.14 0.55
ELMo 0.16 0.48
BERT 0.15 0.53

Random 0.30 −0.73

standard Binder vectors of the remaining words, and we predict the held-out word with
the resulting mapping.

Moreover, following the literature on neural decoding, the predicted vectors are
tested on a task of retrieval in the top-N neighbors. Given a predicted vector, we rank all
the 534 vectors in the gold standard data set by decreasing cosine similarity values.
Then we measure the Top-N accuracy (Top-N Acc), as the percentage of the items of the
data set whose gold standard vector is in the top-N of the neighbors list of the predicted
vector (Făgărăs, an, Vecchi, and Clark 2015). We assess this value for N = 1, 5, 10.

We measured the MSE and the explained variance for each model, finding that k
between 30 and 50 produces the optimal results for all models. Figure 1 shows MSE
and variance as a function of k for GloVe, ELMo, and BERT embeddings. Most models
achieve the best fit with k = 30 or k = 40. Since the average explained variance is slightly
higher for k = 30, we keep this parameter as the optimal value for the mapping. Table 5
reports the MSE and the explained variance for the k = 30 mapping. The best scores
are obtained with the syntax-based versions of the SGNS model, together with FastText
and BERT. All mappings perform largely better than the random baseline, for which
the explained variance is negative.

Using the Partial Least Squares Regression model with k = 30 for the mapping and
leave-one-out training, we predict the vectors of all the Binder words and we evaluate
them with the Retrieval task. The results are shown in Table 6. At a glance, we can
notice that all DSMs vastly outperform the random vectors and are able to retrieve in
the top 10 ranks at least half of the target concepts. For this auxiliary task, the best
performing model is BERT, which retrieves the 30% of the target concepts at the top
of the ranking and more than three quarters of them in the top 10. This confirms that
type vectors derived from contextualized embeddings can indeed be competitive with
those generated by static DSMs (Chronis and Erk 2020; Vulić et al. 2020). The next best
models are the syntactically enriched versions of the Skip-Gram vector, with the one
using typed dependencies coming close to BERT performance.

These results show overall good-quality representation for all the embedding types,
and a comparison with the scores by Utsumi (2018) confirms the superiority of SGNS
model over GloVe and PPMI for this kind of mapping. Differently from the previous
study, we also consider embeddings that are trained with syntactic dependencies,
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Table 6
Top-N Acc for each word embedding model.

Model Top-N Accuracy
N = 1 N = 5 N = 10

PPMI.w2 0.14 0.42 0.57
PPMI.synf 0.14 0.46 0.61
PPMI.synt 0.10 0.36 0.54
GloVe 0.18 0.43 0.58
SGNS.w2 0.19 0.49 0.64
SGNS.synf 0.20 0.55 0.71
SGNS.synt 0.23 0.57 0.74
FastText 0.20 0.53 0.70
ELMo 0.22 0.50 0.68
BERT 0.30 0.59 0.76

Random 0.00 0.01 0.01

showing that for SGNS syntactic contexts determine a general improvement of the
performance (while typed dependencies are suboptimal for the PPMI model).

The next tests will aim at revealing how well the different features in the Binder
data set are encoded by our vectors.

4. How Do Word Embeddings Encode Semantic Features?

In the literature on neurosemantic decoding, it has been shown that models can be
compared for their ability to explain the activity in a particular brain region (Wehbe
et al. 2014; Gauthier and Ivanova 2018; Anderson et al. 2018). Analogously, we want to
inspect which features are better predicted by a given embedding model. We compute
the average of the Spearman correlation between human ratings and model predictions
across words and features. Results are reported in Table 7.

Table 7
Average word and feature Spearman correlation between the human ratings in Binder et al.
(2016) and the estimated values for each embedding type.

Model Word correlation Feature correlation

PPMI.w2 0.77 0.70
PPMI.synf 0.79 0.72
PPMI.synt 0.80 0.71
GloVe 0.76 0.69
SGNS.w2 0.80 0.74
SGNS.synf 0.82 0.76
SGNS.synt 0.82 0.77
FastText 0.81 0.75
ELMo 0.81 0.76
BERT 0.82 0.77

Random 0.20 −0.01
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All DSMs achieve high correlation values, higher than 0.7 per word, vastly out-
performing the random baseline. The results across the models are similar, again with
BERT and the syntax-based SGNS models taking the top spots. Consistently with the
previous tests, syntactic information seems to be useful for predicting the property val-
ues, as syntax-based models almost always perform slightly better than their window-
based counterparts. A similar finding for the prediction of brain activation patterns has
already been descibed by Abnar et al. (2018), who also reported a strong performance
by dependency-based embeddings. It is also interesting to notice that all our models
have much higher correlation values than the best results reported by Utsumi (2018), a
difference that might be due to the choice of the training corpora (we used a concatena-
tion of Ukwac and Wikipedia, whereas Utsumi trained his models on the COCA and,
separately, on the Wikipedia corpus alone). Finally, while the PPMI embeddings used
by Utsumi drastically underperform, our PPMI vectors come much closer to the predict
ones, although the latter still retain an edge.

In the heatmap in Figure 2, it is possible to observe the average correlations per
Binder domain. It is striking that the features belonging to the Cognition, Causal, and
Social domains are the best predicted ones, together with the Gustation domain, which
however includes just one feature. On the other hand, other somatosensorial domains
are predicted with lower accuracies. As suggested by Utsumi (2018, 2020), who reported
consistent findings, this can be explained by the fact that embeddings learn word
meaning only from textual data: Psycholinguistic studies on mental lexicon theorize
that humans combine both linguistic information and first-hand experience of the world
(Vigliocco and Vinson 2007; McRae and Matsuki 2009), and domains such as Cognition
and Social are especially important in the characterization of abstract concepts, for
which textual information has been suggested to be the prevailing source (Vigliocco
et al. 2009). When it comes to the somatosensorial features of concrete concepts, instead,
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Figure 2
Average Spearman correlations per domain between the estimated and the original Binder
features for each embedding type.
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text-based models are clearly missing that kind of information on the referents, although
various aspects of experiential information are “redundantly” encoded in linguistic ex-
pressions (Riordan and Jones 2011), as proposed by the so-called Symbol Interdependency
Hypothesis (Louwerse 2008).

Finally, spatial and temporal features are particularly challenging for distributional
representations. This is compatible with the hypothesis that temporal concepts are
mainly represented in spatial terms and the acquisition of spatial attributes requires
multimodal evidence (Binder et al. 2016), which is instead lacking in our distributional
embeddings. The Emotion domain also shows good correlation values, confirming
the role of distributional information in shaping the affective content of lexical items
(Recchia and Louwerse 2015; Lenci, Lebani, and Passaro 2018).

