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Abstract

The predominant approach of visual question answering (VQA) relies on encoding the image
and question with a “’black box” neural encoder and decoding a single token into answers such
as ’yes” or "no”. Despite this approach’s strong quantitative results, it struggles to come up with
human-readable forms of justification for the prediction process. To address this insufficiency,
we propose LRRA[Look,Read,Reasoning,Answer],a transparent neural-symbolic framework for
visual question answering that solves the complicated problem in the real world step-by-step
like humans and provides human-readable form of justification at each step.Specifically, LRRA
learns to first convert an image into a scene graph and parse a question into multiple reasoning
instructions. It then executes the reasoning instructions one at a time by traversing the scene
graph using a recurrent neural-symbolic execution module.Finally, it generates answers to the
given questions and makes corresponding marks on the image. Furthermore,we believe that the
relations between objects in the question is of great significance for obtaining the correct answer,
so we create a perturbed GQA test set by removing linguistic cues (attributes and relations) in the
questions to analyze which part of the question contributes more to the answer.Our experiments
on the GQA dataset show that LRRA is significantly better than the existing representative model
(57.12% vs. 56.39%). Our experiments on the perturbed GQA test set show that the relations
between objects is more important for answering complicated questions than the attributes of
objects.

Keywords:Visual Question Answering, Relations Between Objects, Neural-Symbolic Reason-
ing.

1 Introduction

Currently, the predominant approach to visual question answering (VQA)relies on encoding the image
and question with a black-box transformer encoder (H.Tan et al., 2019; J.Lu et al., 2020). These works
carry out complex calculations behind the scenes but only produce a single token as prediction output
(for example, “yes”, ’no”) and they can not provide an easy-to-understand form of justification consistent
with their predictions. In addition, recent studies have shown that the end-to-end model can be easily
optimized to learn the shortcut bias” of the data set instead of reasoning (for example, the model uses
the implicit fused question representations (S.Antol et al., 2015; Y. Goyal et al., 2017), the answer
can be directly inferred according to certain language patterns), which tend to undesirably adhere to
superficial or even potentially misleading statistical associations(A.Agrawal et al., 2016), so they do not
really understand the question, and often perform poorly in the face of complex reasoning problems in
the real world. In order to solve the above insuficiencys, we learn the correct problem solving process
step-by-step mimicking humans and propose a neural-symbolic approach for visual question answering
that fully disentangles vision and language understanding from reasoning. A human would first (1)
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look at the image, (2) read the question, (3) reason and think (4) answer questions. Following this
intuition, our model deploys four neural modules, each mimicking one problem solving step that humans
would take: A scene graph generation module first converts an image into a scene graph; A semantic
parsing module parses each question into multiple reasoning instructions; A neural execution module
interprets reason instructions one at a time by traversing the scene graph in a recurrent manner; Answer
generation module predicts the answer with the highest probability. These four modules are connected
through hidden states instead of explicit outputs. Therefore, the entire framework can be trained end-
to-end from pixels to answers. In addition, since LRRA also produces human-readable output from
individual modules during testing, we can easily locate the error by checking the modular output. Our
experiments on the GQA dataset show that LRRA is significantly better than the existing representative
model (57.12% vs. 56.39%).Furthermore,we believe that the relations between objects in the question is
of great significance for obtaining the correct answer,so we create a perturbed GQA test set by removing
linguistic cues (attributes and relations) in the questions to analyze which part of the question contributes
more to the answer.Ablation experiment further show that the relations between objects is more important
for answering complicated questions than the attributes of objects.To summarize, the main contributions
of our paper are threefold:

* When we give the answer, we also make the corresponding mark on the image to improve explain-
ability and discourage superficial guess for answering the questions.

* We propose an end-to-end trainable modular VQA framework LRRA. Compared with contempo-
rary black-box methods, it has interpretability and enhanced error analysis capabilities.

* We create a perturbed GQA test set that provides an effificient way to validate our approach on the
perturbed dataset.The dataset will be announced soon.

2 Related Work

Visual Reasoning. It is the process of analyzing visual information and solving problems based on it.
The most representative benchmark of visual reasoning is GQA(Hudson et al., 2019) a diagnostic visual
Q&A dataset for compositional language and elementary visual reasoning. The majority of existing
methods on GQA can be categorized into two families: 1) holistic approaches (J.Johnson et al., 2017;
A.Santoro et al., 2017; E. Perez et al., 2018; D.A.Hudson et al., 2018), which embed both the image
and question into a feature space and infer the answer by feature fusion; 2) neural module approaches (J.
Andrea et al., 2016; R.Hu et al., 2017; J. Johnson et al., 2017; D. Mascharka et al., 2018; R. Hu et al.,
2018), which first parse the question into a program assembly of neural modules, and then execute the
modules over the image features for visual reasoning. Our LRRA belongs to the second one but replaces
the visual feature input with scene graphs.

