
RYANSQL: Recursively Applying
Sketch-based Slot Fillings
for Complex Text-to-SQL in
Cross-Domain Databases

DongHyun Choi
Natural Language Processing Team
Kakao Enterprise and School of Software
Sungkyunkwan University
heuristic.c@kakaoenterprise.com

Myeong Cheol Shin
Natural Language Processing Team
Kakao Enterprise
index.sh@kakaoenterprise.com

EungGyun Kim
Natural Language Processing Team
Kakao Enterprise
jason.ng@kakaoenterprise.com

Dong Ryeol Shin
School of Software
Sungkyunkwan University
drshin@skku.edu

Text-to-SQL is the problem of converting a user question into an SQL query, when the question
and database are given. In this article, we present a neural network approach called RYANSQL
(Recursively Yielding Annotation Network for SQL) to solve complex Text-to-SQL tasks for
cross-domain databases. Statement Position Code (SPC) is defined to transform a nested SQL
query into a set of non-nested SELECT statements; a sketch-based slot-filling approach is pro-
posed to synthesize each SELECT statement for its corresponding SPC. Additionally, two input
manipulation methods are presented to improve generation performance further. RYANSQL
achieved competitive result of 58.2% accuracy on the challenging Spider benchmark. At the
time of submission (April 2020), RYANSQL v2, a variant of original RYANSQL, is positioned
at 3rd place among all systems and 1st place among the systems not using database content

Submission received: 12 April 2020; revised version received: 3 January 2021; accepted for publication:
4 March 2021.

https://doi.org/10.1162/COLI a 00403

© 2021 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:heuristic.c@kakaoenterprise.com
mailto:index.sh@kakaoenterprise.com
mailto:jason.ng@kakaoenterprise.com
mailto:drshin@skku.edu

Computational Linguistics Volume 47, Number 2

with 60.6% exact matching accuracy. The source code is available at https: // github. com/
kakaoenterprise/ RYANSQL .

1. Introduction

Relational databases are widely used to maintain and query structured data sets
in many fields such as healthcare (Hillestad et al. 2005), financial markets (Beck,
Demirguc-Kunt, and Levine 2000), or customer relation management (Ngai, Xiu, and
Chau 2009). Most relational databases support Structured Query Language (SQL) to
access the stored data. Although SQL is expressive and powerful, it is quite difficult to
master, especially for non-technical users.

Text-to-SQL is the task of generating an SQL query when a user question and a
target database are given. The examples are shown in Figure 1. Recently proposed
neural network architectures achieved more than 80% exact matching accuracy on the
well-known Text-to-SQL benchmarks such as ATIS (Air Travel Information Service),
GeoQuery, and WikiSQL (Xu, Liu, and Song 2017; Yu et al. 2018a; Shi et al. 2018; Dong
and Lapata 2018; Hwang et al. 2019; He et al. 2018). However, those benchmarks have
shortcomings that restrict their applications. The ATIS (Price 1990) and GeoQuery (Zelle
and Mooney 1996) benchmarks assume the same database across the training and test
data set, thus the trained systems cannot process a newly encountered database at in-
ference time. The WikiSQL (Zhong, Xiong, and Socher 2017) benchmark assumes cross-
domain databases. Cross-domain means that the databases for training and test data
sets are different; the system should predict with an unseen database as its input dur-
ing testing. Meanwhile, the complexity of SQL queries and databases in the WikiSQL
benchmark is somewhat limited. WikiSQL assumes that an input database always has
only one table. It also assumes that the resultant SQL is non-nested, and contains SELECT
and WHERE clauses only. Figure 1(a) shows an example from the WikiSQL data set.

Different from those benchmarks, the Spider benchmark proposed by Yu et al.
(2018c) contains complex SQL queries with cross-domain databases. The SQL queries in
Spider benchmark could contain nested queries with multiple table JOINs, and clauses
like ORDERBY, GROUPBY, and HAVING. Figure 1(b) shows an example from the Spider
benchmark; Yu et al. (2018c) showed that the state-of-the-art systems for the previous
benchmarks do not perform well on the Spider data set.

In this article, we propose a novel network architecture called RYANSQL (Recur-
sively Yielding Annotation Network for SQL) to handle such complex, cross-domain
Text-to-SQL problems. The proposed approach generates nested queries by recursively
yielding their component SELECT statements. A sketch-based slot-filling approach
is proposed to predict each SELECT statement. In addition, two simple but effective
input manipulation methods are proposed to improve the overall system performance.
Among the systems not using database content, the proposed RYANSQL and its variant
RYANSQL v2, with the aid of BERT (Devlin et al. 2019), improve the previous state-of-
the-art system SLSQL (Lei et al. 2020) by 2.5% and 4.9%, respectively, in terms of the
test set exact matching accuracy. RYANSQL v2 is ranked at 3rd place among all systems
including those using database content. Our contributions are summarized as follows:

• We propose a detailed sketch for the complex SELECT statements, along
with a network architecture to fill the slots.

• Statement Position Code (SPC) is introduced to recursively predict nested
queries with sketch-based slot-filling algorithm.

310

https://github.com/kakaoenterprise/RYANSQL
https://github.com/kakaoenterprise/RYANSQL

Choi et al. RYANSQL

INPUT

Question: What is the format for South Australia?

Database:

OUTPUT
SELECT Format FROM table WHERE State/territory=“South Australia"

TABLE
State/territory text
Text/background colour text
Format text
Current slogan text
Current series text
Notes text

(a) A Text-to-SQL example from the WikiSQL data set.

INPUT

Question: Find the first name and age of the students who are playing both Football and Lacrosse.

Database:

OUTPUT
SELECT Fname, Age FROM Student WHERE StuID IN (
SELECT StuID FROM Sportsinfo WHERE SportName = "Football"
INTERSECT
SELECT StuID FROM Sportsinfo WHERE SportName = "Lacrosse")

TABLE Student
StuID INT, primary key
LName VARCHAR
Fname VARCHAR
Age INT
Sex VARCHAR
Major INT
Advisor INT
city_code VARCHAR

TABLE SportsInfo
StuID INT
SportName VARCHAR
HoursPerWeek INT
GamesPlayed INT
OnScholarship VARCHAR

foreign
key

(b) A Text-to-SQL example from the Spider data set.

Figure 1
Text-to-SQL examples.

• We suggest two simple input manipulation methods to improve
performance further.

2. Task Definition

The Text-to-SQL task considered in this article is defined as follows: Given a question
with n tokens Q = {wQ

1 , . . . , wQ
n } and a DB schema with t tables and f foreign key

relations D = {T1, . . . , Tt, F1, . . . , Ff}, find S, the SQL translation of Q. Each table Ti

consists of a table name with ti words {wTi
1 , . . . , wTi

ti
}, and a set of columns {Cj, . . . , Ck}.

Each column Cj consists of a column name {wCj
1 , . . . , w

Cj
cj }, and a marker to check if the

column is a primary key.
For an SQL query S we define a non-nested form of S, N(S) = {(P1, S1), . . . , (Pl, Sl)}.

In the definition, Pi is the i-th SPC, and Si is its corresponding SELECT statement. Table 1
shows examples of a natural language query Q, corresponding SQL translation S, and
non-nested form N(S).

311

Computational Linguistics Volume 47, Number 2

Table 1
Examples of a user question Q, SQL translation S, and non-nested form N(S).

Case 1

Q Find the names of scientists who are not working on the project
with the highest hours.

S

SELECT name FROM scientists EXCEPT
(SELECT T3.name FROM assignedto AS T1

JOIN projects AS T2 ON T1.project = T2.code
JOIN scientists AS T3 ON T1.scientist = T3.SSN

WHERE T2.hours = (SELECT max(hours) FROM projects))

N(S)

P1 [NONE]

S1 SELECT name FROM scientists EXCEPT S2

P2 [EXCEPT]

S2

SELECT T3.name FROM assignedto AS T1
JOIN projects AS T2 ON T1.project = T2.code
JOIN scientists AS T3 ON T1.scientist = T3.SSN

WHERE T2.hours = S3

P3 [EXCEPT, WHERE]

S3 SELECT max(hours) FROM projects

Case 2

Q
Find the names of accounts whose
checking balance is above the average checking balance, but
savings balance is below the average savings balance.