Figure 3 provides a more analytical and variegated view of the way embeddings
predict each Binder feature, revealing interesting differences within the various do-
mains. First of all, we can observe that some somatosensorial semantic dimensions are
indeed strongly captured by embeddings, consistent with the hypothesis that several
embodied features are encoded in language (Louwerse 2008). For instance, COLOR (i.e.,
“having a characteristic or defining color”), MOTION (i.e., “showing a lot of visually
observable movement”), BIOMOTION (i.e., “showing movement like that of a living
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Figure 3
Spearman correlations between the estimated and original Binder features for each embedding
type.
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thing”), and SHAPE (i.e., “having a characteristic or defining visual shape or form”)
are among the best predicted visual features. FAST (i.e., “showing visible movement
that is fast”) is predicted much better than SLOW (i.e., “showing visible movement
that is slow”), while embeddings do not seem to discriminate between the BRIGHT
(i.e.,“visually light or bright”) and DARK (i.e., “visually dark”) components.

In the Audition domain, LOUD (i.e., “making a loud sound”), MUSIC (i.e., “making
a musical sound”), and SPEECH (i.e., “someone or something that talks”) are gener-
ally very well predicted. The Spatial domain instead shows an uneven behavior, with
LANDMARK (i.e., “having a fixed location, as on a map”), SCENE (i.e., “bringing to
mind a particular setting or physical location”), and PATH (i.e., “showing changes in
location along a particular direction or path”) presenting much higher correlation values
than the other features. The best predicted social features are HUMAN (i.e., “having
human or human-like intentions, plans, or goals”) and COMMUNICATION (i.e., “a thing
or action that people use to communicate”). In relation to spatial features, TIME (i.e.,
“an event or occurrence that occurs at a typical or predictable time”) and HUMAN, it
is interesting to point out that the DSMs with syntactic information generally produce
better predictions than their window-based equivalents (cf. in Figure 3 the values for
the synf/synt versions of PPMI/SGNS models with their w2 equivalents and with
FastText). Finally, negative sentiments and emotions are better predicted than positive
ones. This is consistent with previous reports of negative moods being more frequently
expressed in online texts (De Choudhury, Counts, and Gamon 2012).

Using the metadata in the Binder data set, we group the words per super category
and type, and compute the average correlations. A quick look at Figure 4a reveals that
mental entities are the best represented ones, while embeddings struggle the most with
physical and abstract properties. Also note that living objects and events tend to be well
represented by most embedding models. Figure 4b provides a summary of the average
correlations per word type, confirming that things are the most correlated, whereas
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Figure 4
Average Spearman correlations per word super category (a) and per word super type (b).
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weaker correlations are observed for actions. Only moderate-to-low correlations are
achieved for properties.

Finally, it is worth focusing on the behavior of contextualized embeddings. Though
BERT has a slightly higher Top-N accuracy (cf. Section 3.4), its overall word and feature
correlation is equivalent to the one by SGNS.synt (cf. Table 7). Moreover, figures 2–4
do not show any significant difference in the kinds of semantic dimensions encoded by
traditional DSMs with respect to BERT and ELMo vectors. This leads us to conjecture
that the true added value of the latter models lies in their ability to capture the meaning
variations of word tokens in context, rather than in the type of semantic information
they can distill from distributional data.

5. Using Semantic Features to Analyze Probing Tasks

Probing tasks (Ettinger, Elgohary, and Resnik 2016; Adi et al. 2017) have become one
of the most common tools to investigate the content of embeddings. A probing task
consists of a binary classifier that is fed with embeddings and is trained to classify them
with respect to a certain linguistic dimension (e.g., animacy). The classification accuracy
is taken as proof that the embeddings encode that piece of linguistic information. As we
have said in Section 1, the limit of the probing task methodology is that it only provides
indirect evidence about the way linguistic categories are represented by embeddings. In
this section, we show how the decoded Binder vectors can be used to “open the box” of
semantic probing tasks, to inspect the features that are relevant for a certain task, and to
analyze the performance of distributional embeddings.

5.1 Probing Tasks for Human-Interpretable Embeddings

We use the original word embeddings and their corresponding mapped Binder vectors
as input features to a logistic regression classifier, which has to determine if they belong
to a given semantic class. The human-interpretable nature of Binder vectors allows us
to decode and explain the performance of the original embeddings in the probing tasks.

Being able to determine the semantic class of a word is an important cognitive
and linguistic task (Murphy 2002). Research on the automatic identification of semantic
classes is central in computational linguistics (Vulić et al. 2017; Yaghoobzadeh et al.
2019). The detection of a given semantic feature of a word is potentially useful for
the automatic creation of lexicon and dictionaries, such as sensory lexicons (Tekiroglu,
Özbal, and Strapparava 2014), emotion lexicons (Buechel and Hahn 2018), and senti-
ment dictionaries (Turney and Littman 2003; Esuli and Sebastiani 2006; Baccianella,
Esuli, and Sebastiani 2010; Cardoso and Roy 2016; Sedinkina, Breitkopf, and Schütze
2019). Linguistic research also benefits from automatic methods to classify linguistic
expressions according to various semantic dimensions (Boleda 2020).

Non-contextualized embeddings were tested on the following probing tasks that
target different semantic classes and features:

Positive/Negative – Given the embedding of a word, the classifier has to
decide whether the word has a positive or a negative polarity. The data set
consists of 250 positive words and 250 negative words from the ANEW
sentiment lexicon (Nielsen 2011; Bradley and Lang 2017), which is
composed of a total of 3,188 words with human valence ratings on a scale
between 1 (very unpleasant) and 8 (very pleasant). The selected positive
items have valency ratings higher than 7, and the negative items have
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valency ratings lower than 3. The data set was randomly split in 400 items
for training and 100 words for test.

Concrete/Abstract – The task is to decide whether a noun is concrete or
abstract. The data set consists of 254 nouns (91 abstract, 163 concrete)
selected from SimLex-999 (Hill, Reichart, and Korhonen 2015). The data set
was randomly split in 203 items for training and 51 words for test. For this
task, concrete nouns are assumed as the positive class.

Animate/Inanimate – The task is to decide whether a noun is animate or
inanimate. The data set includes 810 nouns (672 animate, 138 inanimate)
corresponding to the targets in the Direct object animacy task described
below, randomly split in 658 for training and the remaining 152 for test.
For this task, animate nouns are assumed as the positive class.