Neural Module Networks. They dismantle a complex question into several subtasks, which are eas-
ier to answer and more transparent to follow the intermediate outputs. Modules are predefined neural
networks that implement the corresponding functions of subtasks, and then are assembled into a layout
dynamically, usually by a sequence-to-sequence program generator given the input question. The as-
sembled program is finally executed for answer prediction(R.Hu et al., 2017; J. Johnson et al., 2017; D.
Mascharka et al., 2018). In particular, the program generator is trained based on the human annotations
of desired layout or with the help of reinforcement learning due to the nondifferentiability of layout se-
lection. Recently, Hu et al. (R. Hu et al., 2018) proposed StackNMN, which replaces the hard-layout
with soft and continuous module layout and performs well even without layout annotations at all. Our
LRRA experiments on GQA follows their softprogram generator.

Recently, NS-VQA(K. Yi et al., 2018) firstly built the reasoning over the object-level structural
scene repre-sentation, improving the accuracy on CLEVR from the previous state-of-the-art 99.1% (D.
Mascharka et al., 2018) to an almost perfect 99.8%. Their scene structure consists of objects with de-
tected labels, but lacked the relationships between objects, which limited its application on real-world
datasets such as GQA(Hudson et al., 2019). In this paper, we propose a much more generic framework
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for visual reasoning over scene graphs, including object nodes and relationship edges represented by ei-
ther labels or visual features. Our scene graph is more flexible and more powerful than the table structure
of NS-VQA.

Scene Graphs. This task is to produce graph representations of images in terms of objects and their
relationships. Scene graphs have been shown effective in boosting several vision-language tasks (J.
Johnson et al., 2015; D. Teney et al., 2017; X. Yin et al., 2018). However, scene graph detection is
far from satisfactory compared to object detection (D. Xu et al., 2017; R. Zellers et al., 2018; Y. Li et
al., 2018). To this end, our scene graph implementation also supports cluttered and open-vocabulary
in real-world scene graph detection, where the nodes are merely Rol features and the edges are their
relations.

3 Approach

We build our neural module network over scene graphs to tackle the visual reasoning challenge. As
shown in Fig 1, given an input image andquestion, we first parse the image into a scene graph and parse
the question into a module program, an then execute the program over the scene graph. Besides, our
approach are totally attention-based,making all theintermediate reasoning steps transparent.The model
framework as shown in Figure 1.

Scene Graph Generation Given an image I, its corresponding scene graph represents the objects
in the image (e.g., girl, hamburger) as nodes and the objects’ pairwise relationships (e.g., holding) as
edges. The fifirst step of scene graph generation is object detection. We use DETR(Y. Li et al., 2018)
as the object detection backbone since it removes the need for for hand-designed components like non-
maximum suppression. DETR(Y. Li et al., 2018) feeds the image feature from ResNet50 (K. He et
al., 2016) into a nonau-toregressive transformer model, yielding an orderless set of N object vectors
[01,02, -+, 0n],as in (1). Each object vector represents one detected object in the image. Then, for each
object vector, DETR uses an object vector decoder (feed-forward network) to predict the corresponding
object class (e.g., girl), and the bounding box in a multi-task manner. Since the set prediction of N object
vectors is orderless, DETR calculates the set prediction loss by first computing an optimal matching
between predicted and ground truth objects, and then sum the loss from each object vector. N is fifixed
to 100 and DETR creates a special class label “no object”, to represent that the object vector does not
represent any object in the image.

[017023"'>0N]:DETR (1)

The object detection backbone learns object classes and bounding boxes, but does not learn object
attributes, and the objects’ pairwise relationships. We augment the object vector decoder with an ad-
ditional object attributes predictor. For each attribute meta-concept (e.g., color), we create a classifier
to predict the possi-ble attribute values (e.g., red, pink). To predict the relationships, we consider all
N(N — 1) possible pairs of object vectors, [e1, €2, - - -, enx(n—1)]- The relation encoder transforms each
object vector pair to an edge vector through feed-forward and normalization layers as in (2). We then
feed each edge vector to the relation decoder to classify its relationship label. Both object attributes and
inter-object relationships are supervised in a multitask manner. To handle the object vector pair that does
not have any relationship, we use the “no relation” relationship label.