S

SELECT T1.name FROM accounts AS T1
JOIN checking AS T2 ON T1.custid = T2.custid

WHERE T2.balance > (SELECT avg(balance) FROM checking)
INTERSECT
SELECT T1.name FROM accounts AS T1

JOIN savings AS T2 ON T1.custid = T2.custid
WHERE T2.balance < (SELECT avg(balance) FROM savings)

N(S)

P1 [NONE]

S1

SELECT T1.name FROM accounts AS T1
JOIN checking AS T2 ON T1.custid = T2.custid

WHERE T2.balance > S2
INTERSECT S3

P2 [WHERE]

S2 SELECT avg(balance) FROM checking

P3 [INTERSECT]

S3

SELECT T1.name FROM accounts AS T1
JOIN savings AS T2 ON T1.custid = T2.custid

WHERE T2.balance < S4

P4 [INTERSECT, WHERE]

S4 SELECT avg(balance) FROM savings

Each SPC P could be considered as a sequence of p position code elements,
P = [cP

1 , . . . , cP
p]. The possible set of position code elements is {NONE, UNION, IN-

TERSECT, EXCEPT, WHERE, HAVING, PARALLEL}. NONE represents the outermost statement,
and PARALLEL means the parallel elements inside a single clause, for example,

312

Choi et al. RYANSQL

Question Q

Database D

SQL Position Code
P

𝑒"
𝑒$

𝑒%
#

𝑤"
𝑤$

𝑤%
#

Embedding

Embedding
Encoder

Question
Encoder

𝑣"
𝑣$

𝑣%
#

NAME

TABLE 1

COLUMN 1 COLUMN 𝑗

𝑤)*
+* 𝑤"

,* 𝑤-*
,*𝑤"

+* 𝑤"
,. 𝑤-.

,.

NAME

TABLE t

COLUMN k COLUMN m

𝑤)/
+/ 𝑤"

,0 𝑤-0
,0𝑤"

+/ 𝑤"
,1 𝑤-1

,1

𝑒)*
+* 𝑒"

,* 𝑒-*
,*𝑒"

+* 𝑒"
,. 𝑒-.

,. 𝑒)/
+/ 𝑒"

,0 𝑒-0
,0𝑒"

+/ 𝑒"
,1 𝑒-1

,1

𝑐"3 𝑐43

𝑒"3 𝑒43

SPC
Encoder

ℎ", ℎ6
, ℎ7, ℎ8,

Question-
Column
Alignment

𝑣", 𝑣6
, 𝑣7, 𝑣8,

Question – Column Aligner

Table
Encoder

Question-
Table
Alignment

OUTPUTS

… …

…

……

…

…

…

… …

…

…

…

…

…

…

…

…

…

… …

… …

…

… ……

S

ℎ"+ ℎ)+…

𝑣"
𝑣$

𝑣%
𝑣"+ 𝑣)+… 𝑣", 𝑣6

, 𝑣7, 𝑣8,… …… 𝑣9 𝑣3

Question-Table
Aligner

S

S

…

Encoded
Question Tokens

Encoded
Tables

Encoded
Columns

Encoded
Database

Encoded
SPC

𝑣#

Encoded
Question

Column Encoder Column Encoder

Figure 2
Network architecture of the proposed input encoder. s represents self-attention.

the second element of the WHERE clause. Other position code elements represent
corresponding SQL clauses.

Because it is straightforward to construct S from N(S), the goal of the proposed sys-
tem is to construct N(S) for the given Q and D. To achieve the goal, the proposed system
first sets the initial SPC P1 = [NONE], and predicts its corresponding SELECT statement
and nested SPCs. The system recursively finds out the corresponding SELECT statements
for the remaining SPCs, until every SPC has its own corresponding SELECT statement.

3. Generating a SELECT Statement

In this section, the method to create the SELECT statement for the given question
Q, database D, and SPC P is described. Section 3.1 describes the input encoder; the
sketch-based slot-filling decoder is described in Section 3.2.

3.1 Input Encoder

Figure 2 shows the overall network architecture of the input encoder. The input encoder
consists of five layers: Embedding layer, Embedding Encoder layer, Question-Column
Alignment layer, Table Encoder layer, and Question-Table Alignment layer.

Embedding Layer. To get the embedding vector for a word w in question, table names,
or column names, its word embedding and character embedding are concatenated.
The word embedding is initialized with d1 = 300 dimensional pretrained GloVe
(Pennington, Socher, and Manning 2014) word vectors, and is fixed during training. For
character embedding, each character is represented as a trainable vector of dimension

313

Computational Linguistics Volume 47, Number 2

d2 = 50, and we take maximum value of each dimension of component characters
to get the fixed-length vector. The two vectors are then concatenated to obtain the
embedding vector ew ∈ Rd1+ d2 . One layer highway network (Srivastava, Greff, and
Schmidhuber 2015) is applied on top of this representation. For SPC P, each code
element c is represented as a trainable vector of dimension dp = 100.

Embedding Encoder Layer. A one-dimensional convolution layer with kernel size 3 is
applied on top of SPC element embedding vectors {eP

1 , . . . , eP
p}. Max-pooling is applied

on the output to get the SPC vector vP ∈ Rdp . vP is then concatenated to each question
and column word embedding vector.

CNN with dense connection proposed in Yoon, Lee, and Lee (2018) is applied to
encode each word of question and columns to capture local information. Parameters
are shared across the question and columns. For each column, a max-pooling
layer is followed; outputs are concatenated with their table name representations
and projected to dimension d. Layer outputs are encoded question word vectors
VQ = {vQ

1 , vQ
2 , . . . , vQ

n } ∈ Rn×d, and hidden column vectors HC = {hC
1 , . . . , hC

m} ∈ Rm×d.

Question-Column Alignment Layer. In this layer, the model tries to update the column
vectors with the input question. More precisely, the model first aligns question tokens
with column vectors to obtain an attended question vector for each column. The
attended question vectors are then fused with corresponding column vectors to get
question context-integrated column vectors. Scaled dot-product attention (Vaswani
et al. 2017) is used to align question tokens with column vectors:

AQtoC = softmax(HC(VQ)ᵀ√
d

)VQ (1)

where each i-th row of AQtoC ∈ Rm×d is an attended question vector of the i-th column.
The heuristic fusion function fusion(x, y), proposed in Hu et al. (2018), is applied to

merge AQtoC with HC:

x̃ = relu(Wr[x; y; x ◦ y; x− y])

g = σ(Wg[x; y; x ◦ y; x− y])

fusion(x, y) = g ◦ x̃ + (1− g) ◦ x

FC = fusion(AQtoC, HC) (2)

where Wr and Wg are trainable variables, σ denotes the sigmoid function, ◦ denotes
element-wise multiplication, and FC ∈ Rm×d is fused column matrix.

Once the column vectors are updated with the question context, a transformer layer
(Vaswani et al. 2017) is applied on top of FC to capture contextual column information.
Layer outputs are the encoded column vectors VC = {vC

1 , . . . , vC
m} ∈ Rm×d.

Table Encoder Layer. Column vectors belonging to each table are integrated to get the
encoded table vector. For a matrix M ∈ Rn×d, self-attention function fs(M) ∈ R1×d is
defined as follows:

fs(M) = softmax(W2 tanh(W1Mᵀ))M (3)

314

Choi et al. RYANSQL

where W1 ∈ Rd×d, W2 ∈ R1×d are trainable parameters. Then, for table t with columns
{Cj, . . . , Ck}, the hidden table vector hT

t is calculated as follows:

hT
t = fs([vC

j ; ...; vC
k]) (4)

Outputs of the layer are the hidden table vectors HT = {hT
1 , hT

2 , . . . , hT
t } ∈ Rt×d.

Question-Table Alignment Layer. In this layer, the same network architecture as
the Question-Column Alignment layer is used to model the table vectors with
contextual information of the question. Layer outputs are the encoded table vectors
VT = {vT

1 , vT
2 , . . . , vT

t } ∈ Rt×d.

Encoder Output. Final outputs of the input encoder are as follows: (1) Encoded
question word vectors VQ = {vQ

1 , . . . , vQ
n } ∈ Rn×d, (2) Encoded column vectors

VC = {vC
1 , . . . , vC

m} ∈ Rm×d, (3) Encoded table vectors VT = {vT
1 , . . . , vT

t } ∈ Rt×d, and (4)
Encoded SPC vP ∈ Rdp . Additionally, (5) Encoded question vector vQ = fs(VQ) and (6)
Encoded DB schema vector vD = fs(VC) ∈ Rd are calculated for later use in the decoder.