VerbNet – The task is based on verb semantic classes included in VerbNet
(Kipper et al. 2008; Palmer, Bonial, and Hwang 2017). For each VerbNet
class, we generated a set of negative examples by randomly extracting an
equal number of verbs that do not belong to the semantic class (i.e., for a
semantic class with n verbs, we extract n verbs from the other classes to
build the negative examples). Each class was then randomly split in a
training and in a test set, using an 80:20 ratio, and we selected the 23
classes that contained at least 20 test verbs.7 The task consists of predicting
whether a target verb is a class instance or not.

As the key feature of contextualized DSMs is to generate embeddings of words in
context, BERT and ELMo were tested on two semantic tasks probing a target word token
in an input sentence:

Direct object animacy – The task is to decide whether the direct object
noun of a sentence is animate or inanimate, and is the contextualized
equivalent of the Animate/Inanimate task above. The data set includes
647 training subject - verb - object sentences with animate and inanimate
direct objects, and 163 test sentences.8

Causative/Inchoative alternation – The task is to decide whether the
verb in a sentence undergoes the causative/inchoative alternation or not
(Levin 1993). Alternating verbs like break can occur both in agent-patient
transitive sentences (The man broke the vase ) and in intransitive sentences in
which the patient noun occurs as subject (The vase broke). Non-alternating
verbs like buy can instead only occur in transitive sentences (The man
bought the book vs. *The book bought). This task has already been used to
probe vectors by Warstadt, Singh, and Bowman (2019) and Klafka and
Ettinger (2020). We used the data set of the latter work, consisting of 4,000
training sentences and 1,000 test sentences, equally split between
alternating and non-alternating target verbs. For this task, alternating
verbs are assumed as the positive class.

7 The classes pour-9.5+spray-9.7, remove-10.1+clear-10.3+mine-10.9, and cut-21.1+carve-21.2 were
obtained by merging some VerbNet subclasses.

8 The data set was developed and kindly provided by Evelina Fedorenko, Anna Ivanova, and Carina Kauf.
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BERT and ELMo were queried with the sentences in the data set to obtain the contex-
tualized embedding of the target word (the direct object noun for the animacy task, the
verb for the causative/inchoative one), which was then fed into the classifiers.

The embeddings were not fine-tuned in the probing tasks. In fact, the overall
purpose of the analysis is not to optimize the performance of the classifiers, but to use
them to investigate the information that the original embeddings encode.

5.2 Interpreting Probing Tasks with Binder Features

Our analysis consists of three main steps: (i) for each semantic task, we first train
a classifier using the original word embeddings and we measure their accuracy, as
customary in the probing task literature; (ii) then, we train the same classifiers using
the corresponding mapped Binder vectors in the training sets and we inspect the most
important semantic features of each probed class; finally, (iii) we measure the overlap
between the classifier top features and the top features of the words in the test sets, and
we use this information to interpret the performance of the models in the various tasks.

5.2.1 Measuring Embedding Accuracy in Probing Tasks. First of all, we evaluate the per-
formance of the embeddings in each task via the traditional accuracy metric, in order
to check their ability to predict the semantic class of the word. A summary of the
performance of the traditional DSMs can be seen in Table 8, while the scores for the
contextualized models are shown in Table 9. Because the classes are unbalanced in
most tasks, the tables also report the results for a majority baseline. At a first glance, in
Table 8 we can notice a performance gap between count models based on PPMI and SVD
and the other word embedding models, with the former being largely outperformed
by the latter on all probing data sets (the largest observed gap being around 40%)
and struggling even to beat the majority baseline in many of the VerbNet-derived test
sets. All neural embeddings achieve a 100% accuracy in the classification for the Con-
crete/Abstract task and one of the models, FastText, achieves the same score also on the
Positive/Negative task. The VerbNet tasks, possibly because of the fuzzy boundaries
of the verb semantic classes, proved to be the most challenging ones and in some cases
the models struggle to beat a chance classifier. The best performing embeddings are, in
general, the FastText ones and the vectors of the SGNS family.

As for the contextualized probing tasks, BERT outperforms ELMo, and the Causa-
tive/Inchoative alternation task is more difficult, probably because alternating verbs are
semantically more heterogeneous. However, even in this case the classification accuracy
is very high, when compared to the majority baseline.

5.2.2 Examining the Semantic Features of the Probed Classes. Because probing tasks are
typically used as “black box” tools, the performance obtained by a certain DSM is
usually regarded to be enough to draw conclusions about the information encoded by
its vectors. Here, the mere embedding accuracy we have reported in Tables 8 and 9 is
not the primary aim of our analyses. In fact, we want to make the semantic information
learned by the classifiers explicit and human-interpretable, in order to characterize the
content of the probed semantic dimensions. To this purpose:

• for each DSM, we learn a mapping between its embeddings and the
65-dimensional Binder vectors, using the whole set of 534 Binder words as
training data;
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Table 8
Classification accuracy on the probing tasks for the 8 non-contextualized DSMs.

Task PPMI SGNS GloVe FastText Majority

w2 synf synt w2 synf synt

Positive/Negative 0.52 0.65 0.65 0.83 0.85 0.79 0.79 1.00 0.52
Concrete/Abstract 0.69 0.70 0.73 1.00 1.00 1.00 1.00 1.00 0.59
Animate/Inanimate 0.74 0.78 0.86 0.94 0.96 0.97 0.96 0.98 0.83
VerbNet

pour-9.5+spray-9.7 0.61 0.52 0.48 0.70 0.78 0.78 0.82 0.74 0.52
fill-9.8 0.50 0.50 0.52 0.74 0.72 0.74 0.70 0.74 0.50
butter-9.9 0.47 0.55 0.50 0.87 0.84 0.86 0.89 0.89 0.63
pocket-9.10 0.58 0.50 0.50 0.88 0.88 0.92 0.75 0.83 0.50
remove-10.1+clear-10.3 0.44 0.56 0.44 0.56 0.68 0.76 0.68 0.64 0.52

