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Abstract

Supervised models can achieve very high ac-
curacy for fine-grained text classification. In
practice, however, training data may be abun-
dant for some types but scarce or even non-
existent for others. We propose a hybrid ar-
chitecture that uses as much labeled data as
available for fine-tuning classification models,
while also allowing for types with little (few-
shot) or no (zero-shot) labeled data. In par-
ticular, we pair a supervised text classifica-
tion model with a Natural Language Inference
(NLI) reranking model. The NLI reranker uses
a textual representation of target types that al-
lows it to score the strength with which a type
is implied by a text, without requiring training
data for the types. Experiments show that the
NLI model is very sensitive to the choice of
textual representation, but can be effective for
classifying unseen types. It can also improve
classification accuracy for the known types of
an already highly accurate supervised model.1

1 Task 2: Fine-grained Classification of
Socio-political Events

Fine-grained text classification assigns a type label
to a text passage from an extended set of specific
types. The types are often domain-specific and
more focused than generic, coarse-grained topics.
Creating an exhaustive list of such types for a do-
main or task a priori is challenging. Fine-grained
type systems for a particular domain and task often
evolve, with new, previously unseen types emerg-
ing. So some types may have many labeled exam-
ples available, some types may have few or none.
In such a scenario, a flexible text classifier should
be able to use training data when available, but also
employ few-shot and zero-shot techniques when
training data is limited or absent.

1Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited)

The Fine-grained Classification of Socio-
political Events task (Haneczok et al., 2021) at the
CASE 2021 workshop (Hürriyetoğlu et al., 2021)
simulates the scenario of text classification with an
evolving, fine-grained type system. There are 25
core, fine-grained event types capturing political
violence, demonstrations, and other politically im-
portant events. The 25 types are from the ACLED
(Armed Conflict Location & Event Data Project)
event taxonomy (Raleigh et al., 2010). Copious
training data exists for these types. Subtask 1 evalu-
ates classification to these “seen” or “known” types
only. Beyond the core types, subtask 2 identifies
three new “unseen” types with no training data.
Definitions of these three types were provided to
task participants early, allowing exploration of zero-
shot techniques on the types, but also few-shot tech-
niques since the development window would allow
enough time to annotate a handful of examples. Fi-
nally, subtask 3 introduces two additional unseen
types revealed only at evaluation time. Subtask 3
evaluates true zero-shot techniques. Table 1 lists
the type labels and names for the three subtasks.

For the task evaluation, organizers shared an
evaluation set of 1,019 short texts (mostly one or
two sentences each) with index numbers. 829 of
the texts had gold labels from the 25 ACLED event
types; 118 had gold labels from the three subtask2
types; 72 had gold labels from the two unseen sub-
task3 types. These numbers were not known at
submission time. Submissions consisted of pairs of
an index number with a single event type prediction
for the text associated with the index. For scoring,
the organizers removed entries whose gold event
type was not among those being tested for the given
subtask, and computed micro, macro, and weighted
Precision, Recall, and F1-score. Weighted scores
are the average of the per-type scores (like macro
averages), but with the type scores weighted by the
number of gold instances for the type.
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Type Label Type Name
subtask 1
ABDUCT DISSAP abduction
AGREEMENT agreement
AIR STRIKE air strike
ARMED CLASH armed clash
ARREST arrest
ART MISS ATTACK artillery, missile attack
ATTACK attack
CHANGE TO GRO... change to group activity
CHEM WEAP chemical weapon
DISR WEAP disrupted weapons use
FORCE AGAINST... excessive force against protesters
GOV REGAINS TER...government regains territory
GRENADE grenade
HQ ESTABLISHED headquarters established
MOB VIOL mob violence
NON STATE ACT... non-state actor overtakes territory
NON VIOL TERR... non-violent transfer of territory
PEACE PROTEST peaceful protest
PROPERTY DISTR... property destruction
PROTEST WITH I... protest with intervention
REM EXPLOS remote explosive
SEX VIOL sexual violence
SUIC BOMB suicide bomb
VIOL DEMONSTR violent demonstration
subtask 2
ORG CRIME organized crime
NATURAL DISAST... natural disaster
MAN MADE DISAS... man-made disaster
subtask 3
ATTRIB attribution of responsibility
DIPLO diplomatic event

Table 1: Type labels (some truncated) and names for
the 25 known types of subtask 1, the three unseen types
of subtask 2, and the two unseen types of subtask 3

Our approach to fine-grained text classification
mirrors the evolving type system scenario: a hy-
brid system that is fine-tuned with labeled data
when available, but one that can also classify text
with types having little or no labeled data. Our
approach is first to apply a supervised text classifi-
cation model to produce a ranked list of predicted,
known types. The highest scoring types from the
classification model are combined with any unseen
types and passed to a Natural Language Inference
(NLI) reranking model. The NLI reranker rescores
the types on the extent to which they are implied
by the input text.