3.1.1 BERT-based Input Encoder. Inspired by the work of Hwang et al. (2019) and Guo
et al. (2019), BERT (Devlin et al. 2019) is considered as another version of the input
encoder. The input to BERT is constructed by concatenating question words, SPC
elements, and column words as follows: [CLS], wQ

1 , . . . , wQ
n , [SEP], cP

1 , . . . , cP
p , [SEP],

wC1
1 , . . . , wC1

c1 , [SEP], . . . , [SEP], wCm
1 , . . . , wCm

cm , [SEP].
Hidden states of the last layer are retrieved to form VQ and VC; for VC, the state

of each column’s last word is taken to represent an encoded column vector. Each table
vector vT

j is calculated as a self-attended vector of its containing columns; vQ, vD, and
vP are calculated as the same.

3.2 Sketch-based Slot-Filling Decoder

Table 2 shows the proposed sketch for a SELECT statement. The sketch-based slot-filling
decoder predicts values for slots of the proposed sketch, as well as the number of slots.

Classifying Base Structure. By the term base structure of a SELECT statement, we refer
to the existence of its component clauses and the number of conditions for each clause.
We first combine the encoded vectors vQ, vD, and vP to obtain the statement encoding
vector vS, as follows:

hc(x, y) = concat(x, y, |x− y|, x ◦ y) (5)

vS = W concat(hc(vQ, vD), vP) (6)

where W ∈ Rd×(4d+dp) is a trainable parameter, and function hc(x, y) is the concatenation
function for the heuristic matching method proposed in Mou et al. (2016).

Eleven values bg, bo, bl, bw, bh, ng, no, ns, nw, nh, and cIUEN are classified by applying
two fully connected layers on vS. Binary values bg, bo, bl, bw, bh represent the existence
of GROUPBY, ORDERBY, LIMIT, WHERE, and HAVING, respectively. Note that FROM and
SELECT clauses must exist to form a valid SELECT statement. ng, no, ns, nw, nh represent

315

Computational Linguistics Volume 47, Number 2

Table 2
Proposed sketch for a SELECT statement. $TBL and $COL represent a table and a column,
respectively. $AGG is one of {none, max, min, count, sum, avg}, $ARI is one of the arithmetic
operators {none, -, +, *, / }, and $COND is one of the conditional operators {between, =, >, <,
>=, <=, !=, in, like, is, exists}. $DIST and $NOT are Boolean variables representing the existence
of keywords DISTINCT and NOT, respectively. $ORD is a binary value for keywords ASC/DESC, and
$CONJ is one of conjunctions {AND, OR}. $VAL is the value for WHERE/HAVING condition; $SEL
represents the slot for another SELECT statement.

CLAUSE SKETCH

FROM ($TBL)+

SELECT
$DIST
($AGG ($DIST1 $AGG1 $COL1 $ARI $DIST2 $AGG2 $COL2)) +

ORDERBY (($DIST1 $AGG1 $COL1 $ARI $DIST2 $AGG2 $COL2) $ORD) ∗

GROUPBY ($COL)∗

LIMIT $NUM

WHERE ($CONJ ($DIST1 $AGG1 $COL1 $ARI $DIST2 $AGG2 $COL2)
HAVING $NOT $COND $VAL1|$SEL1 $VAL2|$SEL2)∗

INTERSECT
UNION $SEL
EXCEPT

the number of conditions in GROUPBY, ORDERBY, SELECT, WHERE, and HAVING clauses,
respectively. The maximal numbers of conditions Ng = 3, No = 3, Ns = 6, Nw = 4, and
Nh = 2 are defined for GROUPBY, ORDERBY, SELECT, WHERE, and HAVING clauses, to solve
the problem as n-way classification problem. The values of maximal condition numbers
are chosen to cover all the training cases.

Finally, cIUEN represents the existence of one of INTERSECT, UNION, or EXCEPT, or
NONE if no such clause exists. If the value of cIUEN is one of INTERSECT, UNION, or EXCEPT,
the corresponding SPC is created, and the SELECT statement for that SPC is generated
recursively.

FROM Clause. A list of $TBLs should be decided to predict the FROM clause. For each
table i, Pfromtbl(i|Q, D, P), the probability that table i is included in the FROM clause, is
calculated as follows:

ci = concat(vT
i , vQ, vD, vP)

si = W2 tanh(W1ci) (7)

Pfromtbl(i|Q, D, P) = σ(s)i

where W1, W2 are trainable variables, s = [s1, . . . , st] ∈ Rt represents the scores for
tables, and σ denotes the sigmoid function. From now on, we omit the notations Q, D,
and P for the sake of simplicity.

316

Choi et al. RYANSQL

Top nt tables with the highest Pfromtbl(i) values are chosen. We set an upper bound
Nt = 6 on possible number of tables. The formula to get P#tbl(nt) for each possible nt is:

vT′
= softmax(s)VT

P#tbl(nt) = softmax(full2(vT′
))

(8)

In the equation, full2 means the application of two fully connected layers, and table
score vector s is from Equation (7).

During the inference, the $TBLs are classified first, and $COLs for other clauses are
chosen among the columns of the classified $TBLs.

SELECT Clause. The decoder first generates Ns conditions to predict the SELECT clause.
Because each condition depends on different parts of Q, we calculate attended question
vector for each condition:

AQ
sel = W3 tanh(VQW1 + vPW2)ᵀ

VQ
sel = softmax(AQ

sel)V
Q

(9)

While W1, W2 ∈ Rd×d, W3 ∈ RNs×d are trainable parameters, and VQ
sel ∈ RNs×d is the

matrix of attended question vectors for Ns conditions. vP is tiled to match the row of VQ.
For m columns and Ns conditions, Psel col1 ∈ RNs×m, the probability matrix for each

column to fill the slot $COL1 of each condition, is calculated as follows:

AC
sel[i] = W6 tanh(VQ

sel[i]W4 + VCW5)ᵀ

Psel col1[i] = softmax(AC
sel[i]) (10)

where W4, W5 ∈ Rd×d and W6 ∈ R1×d are trainable parameters. In this and following
equations, notation M[i] is used to represent the i-th row of matrix M.

The attended question vectors are then updated with selected column information
to get the updated question vector UQ

sel col1 ∈ RNs×d:

UC
sel col1[i] = Psel col1[i]VC

UQ
sel col1[i] = W7hc(VQ

sel[i], UC
sel col1[i])

(11)

where W7 is a trainable variable, and hc(x, y) is defined in Equation (5). The probabilities
for $DIST1, $AGG1, $ARI, and $AGG are calculated by applying a fully connected layer on
UQ

sel col1[i].
Equation (10) is reused to calculate Psel col2, with VQ

sel[i] replaced by UQ
sel col1[i]; then

UQ
sel col2 is retrieved in the same way as Equation (11), and the probabilities of $DIST2

and $AGG2 are calculated in the same way as $DIST1 and $AGG1. Finally, the $DIST slot,
DISTINCT marker for overall SELECT clause, is calculated by applying a fully connected
layer on vS.

Once all the slots are filled for Ns conditions, the decoder retrieves the first ns
conditions to predict the SELECT clause. This is possible because the CNN with Dense
Connection used for question encoding (Yoon, Lee, and Lee 2018) captures relative

317

Computational Linguistics Volume 47, Number 2

position information. Due to the SQL consistency protocol of the Spider benchmark
(Yu et al. 2018c), we expect that the conditions are ordered in the same way as they
are presented in Q. For the data sets without such consistency protocol, the proposed
slot-filling method could easily be changed to an LSTM-based model, as shown in Xu,
Liu, and Song (2017).

ORDERBY Clause. The same network structure as a SELECT clause is applied. The only
difference is the prediction of $ORD slot; this could be done by applying a fully
connected layer on UQ

ob col1, which is the correspondence of UQ
sel col1.

GROUPBY Clause. The same network structure as a SELECT clause is applied. For the
GROUPBY case, retrieving only the values of Pgb col1 is enough to fill the necessary slots.