+mine-10.9
steal-10.5 0.48 0.48 0.41 0.83 0.83 0.79 0.86 0.90 0.52
debone-10.8 0.59 0.63 0.54 0.86 0.82 0.82 0.68 0.90 0.50
cut-21.1+carve-21.2 0.65 0.65 0.57 0.80 0.80 0.96 0.57 0.73 0.50
amalgamate-22.2 0.56 0.52 0.52 0.74 0.70 0.78 0.74 0.83 0.52
tape-22.4 0.65 0.62 0.73 0.98 0.97 0.94 0.98 1.00 0.59
characterize-29.2 0.57 0.57 0.57 0.81 0.81 0.86 0.76 0.81 0.52
amuse-31.1 0.55 0.56 0.51 0.69 0.80 0.75 0.67 0.72 0.51
admire-31.2 0.44 0.52 0.56 0.87 0.91 0.87 0.78 0.96 0.52
marvel-31.3 0.59 0.62 0.65 0.72 0.69 0.83 0.69 0.76 0.58
judgement-33.1 0.71 0.66 0.66 0.77 0.80 0.80 0.77 0.80 0.54
manner_of_speaking-37.3 0.71 0.79 0.48 0.79 0.86 0.90 0.90 0.86 0.50
say-37.7 0.62 0.60 0.50 0.55 0.50 0.64 0.50 0.55 0.55
animal_sounds-38 0.67 0.80 0.67 0.87 0.90 0.83 0.83 0.93 0.56
sound_emission-43.2 0.52 0.48 0.61 0.70 0.78 0.74 0.65 0.70 0.52
cooking-45.3 0.55 0.60 0.45 0.77 0.86 0.90 0.73 0.86 0.52
other_cos-45.4 0.54 0.50 0.57 0.70 0.73 0.74 0.76 0.68 0.50
contiguous_location-47.8 0.57 0.57 0.52 0.86 0.76 0.81 0.61 0.81 0.52
run-51.3.2 0.52 0.48 0.56 0.80 0.84 0.80 0.75 0.80 0.56

Table 9
Classification accuracy on the contextualized probing tasks.

Task BERT ELMo Majority

Direct object animacy 0.99 0.96 0.83
Causative/Inchoative alternation 0.91 0.86 0.51

• we use the decoding mapping to generate the Binder vectors of all the
words contained in the probing data sets;

• for each probing task, we train a classifier t with the decoded Binder
vectors;

• we extract the weights assigned by the classifier to the Binder features and
sort them in descending order. Given the task t, TopTaskFeats(t, n) is the set
of the top n features learned by the classifier for t using the Binder vectors.
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Table 10
Top 5 features ordered from left to right for a selection of the non-contextualized probing tasks
with the Binder vectors mapped from the FastText embeddings, and for the contextualized
probing tasks with the Binder vectors mapped from the BERT token embeddings.

Task Top Features

Positive/Negative PLEASANT, HAPPY, BENEFIT, NEEDS, SELF
Concrete/Abstract SHAPE, VISION, WEIGHT, TEXTURE, TOUCH
Animate/Inanimate FACE, BODY, HUMAN, SPEECH, BIOMOTION

fill-9.8 COLOR, VISION, BRIGHT, WEIGHT, PATTERN
cut-21.1+carve-21.2 PRACTICE, TOUCH, UPPER LIMB, VISION, SHAPE
admire-31.2 COGNITION, SOCIAL, AROUSAL, HAPPY, PLEASANT
judgement-33.1 COMMUNICATION, SOCIAL, HEAD, COGNITION, AROUSAL
say-37.7 COMMUNICATION, COGNITION, BENEFIT, SOCIAL, SELF
sound_emission-43.2 AUDITION, LOUD, SOUND, HIGH, MUSIC
cooking-45.3 TASTE, TEMPERATURE, SMELL, HEAD, PRACTICE
contiguous_location-47.8 LANDMARK, VISION, COLOR, LARGE, SCENE
run-51.3.2 LOWER LIMB, MOTION, PATH, FAST, BIOMOTION

Direct object animacy FACE, UPPERLIMB, SCENE, COMPLEXITY, BIOMOTION
Causative/Inchoative alternation SLOW, COMPLEXITY, TEMPERATURE, UPPERLIMB, SHORT

The set TopTaskFeats(t, n) includes the most important semantic features for the clas-
sification task t. Table 10 reports the top 5 features for some of our probing tasks using
the Binder vectors decoded from FastText, which is one of the best performing non-
contextualized models on average, and from BERT. Notice that the top features provide
a nice characterization of the features of the semantic classes targeted across tasks. FACE,
HUMAN, and SPEECH appear among the top features of animate nouns. For sentiment
classification, the most relevant features are positive emotions (PLEASANT, HAPPY,
BENEFIT) or belong to the Social domain (SELF). On the other hand, physical properties
(SHAPE, VISION, WEIGHT) are the most important ones for the Concrete/Abstract
distinction, in which concrete nouns represent the positive class. Similar considera-
tions apply for the VerbNet tasks. The class run-51.3.2 contains motion verbs and its
most relevant features refer to movement (MOTION, LOWER LIMB, FAST) and direction
(PATH). The classes judgment-33.1 and say-37.7 are characterized by features related to
communication and cognition. The class sound_emission-43.2 is instead associated with
features belonging to the Audition domain. Perhaps the less perspicuous case is repre-
sented by the features associated with the alternating class in the Causative/Inchoative
task. However, it is worth noticing the salience of the TEMPERATURE feature, as various
alternating verbs express this dimension (warm, heat, cool, burn, etc.). This shows how
a simple featural decoding of the embeddings can be used to investigate the internal
structure of the semantic classes that are targeted by probing tasks.

5.2.3 Explaining the Performance of Embeddings in Probing Tasks. The third phase of our
analysis combines the results of the previous two steps: The Binder feature vectors
learned in Section 5.2.2 are used to explain the accuracy of the embeddings in the
probing tasks in Section 5.2.1.

For each task t and word w in the test set of t, we rank the features of the de-
coded Binder vector fw in descending order according to their values. We indicate
with TopWordFeats(fw, n) the set of the top n features in the Binder vector fw. Then we
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measure with Average Precision (AP) the extent to which the top Binder features of t
appear among the top decoded features of the test word w. Given the ranked feature
sets TopTaskFeats(t, n) and TopWordFeats(fw, n), we compute AP(t, w) as follows:

AP(t, w) =
∑n

1 Pt
w(r)

n (2)

Pt
w(r) =

|TopTaskFeats(t, n) ∩ TopWordFeats(fw, n)|r1
r (3)

where the numerator of Equation (3) is the number of task features that are also in
the word feature vector from rank 1 to rank r. AP is a measure derived from infor-
mation retrieval combining precision, relevance ranking, and overall recall (Manning,
Raghavan, and Schütze 2008; Kotlerman et al. 2010). In our case, the ranked task
features are like documents to be retrieved and the word features are like docu-
ments returned by a query. AP takes into account two main factors: (i) the extent
of the intersection among the n most important semantic features for a word and
a task, and (ii) their mutual ranking. The higher the AP(t, w) score, the more the
top features of w that are also included in the top features for the task t. For ex-
ample, suppose that TopTaskFeats(Positive/Negative, 3) = {PLEASANT, HAPPY, BENEFIT},
AP(Positive/Negative, w) = 1 if and only if TopWordFeats(fw, 3) contains the same seman-
tic features at the top of the rank.