2 System Architecture

We experimented with many different combina-
tions of supervised, few-shot, and zero-shot tech-
niques and submitted multiple such combinations
for each of the Case Task 2 subtasks. Despite their
differences, all submissions are built on the same
cascaded architecture of a supervised neural clas-
sification model followed by a neural NLI-based

reranking model. The submissions differ on the ex-
act combination of classification model and rerank-
ing model.

For each sentence, the classification model pro-
duces a ranked list of predicted types with scores,
but only for the types the model was trained on. If
the score of the top-ranked predicted type is below
threshold, or if the top-ranked predicted type is
OTHER, the top N predicted types PN are passed
to the reranking model along with all unseen types
U . The reranker independently scores each of the
types in PN ∪ U . The highest scoring type is the
final prediction for the sentence.

For each of the known and unseen types PN ∪U
to be submitted to the reranker, we generate a tex-
tual representation, based only on the definition of
the type (not labeled examples). See section 4.2.1
for details on how we generate textual represen-
tations. The NLI reranking model scores each of
these representations on the extent to which they
are implied by the input text. Figure 1 illustrates
the general architecture.

3 Supervised Sequence Classification for
Seen Types

For the text classifier we used a standard
transformer-based sequence classification model
(Vaswani et al., 2017) with a pre-trained language
model. Based on previous experience with such
text classification systems, we chose RoBERTa
(Liu et al., 2019). Specifically, we started with
the roberta-large model from Hugging Face
(Wolf et al., 2020).

3.1 Data

For the 25 known ACLED event types, we used the
ACLED-C-III dataset derived from the ACLED
source data by (Piskorski et al., 2020). This
dataset contains 588,940 short text passages each
labeled with exactly one of the 25 ACLED event
types. The dataset is organized in four folds,
where each fold is a different random split of the
588,940 instances into 80% training and 20% test
sets. For our 25-type base classifier we fine-tuned
roberta-large on the training subset (471,152
instances) of fold 1 of the Piskorski dataset. For
development experiments to arrive at our final ar-
chitectures and parameters, we used subsets of the
fold 1 test subset (117,788 instances). Piskorski
also provides smaller partitions of the dataset used
in their learning curve experiments. In our smaller
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Figure 1: Cascaded Text Classification + NLI Reranking architecture. The classification model is trained on known
types only and predicts a ranked list of known types. Any unseen types are added to the top N predicted known
types for reranking. The reranking model may be fine-tuned for known types, in which case it is supervised (or
few-shot supervised) for those types. The architecture is zero-shot for unseen types.

models (including roberta-FT28, see section
3.2), we used the 10% partition of the fold 1 train-
ing data.

In addition to the base classifier, we experi-
mented with few-shot supervision for classifying
the three unseen event types of subtask 2. We
manually created a small training corpus of short
texts (one or two sentences each) from Wikipedia
and Wikinews. We found relevant documents
by browsing the Wikipedia/Wikinews Categories
hierarchies (for example, https://en.wikipedia.
org/wiki/Category:Natural_disasters and
https://en.wikinews.org/wiki/Category:

Crime_and_law). Within relevant documents, we
chose short text passages that described a single
event of the target type. These passages were
often simply the first one or two sentences in the
document. An example appears in Figure 2. We
originally collected 142 texts total: 56 texts for
MAN MADE DISASTER; 55 texts for NATU-
RAL DISASTER; 31 texts for ORG CRIME.
For tuning experiments we created an additional
test corpus of 20 short texts each for the three
types. For the classification model used for final
submissions on the challenge evaluation data,
we combined both small corpora (along with an
additional 20 texts for ORG CRIME) for training
on a total of 222 texts balanced among the three
types.

3.2 Models

We fine-tuned roberta-large for sequence
classification (with a linear classification layer) on
the data described in section 3.1 to produce two

Search and rescue workers in Arkansas continue
to search the Little Missouri and Caddo Rivers
for survivors of Friday’s flash flood. At least
nineteen people were killed when the flood swept
through the Albert Pike Recreation Area camp-
ground in the Ouachita National Forest in the
southwestern portion of the state.

Figure 2: A short NATURAL DISASTER text consist-
ing of the first two sentences of a Wikinews article
under the Category https://en.wikinews.org/

wiki/Category:Disasters_and_accidents.

classification models:

• roberta-FT25: fine-tuned on the 471,152
instances of ACLED training data for the 25
base ACLED event types

• roberta-FT28: fine-tuned on the 10% par-
tition of the ACLED training data (47,115 in-
stances) plus additional instances for the three
unseen types of subtask 2 (142 instances dur-
ing development, 222 for the final models)

Given the disparity in the number of training
instances, we consider roberta-FT28 to be su-
pervised for the 25 types and few-shot supervised
for the three unseen types.

Clock time for training roberta-FT25 was
30 hours on four v100 GPUs. The time to train
roberta-FT28 was 4.6 hours on four v100
GPUs.