LIMIT Clause. A question does not explicitly contain the $NUM slot value for LIMIT clause
in many cases, if the question is for the top-1 result (For example: “Show the name
and the release year of the song by the youngest singer”). Thus, the LIMIT decoder
first determines if the given Q requests for the top-1 result. If so, the decoder sets the
$NUM value to 1; otherwise, it tries to find out the specific token for $NUM among the
tokens of Q using pointer network (Vinyals, Fortunato, and Jaitly 2015). LIMIT top-1
probability Plimit top1 is retrieved by applying a fully-connected layer on vS. PQ

limit num[i],
the probability of i-th question token for $NUM slot value, is calculated as:

AQ
limit num = W3 tanh(VQW1 + vPW2)ᵀ

PQ
limit num[i] = softmax(AQ

limit num)i (12)

W1, W2 ∈ Rd×d, W3 ∈ R1×d are trainable parameters.

WHERE Clause. The same network structure as a SELECT clause is applied to get the
attended question vectors VQ

wh ∈ RNw×d, and probabilities for $COL1, $COL2, $DIST1,
$DIST2, $AGG1, $AGG2, and $ARI. A fully connected layer is applied on UQ

wh col1 to get the
probabilities for $CONJ, $NOT, and $COND.

A fully connected layer is applied on UQ
wh col1 and UQ

wh col2 to determine if the
condition value for each column is another nested SELECT statement or not. If the value
is determined as a nested SELECT statement, the corresponding SPC is generated, and
the SELECT statement for the SPC is predicted recursively. If not, the pointer network is
used to get the start and end position of the value span from question tokens.

HAVING Clause. The same network structure as a WHERE clause is applied.

4. Two Input Manipulation Methods

In this section, we introduce two input manipulation methods to improve the
performance of our proposed system further.

4.1 JOIN Table Filtering

In a FROM clause, some tables (and their columns) are not mentioned explicitly in the
given question, but they are still required to make a “link” between other tables to

318

Choi et al. RYANSQL

Table 3
An example SQL query with a link table.

Q: What are the papers of Liwen Xiong in 2015?
SQL:
SELECT DISTINCT t3.paperid
FROM writes AS t2
JOIN author AS t1 ON t2.authorid = t1.authorid
JOIN paper AS t3 ON t2.paperid = t3.paperid
WHERE t1.authorname = “Liwen Xiong”
AND t3.year = 2015;

form a proper SQL query. One such example is given in Table 3. The table writes is not
explicitly mentioned in Q, but it is used in the JOIN clause to link between tables author
and paper. Those “link” tables are necessary to create the proper SELECT statement, but
they work as noise in aligning question tokens and tables because the link tables do not
have the corresponding tokens in Q.

To reduce the training noises, only the non-link tables are considered as the $TBL
slot values of FROM clause during training. A table of FROM clause is considered a link
table if (1) all the $AGG values of the SELECT clause are none, and (2) none of its columns
appears in other clauses’ slots. During the inference, the link tables could easily be
recovered by using the foreign key relations of the extracted tables. More precisely,
the system uses a heuristic of finding the shortest joinable foreign key relation “path”
between the extracted tables. Once a path is found, tables in the path are added as the
$TBLs of the FROM clause.

The goal of this method is to distinguish the link tables from non-link tables during
the training phase. SyntaxSQLNet (Yu et al. 2018b) first predicts all the columns, and
then chooses FROM tables based on the classified columns. As noted in Yu et al. (2018b),
the approach cannot handle count queries with additional JOINs, for example, “SELECT
T2.name, count(*) FROM singer in concert AS T1 JOIN singer AS T2 ON T1.singer id =
T2.singer id GROUP BY T2.singer id.” Its corresponding user question is “List singer
names and number of concerts for each singer.” GNN (Bogin, Gardner, and Berant
2019) handles the problem by turning the database schema into a graph; foreign key
links between nodes help the system to distinguish between two types of tables. IRNet
(Guo et al. 2019) and RAT-SQL (Wang et al. 2020) have the separated schema linking
processing module to explicitly link columns with question tokens.

4.2 Supplemented Column Names

We supplement the column names with their table names to distinguish between
columns with the same name but belonging to different tables and representing different
meanings. Table names are concatenated in front of their belonging column names to
form supplemented column names (SCNs), but if the stemmed form of a table name is
wholly included in the stemmed form of a column name, the table name is not concate-
nated. Table 4 shows SCN examples; the three columns with the same name id are dis-
tinguished with their SCNs. We can also expect the SCNs to align better with question
tokens, since a SCN contains more information about what the column actually refers to.

The method aims to integrate tables with their columns. To achieve the goal, IRNet
(Guo et al. 2019) and RAT-SQL (Wang et al. 2020) separately encode tables and columns,

319

Computational Linguistics Volume 47, Number 2

Table 4
Examples of supplemented column names (SCNs).

Table Column SCN

tv channel id tv channel id
series name tv channel series name

tv series id tv series id

cartoon id cartoon id

and integrate the two embeddings on the network; GNN (Bogin, Gardner, and Berant
2019) represents database schema as a graph, generating links between tables and
their columns, and directly processes the graph using graph neural network; EditSQL
(Zhang et al. 2019) concatenates the table names with its column names, using a special
character.

5. Related Work

Most recent works on the Text-to-SQL task used the encoder-decoder model. Those
works could be classified into three main categories, based on their decoder outputs.
Sequence-to-Sequence translation approaches generate SQL query tokens. Dong and
Lapata (2016) introduced the hierarchical tree decoder to prevent the model from
generating grammatically incorrect semantic representations of the input sentences.
Zhong, Xiong, and Socher (2017) used policy-based reinforcement learning to deal with
the unordered nature of WHERE conditions.

Grammar-based approaches generate a sequence of grammar rules and apply the
generated rules sequentially to obtain the resultant SQL query. IRNet (Guo et al. 2019)
defined a structural representation of an SQL query and a set of parse actions to handle
the WikiSQL data set. IRNet defined the SemQL query, which is an abstraction of a SQL
query in tree form. They also proposed a set of grammar rules to synthesize SemQL
queries; synthesizing a SQL query from a SemQL tree structure is straightforward.
RAT-SQL (Wang et al. 2020) improved the work of Guo et al. (2019) by proposing a
relation-aware transformer to effectively encode relations between columns, tables,
and question tokens. GNN (Bogin, Gardner, and Berant 2019) focused on the DB
constraints selection problem during the grammar decoding process; they applied
global reasoning between question words and database columns/tables. SLSQL (Lei
et al. 2020) manually annotated link information between user questions and database
columns to show the role of schema linking.

Sketch-based slot-filling approaches use a sketch, which aligns with the syntactic
structure of a SQL query. A sketch should be defined generic enough to handle all SQL
queries of interest. Once a sketch is defined, one can simply fill the slots of the sketch
to obtain the resultant SQL query. SQLNet (Xu, Liu, and Song 2017) first introduced
a sketch to handle the WikiSQL data set, along with attention-based slot-filling algo-
rithms. The proposed sketch for WikiSQL is shown in Table 5. TypeSQL (Yu et al. 2018a)
added category information such as named entity to better encode the input question.
SQLova (Hwang et al. 2019) introduced BERT (Devlin et al. 2019) to encode the input
question and database, and the encoded vectors were used to fill the slots of the sketch.

320

Choi et al. RYANSQL

Table 5
Sketch for WikiSQL data set. $COL represents a column, and $AGG is one of {none, max, min,
count, sum, avg}. $COND is one of the conditional operators { =, >, < }. $VAL is the value for
WHERE condition.

CLAUSE SKETCH

SELECT $AGG $COL

WHERE ($COL $COND $VAL)*

Table 6
The sketch for a SELECT statement proposed by RCSQL (Lee 2019). $COL represents a column.
$AGG is one of {none, max, min, count, sum, avg}, and $COND is one of the conditional operators
{between, =, >, <, >=, <=, !=, in, like, is, exists}. $ORD is a binary value for keywords
ASC/DESC, and $CONJ is one of conjunctions {AND, OR}. $VAL is the value for WHERE/HAVING
condition; $SEL represents the slot for another SELECT statement.