For each model and each task, we analyze the AP of the output of the classifiers
trained on the original word embeddings, whose accuracy is reported in Tables 8 and 9.
We compute the AP of the words correctly classified in the positive class (true positive,
TP) and in the negative class (true negative, TN). Moreover, we compute the AP of the
words wrongly classified in the positive class (false positive, FP) and in the negative class
(false negative, FN). The AP distribution of each word group across the probing tasks
is reported in Figure 5 for the non-contextualized DSMs and in Figure 6 for BERT and
ELMo. The Kruskal-Wallis rank sum non-parametric test shows that in all models the
four word groups significantly differ for their AP values (df = 3, p-value < 0.001).

Post-hoc pairwise Mann–Whitney U-tests (with Bonferroni correction for multiple
comparisons) confirm that across tasks TPs have a significantly higher AP than FPs
(p < 0.001). Therefore, the words correctly classified in the positive class share a large
number of the top ranked features for that class (e.g., the words whose embeddings
are correctly classified as animate have a large number of the top semantic features
that characterize animacy). Conversely, the words correctly classified in the negative
class have very few, if any, of the top task features. It is interesting to observe that the
DSMs for which the difference between the median AP (represented by the thick line in
each boxplot) of TPs and the median AP of TNs is higher (i.e., the neural embeddings
for the non-contextualized models and BERT) are the models that in general show a
higher classification accuracy in the probing tasks and better encode the Binder features
(cf. Section 4). This suggests that a model accuracy in probing tasks is strongly related
to the way its embeddings encode the most important semantic features for a certain
classification task (cf. below).

In Figures 5 and 6, the AP of the wrongly classified words (i.e., FPs and FNs) tend
to occupy an intermediate position between the AP of TPs and TNs. In fact, we can
conjecture that a word in the positive class (e.g., an animate noun) is wrongly classified
(e.g., labeled as inanimate), because it lacks many of the top features characterizing
the target class (e.g., animacy). Post-hoc pairwise Mann–Whitney U-tests support this
hypothesis, because the AP of the FNs is significantly different from the one of TPs
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Figure 5
Average Precision (AP) boxplots of the Binder vectors of the test words with respect to the top-20
Binder features of each probing task. True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) refer to the output of the classifiers trained on the original embeddings
of the non-contextualized DSMs.

(PPMI.synt: p < 0.05; GloVe: p < 0.05; SGNS.w2: p < 0.001; SGNS.synf: p < 0.001;
SGNS.synt: p < 0.001; FastText: p < 0.001; ELMo: 0.001), except for PPMI.w2 (p = 0.23),
PPMI.synf (p = 1), and BERT (p = 0.39). Conversely, the AP of FPs is significantly higher
than the one of TNs (SGNS.w2: p < 0.001; SGNS.synf: p < 0.001; SGNS.synt: p < 0.001;
FastText: p < 0.001), except for the largely underperforming PPMI models (PPMI.w2:
p = 1; PPMI.synf: p = 0.39; PPMI.synf: p = 0.38), ELMo (p = 1), and marginally for GloVe
(p = 0.08) and BERT (p = 0.08). This suggests that the semantic features of FPs tend to
overlap with the top features of the positive class more than TNs.

The analysis of the semantic features of missclassified words can also provide inter-
esting clues to explain why DSMs make errors in probing tasks. For instance, FastText
does not classify keen as a sound emission verb (i.e., it is an FN for the VerbNet class
38). If we inspect its decoded vector we find COGNITION, SOCIAL, SELF, BENEFIT, and
PLEASANT among its top features, likely referring to the abstract adjective keen, which
is surely much more frequent in the PoS-ambiguous training data than the verb keen (to
emit wailing sounds). On the other hand, PPMI.w2 wrongly classifies judge as a manner
of speaking verb (i.e., it is an FP of the VerbNet class 37.3). This mistake can be explained
by looking at its decoded vector whose top feature is SPEECH, which is probably due to
the quite common usage of judge as a communication verb.
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Figure 6
Average Precision (AP) boxplots of the Binder vectors of the test words with respect to the top-20
Binder features of each probing task. True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) refer to the output of the classifiers trained on the original BERT and
ELMo embeddings.

As illustrated in Tables 8 and 9, the variance of model accuracy across tasks is
extremely high. For instance, the accuracy of FastText ranges from 1 in the Positive/
Negative and Concrete/Abstract tasks, to 0.55 for the VerbNet say-37.7 class. In the
standard use of probing tasks, the classifier accuracy is taken to be enough to draw con-
clusions about the way a certain piece of information is encoded by embeddings. Here,
we go beyond this “black box” analysis and provide a more insightful interpretation
of the different behavior of embeddings in semantic probing tasks. We argue that such
explanation can come from the decoded Binder features, and that a model performance
in a given task t depends on the way the words to be classified encode the top-n ranked
features for t (i.e., TopTaskFeats(t, n)). For instance, consider the boxplots in Figure 7,
which show the AP of the Binder vectors decoded from the FastText embeddings for
the words belonging to the positive (1) and negative (0) classes in the test sets of the
Positive/Negative and VerbNet say-37 probing tasks. FastText achieves a very high
accuracy in the former task, and the AP distributions of the 1 and 0 words are clearly
distinct, indicating that these two sets have different semantic features, and that the
features of the 0 words have a very low overlap with the top task features. Conversely,
the AP distributions of the 1 and 0 words for the say-37.7 task overlap to a great extent,
suggesting that the two groups are not well separated in the semantic feature space. Our
hypothesis is that the DSM accuracy in a probing task tends to be strongly correlated
with the degree of separation between the semantic features decoded from the positive
and negative items in the target class.