We construct the scene graph represented by IV object vectors and N (N — 1) edge vectors instead of
the symbolic outputs, and pass it to downstream modules.

e; ; = LayerNorm(FeedForward(o; & 0;)) (2)

Semantic Parsing The semantic parser works as a “compiler” that translates the question tokens
(1,92, -+, qq) into an neural executable program, which consists of multiple instruction vectors. We
adopt a hierarchical sequence generation design: a transformer model (K. He et al., 2016) first parses the
question into a sequence of Minstruction vectors, [iy, 2, -, ips]. The it" instruction vector will corre-
spond exactly to the i*" execution step in the neural execution.engine. To enable human to understand
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the semantics of the instruction vectors, we further translate each instruction vector to human-readable
text using a transformer-based instruction vector decoder. We pass the M instruction vectors rather than
the human-readable text to the neural execution module.

[i1,42, ..., ipr] = Transformer(qy, ..., ¢Q) 3)

Visual Reasoning The neural execution engine works in a recurrent manner: At the m!" time step,
the neural execution engine takes the m*" instruction vector ( i,,) and outputs the scene graph tra-versal
result. Similar to recurrent neural networks, a history vector that summarizes the graph traversal states
of all nodes in the current time-step would be passed to the next time-step. The neural execution engine
operates with graph neural network. Graph neural network generalizes the convolution operator to graphs
using the neighborhood aggregation scheme(P. W. Battaglia et al., 2018; K. Xu et al., 2019). The key
intuition is that each node aggregates feature vectors of its immediate neighbors to compute its new
feature vector as the input for the following neural layers. Specifically, at m*" time step given a node
as the central node, we first obtain the feature vector of each neighbor (f;"* ) through a feed-forward
network with the following inputs: the object vector of the neighbor (o ) in the scene graph, the edge
vector between the neighbor node and the central node (e, centrqr) in the scene graph, the (m — 1)t
history vector (h,,—1 ), and the m!" instruction vector ( 4,,).

f7* = FeedForward(oy, @ ef, central ® hm—1 ® m) 4)

We then average each neighbor’s feature vector as the context vector of the central node

m 1 o m
Ceentral = ? Z fk (5)
k=1

Next, we perform node classification for the central node, where an “1” means that the corre-sponding
node should be traversed at the m!” time step and “0” otherwise. The inputs of the node classifier are:
the object vector of the central node in the scene graph, the context vector of the central node, and the
m!" instruction vector.

Sm

vl = Soft max(FeedForward(ocentrar ® Coopiral © m)) (6)

where s7 ... 1s the classification confidence score of central node at mt" time step. The node clas-
sification results of all nodes constitute a bitmap as the scene graph traversal result. We calculate the
weighted average of all object vectors as the history vector (h,, ), where the weight is each node’s clas-
sification confidence score.

N
hin =Y si" - 0; (7

Predict answer VQA is commonly formulated as a classification problem where the model learns to
answers with one token (e.g., “yes” or “no”). To do this, the language output at the last step is passed to
a feed-forward network with softmax activation to obtain the distribution for the predicted answers.

w = atgmaz(softmax(why)) (8)

End-to-End Training: From Pixels to Answers We connect four modules through hidden states rather
than symbolic outputs(W. Liang et al., 2020). Therefore, the whole framework could be trained in an
end-to-end manner, from pixels to answers. The training loss is simply the sum of losses from all four
mod-ules. Each neural module receives supervision not only from the module’s own loss, but also from
the gradient signals backpropagated by downstream modules. We start from the pretrained weights of
DETR for the object detection backbone and all other neural modules are randomly initialized.
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Figure 1: The framework of LRRA model

4 Experiments

4.1 Dataset

We demonstrate the value and performance of our model on the “balancedsplit” of GQA vl1.1, which
contains 1M questions over 140K images with a more balanced answer distribution. Compared with
the VQA v2.0 dataset (Ren, S et al., 2015), the questions in GQA are designed to require multi-hop
reasoning to test the reasoning skills of developed models. Compared with the CLEVR dataset (W. Chen
et al., 2019), GQA greatly increases the complexity of the semantic structure of questions, leading to
a more diverse function set. The real-world images in GQA also bring in a bigger challenge in visu-al
understanding. Following (W. Chen et al., 2019), the main evaluation metrics used in our experiments
are accuracy, validity and distribution.

4.2 Implementation Details

We first pre-trained DETR for object detection, and then fix the parameters in the backbone to train the
scene graph generation model. SGD is used as the optimizer, with initial learning rate le-2 for both
training stages. For question parser, we train with learning rate 7x10-4 for 20,000 iterations. The batch
size is fixed to be 64.