CLAUSE SKETCH

SELECT ($AGG $COL) +

ORDERBY ($AGG $COL) + $ORD

GROUPBY ($COL)∗

LIMIT $NUM

WHERE ($CONJ $COL $COND $VAL | $SEL) ∗

HAVING ($CONJ $AGG $COL $COND $VAL | $SEL) ∗

INTERSECT
UNION $SEL
EXCEPT

X-SQL (He et al. 2018) aligned the contextual information with column tokens to better
summarize each column. The sketch-based approaches for WikiSQL described here all
used the sketch shown in Table 5, which is enough for the WikiSQL queries but oversim-
plified for general SQL queries, for example, those contained in the Spider benchmark.

The sketch-based approach on the more complex Spider benchmark showed rela-
tively low performance compared to the grammar-based approaches so far. There are
two major reasons: (1) It is hard to define a sketch for Spider queries since the allowed
syntax of the Spider SQL queries is far more complicated than that of the WikiSQL
queries. (2) Because the sketch-based approaches fill values for the predefined slots, the
approaches have difficulties in predicting the nested queries. RCSQL (Lee 2019) tried
to apply the sketch-based approach on the Spider data set; Table 6 shows the sketch
proposed by Lee (2019). To predict a nested SELECT statement, RCSQL takes a temporal
generated SQL query with a special token [SUB QUERY] in the corresponding location as
its input. For example, for Case 1 of Table 1, RCSQL gets a temporal generated query
string ”SELECT name FROM scientists EXCEPT [SUB QUERY]” as its input to generate
the nested statement S2, along with the user question and database schema.

321

Computational Linguistics Volume 47, Number 2

Our proposed approach has three improvements compared to RCSQL. First, our
sketch in Table 2 is more “complete” in terms of expressiveness. For example, because
the RCSQL sketch lacks $ARI elements, the RCSQL cannot generate queries with
arithmetic operations between columns, for example, “SELECT T1.name FROM accounts
AS T1 JOIN checking AS T2 ON T1.custid = T2.custid JOIN savings AS T3 ON T1.custid =
T3.custid ORDER BY T2.balance + T3.balance LIMIT 1.” Second, while our proposed
approach directly predicts for the tables in FROM clause, the RCSQL heuristically predicts
the tables using the extracted columns for other clauses. The RCSQL approach cannot
generate count queries with additional table JOINs, for example, “SELECT count(*) FROM
institution AS T1 JOIN protein AS T2 ON T1.institution id = T2.institution id WHERE

T1.founded > 1880 OR T1.type = ‘Private’.” Third, RCSQL fails to generate the nested
SELECT statements when two or more statements are on the same depth, for example,
S2 and S3 in Case 2 of Table 1. Because RCSQL generates one SELECT statement for an
input, it expects only one special token for a query.

In this article, we propose a more completed sketch compared to the WikiSQL
(Table 5) and RCSQL (Table 6) sketches for complex SELECT statements, along with the
Statement Position Code (SPC) to handle the nested queries more efficiently. Although
our proposed sketch is tuned using the Spider data set, the sketch is based on the
generic SQL syntax and could be applied to other SQL generation tasks.

6. Experiment

6.1 Experiment Setup

Implementation. The proposed RYANSQL is implemented with Tensorflow (Abadi et al.
2015). Layernorm (Ba, Kiros, and Hinton 2016) and dropout (Srivastava et al. 2014) are
applied between layers, with a dropout rate of 0.1. Exponential decay with decay rate
0.8 is applied to the learning rate for every three epochs. On each epoch, the trained
classifier is evaluated against the validation data set, and the training stops when the
exact match score for the validation data set is not improved for 20 consequent training
epochs. Minibatch size is set to 16; learning rate is set to 4e−4. Loss is defined as the
sum of all classification losses from the slot-filling decoder. The trained network has
22M parameters.

For pretrained language model–based input encoding, we downloaded the
publicly available pretrained model of BERT, BERT-Large, Uncased (Whole Word

Masking), and fine-tuned the model during training. The learning rate is set to 1e−5,
and minibatch size is set to 4. The model with BERT has 445M parameters.

Data sets. The Spider data set (Yu et al. 2018c) is mainly used to evaluate our proposed
system. We use the same data split as Yu et al. (2018c); 206 databases are split into 146
train, 20 dev, and 40 test. All questions for the same database are in the same split;
there are 8,659 questions for train, 1,034 for dev, and 2,147 for test. The test set of Spider
is not publicly available, so for testing our models are submitted to the data owner.
For evaluation, we used exact matching accuracy, with the same definition as defined
in Yu et al. (2018c).

6.2 Evaluation Results

Table 7 shows comparisons of the proposed system with several state-of-the-art
systems; evaluation scores for dev and test data sets are retrieved from the Spider

322

Choi et al. RYANSQL

Table 7
Evaluation results of the proposed systems and other state-of-the-art systems.

System Dev Test

Without pretrained language models

GrammarSQL (Lin et al. 2019) 34.8% 33.8%
EditSQL (Zhang et al. 2019) 36.4% 32.9%
IRNet (Guo et al. 2019) 53.3% 46.7%
RATSQL v2 (Wang et al. 2020) 62.7% 57.2%

RYANSQL (Ours) 43.4% −

With pretrained language models

RCSQL (Lee 2019) 28.5% 24.3%
EditSQL + BERT 57.6% 53.4%
IRNet + BERT 61.9% 54.7%
IRNet v2 + BERT 63.9% 55.0%
SLSQL + BERT (Lei et al. 2020) 60.8% 55.7%

RYANSQL + BERT (Ours) 66.6% 58.2%
RYANSQL v2 + BERT (Ours) 70.6% 60.6%

With DB content

Global-GNN (Bogin, Gardner, and Berant 2019) 52.7% 47.4%
IRNet++ + XLNet 65.5% 60.1%
RATSQL v3 + BERT 69.7% 65.6%

leaderboard.1 The proposed system is compared with grammar-based systems
GrammarSQL (Lin et al. 2019), Global-GNN (Bogin, Gardner, and Berant 2019), IRNet
(Guo et al. 2019), and RATSQL (Wang et al. 2020). Also, we compared the proposed
system with RCSQL (Lee 2019), which so far showed the best performance on the
Spider data set using a sketch-based slot-filling approach.

Evaluation results are presented in three different groups, based on the use of
pretrained language models and database content. Although the use of database
content (i.e., cell values) could greatly improve the performance of a Text-to-SQL
system (as shown in Wang et al. 2018; Hwang et al. 2019; He et al. 2018), a Text-to-SQL
system could rarely have access to database content in real world applications due to
various reasons such as personal privacy, business secrets, or legal issues. Because the
use of database content improves the system performance but decreases the system
availability, we put models using database content in a separated group.

For RYANSQL v2, we trained two networks called table network and slot network,
with the same network architectures as the proposed RYANSQL. The table network
is trained to maximize the $TBL classification accuracy on dev set; the slot network is
trained to maximize the exact match accuracy on dev set as RYANSQL does, but the
$TBL classification results are fetched from the table network (which is fixed during the
training of the slot network). During the inference, the model first classifies $TBLs using
the table network, and fills other slots using the slot network.

1 https://yale-lily.github.io/spider, as of April 2020.

323

https://yale-lily.github.io/spider

Computational Linguistics Volume 47, Number 2

Table 8
Exact matching accuracy of the proposed system and other state-of-the-art systems for each
hardness level. Med. means medium hardness.

Approaches Easy Med. Hard Extra ALL

On dev set

RCSQL 53.2% 27.0% 20.1% 6.5% 28.8%
IRNet2 70.4% 55.0% 46.6% 30.6% 53.3%
RATSQL v2 (with DB content) 80.4% 63.9% 55.7% 40.6% 62.7%
RATSQL v3 + BERT (with DB content) 86.4% 73.6% 62.1% 42.9% 69.7%

RYANSQL (Ours) 69.2% 43.0% 28.2% 22.4% 43.4%
RYANSQL + BERT (Ours) 86.0% 70.5% 54.6% 40.6% 66.6%

On test set

IRNet 70.1% 49.2% 39.5% 19.1% 46.7%
IRNet + BERT 77.2% 58.7% 48.1% 25.3% 54.7%
RATSQL v2 (with DB content) 74.8% 60.7% 53.6% 31.5% 57.2%
RATSQL v3 + BERT (with DB content) 83.0% 71.3% 58.3% 38.4% 65.6%

RYANSQL + BERT (Ours) 81.2% 62.1% 51.9% 28.0% 58.2%

As can be observed from the table, the proposed system RYANSQL improves
the previous sketch-based slot-filling system RCSQL by a large margin of 15% on the
dev set. Note that the RCSQL fine-tuned another well-known pretrained language
model ELMo (Peters et al. 2018). With the use of BERT, among the systems without
database content, the proposed systems RYANSQL + BERT and RYANSQL v2 + BERT
outperform the previous state-of-the-art by 2.5% and 4.9%, respectively, on the hidden
test data set, in terms of exact matching accuracy. The proposed system still shows
competitive results compared to the systems using database content; RATSQL v3 +
BERT outperforms the proposed system by better aligning user questions and database
schemas using database content.