To verify this hypothesis, we take the sets of positive (W1) and negative (W0) test
words of each task t and we compute the following measure:

APdiff (t) = AP(t, W1)− AP(t, W0) (4)
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Figure 7
The boxplots show the Average Precision (AP) of the Binder vectors decoded from FastText
embeddings for the words belonging to the positive (1) and negative (0) classes in the test sets of
the Positive/Negative and VerbNet say-37 probing tasks.

where AP(t, W1) and AP(t, W0) are respectively the mean AP for W1 and W0. Therefore,
APdiff (t) estimates the separability of the positive and negative words in the semantic
feature space relevant for the task t. We expect that the higher the APdiff (t) of a model,
the higher its performance in t. Table 11 shows that this prediction is borne out, at least
for the best performing non-contextualized DSMs. The Spearman correlation between
the model accuracy in the probing tasks and APdiff (t) is fairly high for all models, except
for the PPMI ones. It is again suggestive that these are not only the worst-performing
models in the probing tasks, but also the embeddings with a less satisfactory encoding
of the Binder features. Table 12 illustrates that the correlation between APdiff (t) and
task accuracy holds true for contextualized embeddings as well. For both BERT and
ELMo, the APDiff and accuracy are greater for the Direct Object Animacy task than for
the Causative/Inchoative alternation.

Table 11
Spearman correlation (ρ) between APdiff (t) and the classification accuracy for the
non-contextualized embeddings models.

Model ρ p-value

PPMI.w2 0.29 0.15
PPMI.synf 0.43 0.03∗
PPMI.synt 0.23 0.26
GloVe 0.65 < 0.001∗
SGNS.w2 0.68 < 0.001∗
SGNS.synf 0.78 < 0.001∗
SGNS.synt 0.70 < 0.001∗
FastText 0.71 < 0.001∗
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Table 12
Classification accuracy and APdiff (t) for the contextualized models.

Task Model Accuracy APdiff

Direct object animacy BERT 0.99 0.13
Direct object animacy ELMo 0.96 0.04
Causative/Inchoative alternation BERT 0.91 0.06
Causative/Inchoative alternation ELMo 0.86 0.01

6. General Discussion and Conclusions

Word embeddings have become the most common semantic representation in NLP
and AI. Despite their success in boosting the performance of applications, the way
embeddings capture meaning still defies our full understanding. The challenge mainly
depends on the apparent impossibility to interpret the specific semantic content of vec-
tor dimensions. Indeed, this is the essence of distributed representations like embed-
dings, in which information is spread among patterns of vector components (Hinton,
McClelland, and Rumelhart 1986). Consequently, the content of embeddings is usually
interpreted indirectly, by analyzing either the space of nearest neighbors, or their per-
formance in tasks designed to “probe” a particular semantic aspect.

In this article, we have taken a different route, adopting a methodology inspired
by the literature on neural decoding in cognitive neuroscience. The brain, too, repre-
sents semantic information in distributed patterns (Huth et al. 2016). We argue that
the problem of interpreting the content of embeddings is similar to interpreting the
semantic content of brain activity. Neurosemantic decoding aims at identifying the
information encoded in the brain by learning a mapping from neural activations to
semantic features. Analogously, we decode the content of word embeddings by map-
ping them onto interpretable semantic feature vectors. Featural representations are well-
known in linguistics and cognitive science (Vigliocco and Vinson 2007), and provide a
human-interpretable analysis of the components of lexical meaning. In particular, we
rely on the ratings collected by Binder et al. (2016), whose feature set is motivated on
a neurobiological basis. We have carried out the mapping of continuous embeddings
onto discrete semantic features with a twofold aim: (i) identifying which semantic
features are best encoded in word embeddings; and (ii) using the proposed featural
representations to explain the performance of embeddings in semantic probing tasks.

Concerning the first goal, we have tested the embedding decoding method on
several types of static and contextualized DSMs. All models achieve high correlations
across words and features, with dependency-based DSMs having a slight edge over
the others, consistently with the findings of Abnar et al. (2018). The features from
abstract domains such as Cognition, Social, and Causal seem to be the ones that are
better predicted by the models, which are purely relying on text-based information,
while the prediction of spatial and temporal features is obviously more challenging. A
further analysis reveals the salience of visual, motion, and audition features, supporting
the hypothesis that language redundantly encodes several aspects of sensory-motor
information (Louwerse 2008; Riordan and Jones 2011). In terms of word categories, the
vectors are very good in predicting entities, whereas they struggle with physical and
abstract properties. Moreover, it is interesting to observe that the new generation of
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contextualized DSMs does not significantly differ from traditional ones for the type of
semantic information they encode.

As for the second goal, we have applied our decoded feature representations to the
widely popular probing task methodology, to gain insight on what pieces of semantic
information are actually captured by probing classifiers. For our experiments, we tested
the original embeddings on probing tasks designed to target affective valence, animacy,
concreteness, and several verb classes derived from VerbNet for non-contextualized
DSMs, and direct object animacy and causative/inchoative verb alternations for contex-
tualized embeddings. If a binary classifier manages to identify whether a word belongs
to a semantic class on the basis of its embedding, this is typically taken as indirect
evidence that the embedding encodes the relevant piece of semantic information. In our
work, instead of regarding probing tasks just as “black box” experiments, we use the
decoded feature vectors to inspect the semantic dimensions learned by the classifiers.
Moreover, we have set up a battery of tests to show how the decoded features can
explain the embedding performances in the probing tasks. We have measured with AP
the overlap between the top task features and the most important features of the test
words belonging to the positive and negative classes. Our analyses reveal that:

• the words correctly classified in the positive class (i.e., TPs) share a large
number of the top ranked features for that class, and, symmetrically,
the words correctly classified in the negative class (i.e., TNs) have a
significantly lower number of the top task features;

• words wrongly classified in the negative class (i.e., FNs) lack many of the
top features characterizing the target class. Conversely, the features of
words wrongly classified in the positive class (i.e., FPs) tend to overlap
with the top task features more than TNs;

• the accuracy of a DSM in a probing task strongly correlates with the
degree of separation between the semantic features decoded from its
embeddings of the words in the positive and negative classes.

These results show that semantic feature decoding provides a simple and useful tool
to explain the performance of word embeddings and to enhance the interpretability of
probing tasks.

The methodology we have proposed paves the way for other types of analyses
and applications. There are at least two prospective research extensions that we plan
to pursue, respectively concerning selectional preferences and word sense disambigua-
tion. Many recent approaches to the modeling of selectional preferences have given
up on the idea of characterizing the semantic constraints of predicates in terms of dis-
crete semantic types, focusing instead on measuring a continuous degree of predicate-
argument compatibility, known as thematic fit (McRae and Matsuki 2009). DSMs have
been extensively and successfully applied to address this issue, typically measuring
the cosine between a target noun vector and the vectors of the most prototypically
predicate arguments (Baroni and Lenci 2010; Erk, Padó, and Padó 2010; Lenci 2011;
Sayeed, Greenberg, and Demberg 2016; Santus et al. 2017; Chersoni et al. 2019; Zhang,
Ding, and Song 2019; Zhang et al. 2019; Chersoni et al. 2020; Pedinotti et al. 2021). This
approach can be profitably paired with our decoding methodology to identify the most
salient features associated with a predicate argument. For instance, we can expect that
listen selects for direct objects in which Audition features are particularly salient. This
way, distributional methods will be able not only to measure the gradient preference of
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a predicate for a certain argument, but also to highlight the features that explain this
preference, contributing to characterizing the semantic constraints of predicates.