4.3 Results

We evaluated our method on the GQA dataset (Hudson et al., 2019), which contains 1.5 million questions
out of 1.1 million images. We use standard data set splitting. In the training process, we use the basic
facts of the scene graph, reasoning explanation, and the traversal result of the scene graph for each step.
During the test, we only used images and questions. We will present the state-of-the-art model LXMERT
(H.Tan et al., 2019) as a baseline. We report the accuracy of the answers of LXMERT and LRRA.
VQA We compare our performance both with baselines, as appear in (Hudson et al., 2019), as well
as with other prior arts of VQA model. Apart from the standard accuracy metric and the more detailed
type-based diagnosis (i.e. Binary, Open), we get further insight into reasoning capabilities by reporting
three more metrics (Hudson et al., 2019): Validity, and Distribution. The validity metric checks whether
a given answer is in the question scope, e.g. responding some color to a color question. The distribution
score measures the overall match between the true answer distribution and the model predicted distri-
bution (for this metric, lower is better). As Table 1 shows, our model achieves competitive accuracy
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among.
Model Accuracy Distribution | Binary Validity
Language (Hudson et al., 2019) 41.07 16.63 60.39  95.70
BottomUp (Anderson.P et al.,2018) 49.74 5.60 65.64 94.13
MAC (D.A.Hudson et al., 2018) 54.05 5.14 70.49  96.16
LCGN (Hu, R et al.,2019) 56.28 4.30 74.87 96.48
Vision (Hudson et al., 2019) 18.93 19.27 36.05 -
LXMERT (H.Tan et al., 2019) 56.39 4.80 75.16  96.35
Ours 57.12 3.75 74.87 96.87

Table 1: VQA results on GQA data sets.

Table 2. The accuracy (%) of our question parser and symbolic executor. Program Acc. repre-sents the
accuracy of generated program, which is evaluated by the accuracy of operation token, arguments token
and the function (It is positive when both operation and arguments in a function are correct). Executor
Acc. represents the accuracy of the answers obtained by our deterministic part of program executor
executed on the ground-truth scene graph, by using ground-truth (G.T.) and generated (Gen.) program.

Data Split Program Acc Executor Acc
Operation Arguments Function | G.T  Gen

Testdev 96.65 80.49 81.34 - -
Val 97.49 82.50 81.75 | 96.84 90.46

Table 2: The accuracy of LRRA model in question parser and symbolic executor

Re-posuton GQA Dataset and Additional Analysis Finally, we use a comprehensive list of attributes
obtained by (W. Chen et al., 2019) and mask them using a prede-fined mask token. For effectively mask-
ing relationships, we use Spacy POS-Tagger (M. Honnibal et al., 2017) and mask verbs (VB) and prepo-
sitions (PRPN) from the question. The results are reported in Table 3. For attributes, we see that LRRA
performance drops by 21.35% as compared to 8.07% drop in LXMERT, while for relations, the margin is
more signifificant at 27.73% and 18.33% respectively, thus providing us a strong convergent evidence for
our hypothesis that the relations between objects is more important for answering complicated questions
than the attributes of objects.

Model Acc Drop(from—to)
Relations masked

LXMERT | 18.33% (55.49%—37.16%)
LRRA 27.73% (57.15%—29.39%)
Attributes masked

LXMERT | 8.07% (55.49%—47.42%)
LRRA 21.35% (57.15%—35.80%)

Table 3: Perturbation analysis on testdev set.

4.4 Example analysis

Illustrative execution trace generated by our Neuro-Symbolic Concept Learner on the GQA dataset.
Execution traces A and B shown in the figure leads to the correct answer to the question.

Our model effectively learns visual concepts from data. The symbolic reasoning process brings trans-
parent execution trace and can easily handle quantities (e.g., object counting in Example A).
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Example B.

Example A.
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Figure 2: Example of GQA data set generation

5 Conclusion

We present a transparent neural-symbolic reasoning framework for visual question answering, providing
a human-readable form of justification at each step. The modular design of our methodology enables the
whole framework to be trainable end-to-end. Our experiments on GQA dataset show that LRRA achieves
high accuracy on answer generation task, outperforming the state-of-the-art LXMERT results. In addi-
tion, Our experiments on the perturbed GQA test set show that the relations between objects is more
important for answering complicated questions than the attributes of objects. Furthermore LRRA per-
formance drops significantly more than LXMERT, when object attributes and relationships are masked,
hence indicating that LRRA makes a step forward,towards truly understanding the question.
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