Table 8 compares the exact matching accuracies of the proposed systems and other
state-of-the-art systems for each hardness level. The proposed RYANSQL + BERT out-
performs the previous sketch-based approach RCSQL in every hardness level on dev
set. Additionally, the proposed RYANSQL + BERT showed relatively poor performance
for the test set at the Extra hardness level, compared to RATSQL v3 + BERT. This
suggests that much test data at the Extra hardness level require database content to
answer, since the two systems showed comparable results for the Extra hardness dev set.

Next, ablation studies are conducted on the proposed methods to clarify the con-
tribution of each feature. The results are presented in Table 9. It turns out that the use of
SPC greatly improves the performances for Hard and Extra hardness levels. The result
shows that the SPC plays an important role in generating the nested SQL queries. The
SPC also slightly increases the performance for Easy and Medium hardness levels.

2 For IRNet + BERT, we downloaded the source code and trained the model from authors’ homepage
(https://github.com/microsoft/IRNet), but we were not able to reproduce the authors’ suggested dev
set exact matching accuracy.

324

https://github.com/microsoft/IRNet

Choi et al. RYANSQL

Table 9
Ablation study results of the proposed models for each hardness level on dev set. SPC, SCN, and
JTF represent the use of Statement Position Code, supplemented column names, and JOIN table
filtering, respectively.

Approaches SPC SCN JTF Easy Med. Hard Extra ALL

RYANSQL

O O O 69.2% 43.0% 28.2% 22.4% 43.4%
O O X 68.0% 40.2% 27.6% 19.4% 41.4%
O X O 62.0% 38.2% 24.1% 14.7% 37.7%
O X X 65.2% 37.7% 29.9% 18.8% 39.9%
X O O 63.2% 39.5% 19.0% 16.5% 38.0%
X O X 68.4% 41.6% 18.4% 14.7% 39.7%
X X O 63.2% 39.3% 14.9% 16.5% 37.2%
X X X 60.0% 38.2% 16.7% 11.8% 35.5%

RYANSQL

O O O 86.0% 70.5% 54.6% 40.6% 66.6%

+ BERT

O O X 86.8% 66.1% 46.6% 42.4% 63.9%
O X O 76.4% 58.2% 46.6% 30.6% 56.1%
O X X 78.0% 63.4% 46.0% 28.8% 58.3%
X O O 85.6% 66.6% 27.0% 22.4% 57.3%
X O X 83.6% 68.4% 25.9% 26.5% 58.0%
X X O 78.4% 60.2% 21.3% 24.7% 52.2%
X X X 77.2% 60.5% 23.6% 25.9% 52.6%

This is because the SPC helps the model to distinguish between each nested SELECT

statement, thus removing noise on aligning question tokens and columns.
The use of SCN moderately improves the accuracies for all hardness levels. This is

expected, since SCN helps a database column to better align with question tokens by
supplementing the column name with its table information.

The JOIN table filtering (JTF) increases performance only when the other two
features SPC and SCN are used together. Analysis shows that for some cases, the link
tables removed by JTF actually have their corresponding question tokens. One example
is the SQL query “SELECT T3.amenity name FROM dorm AS T1 JOIN has amenity AS

T2 ON T1.dormid = T2.dormid JOIN dorm amenity AS T3 ON T2.amenid = T3.amenid
WHERE T1.dorm name = ‘Smith Hall’ ” for question “Find the name of amenities Smith
Hall dorm have.” Table has amenity is considered as a link table, but there exist
corresponding clues in the question. Removing the table from $TBL list according to the
JTF feature would introduce alignment noise during training. But the evaluation result
also shows that, by better aligning question and database schema using the other two
features SPC and SCN, the model can recover from the alignment noise introduced by
JTF, improving the overall system performance.

Proposed models are also evaluated without all three features SPC, SCN, and JTF
to separately see the contribution of our newly proposed sketch. Without the three
features, RYANSQL shows 35.5% accuracy on dev set, which is a 6.7% improvement
compared to another sketch-based slot-filling model RCSQL; RYANSQL + BERT shows
52.6% dev set accuracy.

Effect of the pretrained language model. There exists a huge performance gap of 23.2%
on dev set between RYANSQL and RYANSQL + BERT. SQL component matching
F1 scores for the two models are shown in Table 10 to figure out the reason. For the

325

Computational Linguistics Volume 47, Number 2

Table 10
SQL Component matching F1 scores of RYANSQL and RYANSQL + BERT on dev set.

Approaches SELECT WHERE GROUP ORDER keywords ALL

RYANSQL 69.4% 47.4% 67.5% 73.9% 82.3% 43.4%
RYANSQL + BERT 88.2% 74.4% 78.8% 83.3% 88.5% 66.6%

Table 11
Evaluations with different pretrained language models on dev set.

System Dev

RYANSQL 43.4%
RYANSQL + BERT-base 51.4%
RYANSQL + BERT-large 66.6%
RYANSQL + RoBERTa 65.7%
RYANSQL + ELECTRA 63.6%

item keyword (which measures the existence of SQL predefined keywords such as
SELECT or GROUP BY), the performance gap between the two models is 6.2%, which is
relatively small compared to the overall performance gap of 23.2%. Meanwhile, the
performance gaps on clause components such as WHERE are similar to or larger than the
overall performance gap. These evaluation results suggest that the use of a pretrained
language model mainly improves the column classification performance, rather than
base structures classification accuracy of a SQL query.

Next, a series of experiments is conducted to see if additional performance
improvements could be gained by applying different pretrained language models.
Table 11 shows the evaluation results with four different pretrained language models,
namely, BERT-base, BERT-large, RoBERTa (Liu et al. 2019), and ELECTRA (Clark et al.
2020). Although RoBERTa and ELECTRA are generally known to perform better than
BERT, the evaluation results showed no performance improvement.

Generality of SCN and JTF. The two proposed input manipulation methods SCN and
JTF are applied on IRNet (Guo et al. 2019) to see their generalities. We downloaded the
source code from the author’s homepage,3 and trained to obtain the dev set accuracy.
Evaluation results are shown in Table 12. The performance improvements due to
the two input manipulation methods were almost ignorable; because IRNet has the
separated schema linking preprocessing module, whose purpose is to link columns
with question tokens, the role of SCN and JTF are greatly reduced.

6.3 Evaluation on Different Data Sets

We conducted experiments on WikiSQL (Zhong, Xiong, and Socher 2017) and CSpider
(Min, Shi, and Zhang 2019) data sets to test the generalization capability of the proposed
model to new data sets. Table 13 shows the comparison between the proposed RYAN-

3 https://github.com/microsoft/IRNet.

326

https://github.com/microsoft/IRNet

Choi et al. RYANSQL

Table 12
Evaluations of IRNet with two input manipulation methods on dev set.

System SCN JTF Dev

IRNET

O O 52.3%
O X 52.9%
X O 52.3%
X X 52.2%4

Table 13
Evaluation results on WikiSQL benchmark with other state-of-the-art systems.

System Dev LF Dev X Test LF Test X

SQLova (Hwang et al. 2019) 81.6 % 87.2 % 80.7 % 86.2 %
X-SQL (He et al. 2018) 83.8 % 89.5 % 83.3 % 88.7 %
Guo and Gao (2019) 84.3 % 90.3 % 83.7 % 89.2 %
HydraNet (Lyu et al. 2020) 83.6 % 89.1 % 83.8 % 89.2 %

RYANSQL + BERT 81.6 % 87.7 % 81.3 % 87.0 %

SQL + BERT and other WikiSQL state-of-the-art systems. Only the systems without
execution-guided decoding (EGD) (Wang et al. 2018) are compared, since EGD makes
use of the database content. As can be observed from the table, the proposed RYANSQL
+ BERT showed comparable results to other WikiSQL state-of-the-art systems.