As for word-sense disambiguation, models like ELMo and BERT provide con-
textualized embeddings that allow us to investigate word sense variation in context.
Using contextualized vectors, it might be possible to investigate how meaning changes
in contexts by inspecting the feature salience variation of different word tokens. For
example, we expect features like SOUND and MUSIC to be more salient in the vector of
play in the sentence The violinist played the sonata, rather than in the sentence The team
played soccer. This could be extremely useful also in tasks such as metaphor and token-
level idiom detection, where it is typically required to disambiguate expressions that
might have a literal or a non-literal sense depending on the context of usage (King and
Cook 2018; Rohanian et al. 2020).

Word embeddings and featural symbolic representations are often regarded as
antithetic and possibly incompatible ways of representing semantic information, which
pertain to very different approaches to the study of language and cognition. In this
paper, we have shown that the distance between these two types of meaning represen-
tation is shorter than what appears prima facie. New bridges between symbolic and
distributed lexical representations can be laid, and used to exploit their complementary
strengths: The gradience and robustness of the former and the human-interpretability of the
latter. An important contribution may come from collecting more extensive data about
feature salience. The Binder data set is an important starting point, but human ratings
about other types of semantic features and words might be easily collected with crowd-
sourcing methods.

In this work, we have mainly used feature-based representations as a heuristic
tool to interpret embeddings. An interesting research question is whether decoded
features from embeddings could actually have other applications too. For instance,
semantic features provide a more abstract type of semantic representation that might be
complementary to the fine-grained information captured by distributional embeddings.
This suggests exploring new ways to integrate symbolic and vector models of meaning.

Acknowledgments
We would like to thank the anonymous
reviewers for their insightful feedback, and
Yujie Qian for his support in setting up the
experiments.

References
Abnar, Samira, Rasyan Ahmed, Max

Mijnheer, and Willem Zuidema. 2018.
Experiential, distributional and
dependency-based word embeddings
have complementary roles in decoding
brain activity. In Proceedings of the 8th
Workshop on Cognitive Modeling and
Computational Linguistics (CMCL 2018),
pages 57–66, Salt Lake City, UT.

Adi, Yossi, Einat Kermany, Yonatan Belinkov,
Ofer Lavi, and Yoav Goldberg. 2017.
Fine-grained analysis of sentence
embeddings using auxiliary prediction
tasks. In Proceedings of ICLR, pages 1–13,
Toulon.

Anderson, Andrew James, Jeffrey R. Binder,
Leonardo Fernandino, Colin J. Humphries,
Lisa L. Conant, Mario Aguilar, Xixi Wang,
Donias Doko, and Rajeev D. S. Raizada.
2016. Predicting neural activity patterns
associated with sentences using a
neurobiologically motivated model of
semantic representation. Cerebral Cortex,
27(9):4379–4395. https://doi.org
/10.1093/cercor/bhw240

Anderson, Andrew James, Edmund C. Lalor,
Feng Lin, Jeffrey R. Binder, Leonardo
Fernandino, Colin J. Humphries, Lisa L.
Conant, Rajeev D. S. Raizada, Scott
Grimm, and Xixi Wang. 2018. Multiple
regions of a cortical network commonly
encode the meaning of words in multiple
grammatical positions of read sentences.
Cerebral Cortex, 29(6):2396–2411. https://
doi.org/10.1093/cercor/bhy110

Athanasiou, Nikos, Elias Iosif, and
Alexandros Potamianos. 2018. Neural

691

https://doi.org/10.1093/cercor/bhw240
https://doi.org/10.1093/cercor/bhw240
https://doi.org/10.1093/cercor/bhy110
https://doi.org/10.1093/cercor/bhy110


Computational Linguistics Volume 47, Number 3

activation semantic models:
Computational lexical semantic models
of localized neural activations. In
Proceedings of COLING, pages 2867–2878,
Santa Fe, NM.

Baccianella, Stefano, Andrea Esuli, and
Fabrizio Sebastiani. 2010. Sentiwordnet
3.0: An enhanced lexical resource for
sentiment analysis and opinion mining.
In Proceedings of LREC, 2010,
pages 2200–2204, Valletta.

Bakarov, Amir. 2018. Can eye movement data
be used as ground truth for word
embeddings evaluation? In Proceedings of
the LREC Workshop on Linguistic and
Neurocognitive Resources, Miyazaki.

Baroni, Marco, Silvia Bernardini, Adriano
Ferraresi, and Eros Zanchetta. 2009. The
WaCky Wide Web: A collection of very
large linguistically processed web-crawled
corpora. Language Resources and Evaluation,
43(3):209–226. https://doi.org/10
.1007/s10579-009-9081-4

Baroni, Marco, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting
vs. context-predicting semantic vectors. In
Proceedings of ACL, pages 238–247,
Baltimore, MD.

Baroni, Marco and Alessandro Lenci. 2010.
Distributional memory: A general
framework for corpus-based semantics.
Computational Linguistics, 36(4):673–721.
https://doi.org/10.1162/coli_a_00016

Beinborn, Lisa, Samira Abnar, and Rochelle
Choenni. 2019. Robust evaluation of
language-brain encoding experiments.
arXiv preprint arXiv:1904.02547.

Binder, Jeffrey R., Lisa L. Conant, Colin J.
Humphries, Leonardo Fernandino,
Stephen B. Simons, Mario Aguilar, and
Rutvik H. Desai. 2016. Toward a
brain-based componential semantic
representation. Cognitive Neuropsychology,
33(3-4):130–174.

Bojanowski, Piotr, Edouard Grave, Armand
Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword
information. Transactions of the ACL,
5:135–146. https://doi.org/10
.1162/tacl_a_00051

Boleda, Gemma. 2020. Distributional
semantics and linguistic theory. Annual
Review of Linguistics, 6:213–234. https://
doi.org/10.1146/annurev-linguistics
-011619-030303

Boleda, Gemma and Katrin Erk. 2015.
Distributional semantic features as
semantic primitives - or not. In Proceedings

of Knowledge Representation and Reasoning:
Integrating Symbolic and Neural
Approaches: Papers from the 2015
AAAI Spring Symposium, pages 2–5,
Stanford, CA.