Next, we evaluated the proposed models on the CSpider data set. CSpider (Min,
Shi, and Zhang 2019) is a Chinese-translated version of the Spider benchmark. Only the
question of the Spider data set is translated; database table names and column names
remain in English. Evaluation on the CSpider data set will show whether the proposed
model could be applied on the different languages, even when the question language
and database schema language are different. To handle the case, we used multilingual
BERT, which has the same network architecture with BERT-base but is trained using
a multilingual corpus. Table 14 shows the comparisons between the proposed system
and other state-of-the-art systems on the leaderboard. Compared to the exact matching
accuracy 51.4% of RYANSQL + BERT-base on Spider data set, the multilingual version
shows 10% lower accuracy on dev set, but still shows comparable results to other
state-of-the-art systems that are designed for CSpider data set. Our proposed system
showed 34.7% test accuracy on the test set, and ranked 2nd place on the leaderboard.

4 We re-trained the IRNet model using the authors’ source code with the Spider data set. We were not able
to obtain the authors’ presented 53.3% accuracy on the dev set, and it turns out that the preprocessed
Spider data sets on the authors’ homepage and generated from the source code script are different. Since
we need to preprocess the data using the source code to apply the input manipulation methods, we
presented the dev set accuracy of our re-trained IRNet model, not the one presented in the authors’ paper.

327

Computational Linguistics Volume 47, Number 2

Table 14
Evaluation results on CSpider data set5 with other state-of-the-art systems.

System Dev Test

SyntaxSQLNet (Yu et al. 2018b) 16.4% 13.3%
CN-SQL (Anonymous) 22.9% 18.8%
DG-SQL (Anonymous) 35.5% 26.8%
XL-SQL (Anonymous) 54.9% 47.8%

RYANSQL + Multilingual BERT (Ours) 41.3% 34.7%

Table 15
Exact matching accuracy of the proposed system on the Spider dev set, with the different ranges
of overlap scores.

Overlap Score Accuracy Examples

0.0 ≤ O(Q, S) ≤ 0.2 32.5% 40
0.2 < O(Q, S) ≤ 0.4 47.3% 74
0.4 < O(Q, S) ≤ 0.6 46.7% 182
0.6 < O(Q, S) ≤ 0.8 67.0% 282
0.8 < O(Q, S) ≤ 1.0 80.5% 456

Total 66.6% 1,034

6.4 Error Analysis

We analyzed 345 failed examples of the RYANSQL + BERT on the development set. We
were able to categorize 195 of those examples according to failure types.

The most common cause of failure is column selection failure; 68 out of 195 cases
(34.9%) suffered from the error. In many of these cases, the correct column name is not
mentioned in a question; for example, for the question ”What is the airport name for
airport ‘AKO’?”, the decoder chooses column AirportName instead of AirportCode
as its WHERE clause condition column. As mentioned in Yavuz et al. (2018), cell value
examples for each column will be helpful to solve this problem.

The second frequent error is table number classification error; 49 out of 195 cases
(25.2%) belong to the category. The decoder occasionally chooses too many tables for
the FROM clause, resulting in unnecessary table JOINs. Similarly, 22 out of 195 cases
(11.3%) were due to condition number classification error. Those errors could be
handled by observing and updating the extracted slot values as a whole; for example,
for a user question “List the maximum weight and type for each type of pet.” the
system generates SQL query “SELECT PetType, max(weight), weight FROM Pets GROUP

BY PetType.” If the system could observe the extracted slot values as a whole, it
would figure out that extracting weight and max(weight) together for SELECT clause is
unlikely. Our future work will mainly focus on solving this issue.

5 https://taolusi.github.io/CSpider-explorer/, as of July 2020.

328

https://taolusi.github.io/CSpider-explorer/

Choi et al. RYANSQL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 7 11

Ac
cu
ra
cy

Number	 of	Foreign	Keys

Figure 3
Relation between the number of foreign key relations in the database, and exact matching
accuracy of the queries on dev set.

The remaining 150 errors were hard to be classified into one category, and some of
them were due to different representations of the same meaning, for example: “SELECT
max(age) FROM Dogs” vs. “SELECT age FROM Dogs ORDER BY age DESC LIMIT 1.”

Next, we tried to see if the proposed model could handle user questions in which
words are different from database column and table names. We define an overlap score
O(Q, S) = size(w(Q)∩w(S))

size(w(S)) between a user question Q and its SQL translation S. In the equa-
tion, w(Q) is the set of stemmed words in Q, and w(S) is the set of stemmed words from
column names and table names used in S. Intuitively, the score measures how much
overlap exists between the column/table names of SQL query S and user question Q.

Overlap scores are calculated for question-SQL query pairs in the Spider dev set.
The data set is divided into five categories based on the calculated overlap scores;
Table 15 shows exact matching accuracies of the proposed RYANSQL for those
categories. As can be seen from the table, the proposed system shows relatively low
performance on the examples with low overlap scores. This suggests one limitation of
the proposed system: Even with the aid of pre-trained language models, the system
frequently fails to link between question tokens and database schema when their words
are different. Better alignment methods between question tokens and database schema
should be studied as a future work to further improve the system performance.

Another limitation of the proposed model is that the model does not use foreign
keys during encoding; foreign keys are used only for JOIN table filtering. We analyzed
the correlation between the number of foreign keys and exact matching accuracies in
Figure 3, to figure out the effect of such limitation. The number of foreign keys and
exact matching accuracy shows weak negative correlation, with Pearson correlation
coefficient ρ = −0.22. Based on the analysis result, in future work we will try to integrate
the foreign keys into the encoding process, for example, by using the relation aware
transformer proposed in Wang et al. (2020), to improve the proposed model further.

329

Computational Linguistics Volume 47, Number 2

7. Conclusion

In this article, we proposed a sketch-based slot-filling algorithm for complex, cross-
domain Text-to-SQL problems. A detailed sketch for complex SELECT statement
prediction is proposed, along with the Statement Position Code to handle nested
queries. Two simple but effective input manipulation methods are additionally
proposed to enhance the overall system performance further. The system achieved 3rd
place among all systems and 1st place among the systems not using database content,
on the challenging Spider benchmark data set.

Based on the error analysis results, as a next step of the research we will focus
on globally updating the extracted slots by considering the slot prediction values as
a whole. The analysis results also show the need to encode the relation structures of
the database schema, for example, foreign keys, to improve the performance. We will
also work on a method to effectively use the database content instead of using only
the database schema, to further improve the system performance for the cases when
database content is available.

References
Abadi, Martı́n, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Man, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Vigas, Oriol Vinyals,
PeteWarden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-scale machine
learning on heterogeneous systems.
Software available from tensorflow.org.

Ba, Jimmy Lei, Jamie Ryan Kiros, and
Geoffrey E. Hinton. 2016. Layer
normalization. Computing Research
Repository, arXiv:1607.06450.

Beck, Thorsten, Asli Demirguc-Kunt, and
Ross Levine. 2000. A new database on the
structure and development of the financial
sector. The World Bank Economic Review,
14(3):597–605. https://doi.org/10.1093
/wber/14.3.597

Bogin, Ben, Matt Gardner, and Jonathan
Berant. 2019. Global reasoning over
database structures for text-to-SQL
parsing. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 3650–3655. Hong Kong.

Clark, Kevin, Minh-Thang Luong, Quoc V.
Le, and Christopher D. Manning. 2020.
Electra: Pre-training text encoders as
discriminators rather than generators.
Computing Research Repository,
arXiv:2003.10555.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, volume 1, pages 4171–4186.
Minneapolis, MN.

Dong, Li and Mirella Lapata. 2016. Language
to logical form with neural attention. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics,
pages 33–43. Berlin. https://doi
.org/10.18653/v1/P16-1004

Dong, Li and Mirella Lapata. 2018.
Coarse-to-fine decoding for neural
semantic parsing. In Proceedings of the 56th
Annual Meeting of the Association for
Computational Linguistics, pages 731–742.
Melbourne. https://doi.org/10.18653
/v1/P18-1068

Guo, Jiaqi, Zecheng Zhan, Yan Gao, Yan
Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards complex
text-to-SQL in cross-domain database with
intermediate representation. Computing
Research Repository, arXiv:1905
.082057.

Guo, Tong and Huilin Gao. 2019. Content
enhanced BERT-based text-to-SQL
generation. Computing Research Repository,
arXiv:1910.07179.

330

tensorflow.org
https://doi.org/10.1093/wber/14.3.597
https://doi.org/10.1093/wber/14.3.597
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068

Choi et al. RYANSQL

He, Pengcheng, Yi Mao, Kaushik Chakrabarti,
and Weizhu Chen. 2018. X Reinforce
schema representation with context.
Computing Research Repository,
arXiv:1808.073837.

Hillestad, Richard, James Bigelow, Anthony
Bower, Federico Girosi, Robin Meili,
Richard Scoville, and Roger Taylor. 2005.
Can electronic medical record systems
transform health care? Potential health
benefits, savings, and costs. Health Affairs.
24(5):1103–1117. https://doi.org
/10.1377/hlthaff.24.5.1103, PubMed:
16162551

Hu, Minghao, Yuxing Peng, Zhen Huang,
Xipeng Qiu, Furu Wei, and Ming Zhou.
2018. Reinforced mnemonic reader for
machine reading comprehension. In
Proceedings of the 27th International Joint
Conference on Artificial Intelligence,
pages 4099–4106. Stockholm.

Hwang, Wonseok, Jinyeong Yim, Seunghyun
Park, and Minjoon Seo. 2019. A
comprehensive exploration on WikiSQL
with table-aware word contextualization.
Computing Research Repository,
arXiv:1902.01069.

Lee, Dongjun. 2019. Clause-wise and
recursive decoding for complex and
cross-domain text-to-SQL generation. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6047–6053,
Hong Kong. https://doi.org/10.18653
/v1/D19-1624

Lei, Wenqiang, Weixin Wang, Zhixin Ma,
Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the
role of schema linking in text-to-SQL.
In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing, pages 6943–6954.
Online.

Lin, Kevin, Ben Bogin, Mark Neumann,
Jonathan Berant, and Matt Gardner. 2019.
Grammar-based neural text-to-SQL
generation. Computing Research Repository,
arXiv:1905.13326.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. 2019. RoBERTa: A
robustly optimized BERT pretraining
approach. Computing Research Repository.
arXiv:1907.11692.

Lyu, Qin, Kaushik Chakrabarti, Shobhit
Hathi, Souvik Kundu, Jianwen Zhang, and
Zheng Chen. 2020. Hybrid ranking

network for text-to-SQL, Microsoft
Dynamics 365 AI.

Min, Qingkai, Yuefeng Shi, and Yue Zhang.
2019. A pilot study for Chinese SQL
semantic parsing. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 3652–3658. Hong Kong.
https://doi.org/10.18653/v1/D19-1377

Mou, Lili, Rui Men, Ge Li, Yan Xu, Lu Zhang,
Rui Yan, and Zhi Jin. 2016. Natural
language inference by tree-based
convolution and heuristic matching. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics,
pages 130–136. Berlin. https://doi.org
/10.18653/v1/P16-2022

Ngai, Eric WT, Li Xiu, and Dorothy C. K.
Chau. 2009. Application of data mining
techniques in customer relationship
management: A literature review and
classification. Expert Systems with
Applications, 36(2):2592–2602. https://
doi.org/10.1016/j.eswa.2008.02.021

Pennington, Jeffrey, Richard Socher, and
Christopher D. Manning. 2014. GloVe:
Global vectors for word representation.
In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543,
Doha. https://doi.org/10.3115/v1
/D14-1162

Peters, Matthew, Mark Neumann, Mohit
Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018.
Deep contextualized word representations.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, volume 1, pages 2227–2237.
Minneapolis, MN. https://doi.org/10
.18653/v1/N18-1202

Price, P. J. 1990. Evaluation of spoken
language systems: The ATIS domain.
In HLT ’90: Proceedings of the Workshop on
Speech and Natural Language, pages 91–95.
Hidden Valley, PA. https://doi.org/10
.3115/116580.116612

Shi, Tianze, Kedar Tatwawadi, Kaushik
Chakrabarti, Yi Mao, Oleksandr Polozov,
and Weizhu Chen. 2018. IncSQL: Training
incremental text-to-SQL parsers with
non-deterministic oracles. Computing
Research Repository. arXiv:1809.05054.

Srivastava, Nitish, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from

331

https://doi.org/10.1377/hlthaff.24.5.1103
https://doi.org/10.1377/hlthaff.24.5.1103
https://pubmed.ncbi.nlm.nih.gov/16162551
https://doi.org/10.18653/v1/D19-1624
https://doi.org/10.18653/v1/D19-1624
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.18653/v1/P16-2022
https://doi.org/10.18653/v1/P16-2022
https://doi.org/10.1016/j.eswa.2008.02.021
https://doi.org/10.1016/j.eswa.2008.02.021
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.3115/116580.116612
https://doi.org/10.3115/116580.116612

Computational Linguistics Volume 47, Number 2

overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Srivastava, Rupesh K., Klaus Greff, and Jrgen
Schmidhuber. 2015. Training very deep
networks. Advances in Neural Information
Processing Systems, pages 2377–2385.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. Advances in Neural Information
Processing Systems, 30:5998–6008.

Vinyals, Oriol, Meire Fortunato, and
Navdeep Jaitly. 2015. Pointer networks.
Advances in Neural Information Processing
Systems, pages 2692–2700.

Wang, Bailin, Richard Shin, Xiaodong Liu,
Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and
linking for text-to-SQL parsers. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 7567–7578. Online. https://doi
.org/10.18653/v1/2020.acl-main.677

Wang, Chenglong, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh.
2018. Robust text-to-SQL generation with
execution-guided decoding. Computing
Research Repository, arXiv:1807.03100.

Xu, Xiaojun, Chang Liu, and Dawn Song.
2017. SQLnet: Generating structured
queries from natural language without
reinforcement learning. Computing Research
Repository, arXiv:1711.04436.

Yavuz, Semih, Izzeddin Gur, Yu Su, and
Xifeng Yan. 2018. What it takes to achieve
100% condition accuracy on WikiSQL. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 1702–1711. Brussels.
https://doi.org/10.18653/v1/D18-1197

Yoon, Deunsol, Dongbok Lee, and Sangkeun
Lee. 2018. Dynamic self-attention:
Computing attention over words
dynamically for sentence embedding.
Computing Research Repository,
arXiv:1808.073837.

Yu, Tao, Zifan Li, Zilin Zhang, Rui Zhang,
and Dragomir Radev. 2018a. TypeSQL:

Knowledge-based type-aware neural
text-to-SQL generation. In Proceedings of the
2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 588–594. New Orleans, LA.

Yu, Tao, Michihiro Yasunaga, Kai Yang, Rui
Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. 2018b. SyntaxSQLnet:
Syntax tree networks for complex and
cross-domain text-to-SQL task. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 1653–1663. Brussels.
https://doi.org/10.18653/v1/D18-1193

Yu, Tao, Rui Zhang, Kai Yang, Michihiro
Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle
Roman, Zilin Zhang, and Dragomir Radev.
2018c. Spider: A large-scale human-labeled
data set for complex and cross-domain
semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 3911–3921. Brussels.
https://doi.org/10.18653/v1/D18-1425

Zelle, John Marvin and Raymond Joseph
Mooney. 1996. Learning to parse database
queries using inductive logic
programming. In Proceedings of the
Thirteenth National Conference On
Artificial Intelligence, volume 2,
pages 1050–1055. Portland, OR.

Zhang, Rui, Tao Yu, Heyang Er, Sungrok
Shim, Eric Xue, Xi Victoria Lin, Tianze Shi,
Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019. Editing-based SQL
query generation for cross-domain
context-dependent questions. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5341–5352.
Hong Kong.

Zhong, Victor, Caiming Xiong, and Richard
Socher. 2017. Seq2SQL: Generating
structured queries from natural
language using reinforcement learning.
Computing Research Repository,
arXiv:1709.00103.

332

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/D18-1197
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425

	Introduction
	Task Definition
	Generating a SELECT Statement
	Input Encoder
	Sketch-based Slot-Filling Decoder

	Two Input Manipulation Methods
	JOIN Table Filtering
	Supplemented Column Names

	Related Work
	Experiment
	Experiment Setup
	Evaluation Results
	Evaluation on Different Data Sets
	Error Analysis

	Conclusion