Bommasani, Rishi, Kelly Davis, and Claire
Cardie. 2020. Interpreting pretrained
contextualized representations via
reductions to static embeddings. In
Proceedings of ACL, pages 4758–4781,
online.

Bradley, Margaret M. and Peter J. Lang. 2017.
Affective Norms for English Words
(ANEW). In Technical Report C-3. UF Center
for the Study of Emotion and Attention,
Gainesville, FL.

Buechel, Sven and Udo Hahn. 2018. Emotion
representation mapping for automatic
lexicon construction (mostly) performs on
human level. In Proceedings of COLING,
pages 2892–2904, Santa Fe, NM.

Bulat, Luana, Stephen Clark, and Ekaterina
Shutova. 2017a. Modelling metaphor with
attribute-based semantics. In Proceedings of
EACL, pages 523–528, Valencia.

Bulat, Luana, Stephen Clark, and Ekaterina
Shutova. 2017b. Speaking, seeing,
understanding: Correlating semantic
models with conceptual representation
in the brain. In Proceedings of EMNLP,
pages 1081–1091, Copenhagen.

Bulat, Luana, Douwe Kiela, and
Stephen Christopher Clark. 2016. Vision
and feature norms: Improving automatic
feature norm learning through
cross-modal maps. In Proceedings of
NAACL-HLT, pages 579–588,
San Diego, CA.

Bullinaria, John A. and Joseph P. Levy. 2012.
Extracting semantic representations from
word co-occurrence statistics: Stop-lists,
stemming, and SVD. Behavior Research
Methods, 44(3):890–907. https://doi
.org/10.3758/s13428-011-0183-8

Cardoso, Pedro Dias and Anindya Roy. 2016.
Sentiment lexicon creation using
continuous latent space and neural
networks. In Proceedings of the NAACL
Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media
Analysis, pages 37–42, San Diego, CA.

Carota, Francesca, Nikolaus Kriegeskorte,
Hamed Nili, and Friedemann
Pulvermüller. 2017. Representational
similarity mapping of distributional
semantics in left inferior frontal, middle
temporal, and motor cortex. Cerebral
Cortex, 27(1):294–309. https://doi
.org/10.1093/cercor/bhw379

692

https://doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.1162/coli_a_00016
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.3758/s13428-011-0183-8
https://doi.org/10.3758/s13428-011-0183-8
https://doi.org/10.1093/cercor/bhw379
https://doi.org/10.1093/cercor/bhw379


Chersoni et al. Decoding Word Embeddings

Chang, Kai min Kevin, Tom M. Mitchell, and
Marcel Adam Just. 2011. Quantitative
modeling of the neural representation of
objects: How semantic feature norms can
account for fMRI activation. NeuroImage,
56(2):716–727. https://doi.org/10.1016
/j.neuroimage.2010.04.271

Chelba, Ciprian, Tomas Mikolov, Mike
Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. 2013. One
billion word benchmark for measuring
progress in statistical language modeling.
arXiv preprint arXiv:1312.3005.

Chersoni, Emmanuele, Ludovica Pannitto,
Enrico Santus, Alessandro Lenci, and
Chu-Ren Huang. 2020. Are word
embeddings really a bad fit for the
estimation of thematic fit? In Proceedings of
LREC, pages 5708–5713, Marseille.

Chersoni, Emmanuele, Enrico Santus,
Ludovica Pannitto, Alessandro Lenci,
Philippe Blache, and Chu-Ren Huang.
2019. A structured distributional model of
sentence meaning and processing. Natural
Language Engineering, 25(4):483–502.
https://doi.org/10.1017
/S1351324919000214

Chronis, Gabriella and Katrin Erk. 2020.
When is a bishop not like a rook? When
it’s like a rabbi! Multi-prototype BERT
embeddings for estimating semantic
relationships. In Proceedings of CoNLL 2020,
pages 227–244, online.

Conneau, Alexis, German Kruszewski,
Guillaume Lample, Loïc Barrault, and
Marco Baroni. 2018. What you can cram
into a single $&!#* vector: Probing
sentence embeddings for linguistic
properties. In Proceedings of ACL,
pages 2126–2136, Melbourne.

De Choudhury, Munmum, Scott Counts, and
Michael Gamon. 2012. Not all moods are
created equal! Exploring human emotional
states in social media. In Proceedings of
ICWSM, pages 1–8, Dublin.

Derby, Steven, Paul Miller, and Barry
Devereux. 2019. Feature2Vec:
Distributional semantic modelling of
human property knowledge. In Proceedings
of EMNLP, pages 5853–5859, Hong Kong.

Devereux, Barry, Colin Kelly, and Anna
Korhonen. 2010. Using fMRI activation to
conceptual stimuli to evaluate methods for
extracting conceptual representations from
corpora. In Proceedings of the NAACL
Workshop on Computational Neurolinguistics,
pages 70–78, Los Angeles, CA.

Devereux, Barry J., Lorraine K. Tyler, Jeroen
Geertzen, and Billi Randall. 2014. The

Centre for Speech, Language and the Brain
(CSLB) concept property norms. Behavior
Research Methods, 46(4):1119–1127.
https://doi.org/10.3758/s13428-013
-0420-4

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of NAACL-HLT 2019,
pages 4171–4186, Minneapolis, MN.

Djokic, Vesna, Jean Maillard, Luana Bulat,
and Ekaterina Shutova. 2019. Modeling
affirmative and negated action processing
in the brain with lexical and compositional
semantic models. In Proceedings of ACL,
pages 5155–5165, Florence.

Erk, Katrin, Sebastian Padó, and Ulrike Padó.
2010. A flexible, corpus-driven model of
regular and inverse selectional preferences.
Computational Linguistics, 36(4):723–763.
https://doi.org/10.1162/coli_a
_00017

Esuli, Andrea and Fabrizio Sebastiani. 2006.
Sentiwordnet: A publicly available lexical
resource for opinion mining. In Proceedings
of LREC, volume 6, pages 417–422, Genoa.

Ettinger, Allyson, Ahmed Elgohary, and
Philip Resnik. 2016. Probing for semantic
evidence of composition by means of
simple classification tasks. In Proceedings of
the 1st Workshop on Evaluating Vector Space
Representations for NLP, pages 134–139,
Berlin, Germany.
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