Experiments in (Piskorski et al., 2020) also
trained models on the ACLED-C-III data, with

https://en.wikipedia.org/wiki/Category:Natural_disasters
https://en.wikipedia.org/wiki/Category:Natural_disasters
https://en.wikinews.org/wiki/Category:Crime_and_law
https://en.wikinews.org/wiki/Category:Crime_and_law
https://en.wikinews.org/wiki/Category:Disasters_and_accidents
https://en.wikinews.org/wiki/Category:Disasters_and_accidents
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model trdata µF macF wF
Piskorski 100% 94.3 86.0 94.2
roberta-FT25 100% 94.7 87.3 94.7
Piskorski 10% >90 >70 >90
roberta-FT28 10% 93.5 77.1 93.5

Table 2: Comparison of micro F1 score, macro
F1 score, and weighted F1 score on test fold 1 of
the ACLED-C-III dataset. Piskorkski refers to
the bert-base model fine-tuned by Piskorski et al.
(2020), which was the top performer on test fold 1 in
their experiments. Test scores for the Piskorski model
trained on 10% of the training data are estimated from
the graphs in Piskorski et al. (2020).

metrics reported on test fold 1. So those results
can be compared directly with our models. Perfor-
mance of our model is consistent with their results
fine-tuning bert-base (see Table 2).

4 NLI for Unseen Types

Pretrained language models (PLMs) have proven
to be very powerful for downstream NLP tasks
when they are fine-tuned on data specific to the
task. Recently, the research community has begun
to observe that PLMs fine-tuned on large amounts
of data for complex end-to-end tasks can often be
leveraged for new tasks without further fine-tuning.
Fine-tuning PLMs on complex tasks such as Ques-
tion Answering (QA) and Natural Language Infer-
ence (NLI) infuses models with high-level knowl-
edge useful for other tasks. By choosing an ap-
propriate task representation, QA models and NLI
models can be used as “pre-tuned” models for few-
shot (Schick and Schütze, 2021) or even zero-shot
(Yin et al., 2019) text classification.

Typically, an NLI model takes two texts (sen-
tence1 and sentence2) and predicts whether sen-
tence1 implies sentence2, with a given confidence
score. To re-purpose an NLI model for zero-shot
text classification, sentence1 is the text to be classi-
fied and sentence2 is some textual representation
of a type. The classification score for each type
is the NLI score, which represents the extent to
which the textual representation of the type is im-
plied by sentence1. Determining implication is not
just based on surface lexical overlap between the
sentences. In training, the models learn encodings
for both sentences, supervised by a large corpus
of hand-labeled textual entailment pairs (such as
the 433k sentence pairs in the multi-genre RepEval
corpus (Williams et al., 2018)).

For the current work, we explored using
large, pre-tuned NLI models for few-shot and
zero-shot classification. We experimented with
NLI extensions to both BART (Lewis et al.,
2020) and RoBERTa (Liu et al., 2019) Lan-
guage Models. For both of these, large mod-
els fine-tuned for the NLI task are available
from Hugging Face: bart-large-mnli and
roberta-large-mnli. Our experiments
tended to favor RoBERTa (see section 4.3.3).

We also experimented with further fine-tuning
the NLI models for the 25 subtask 1 types and the
three subtask 2 types (sections 4.3.1 and 4.3.2).

4.1 Type Representations

A crucial design choice when using NLI for zero-
shot text classification is the choice of represen-
tation of the types. We experimented with full
English descriptions, keywords, and type names.
Examples of each representation for a sample sen-
tence appear in Table 3.

The full English descriptions are the type defini-
tions taken verbatim from source documentation.
For the original 25 types, these were taken from
ACLED directly. for the five unseen types, defini-
tions were provided by the organizers. The type
names were taken from the same source documenta-
tion. The keywords were extracted manually from
the definitions, with no editing other than deleting
text from the definition. The disjoint keywords are
exactly the same as the keywords, the difference
being how they are submitted to the NLI model.

Table 4 shows how critical the choice of type
representation is. The superiority of the name rep-
resentation over definition and keywords was ini-
tially surprising, since it contains so much less
information. We hypothesized that having multiple
distinct terms covering more of the breadth of a
type could help the NLI model, but that specific
terms irrelevant to a given text were more harmful
in confusing the model than the underspecificity of
a single generic phrase. For example, the presence
of terms such as “pandemic”, “volcano”, and “wild-
fire” would be distracting to a model when trying
to determine whether a sentence about avalanches
implies a natural disaster. To test the hypothesis,
we considered a fourth type representation: dis-
junctive keywords. Rather than a single type rep-
resentation in which all keywords appear together,
with disjunctive keywords, each keyword for a type
is considered an independent representation of the
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sentence1 A hacker group called DarkSide is behind the cyberattack on Colonial Pipeline that shut
down a major oil pipeline over the weekend.

Type Rep’n sentence2
definition Organized crime: This event type covers incidents related to activities of criminal groups,

excluding conflict between such groups: smuggling, human trafficking, counterfeit prod-
ucts, property crime, cyber crime, assassination (for criminal purposes), corruption, etc.
(list is non-exhaustive).

name organized crime
keywords organized crime, smuggling, human trafficking, counterfeit products, property crime, cyber

crime, assassination, corruption
disj-kw organized crime | smuggling | human trafficking | counterfeit products | property crime |

cyber crime | assassination | corruption

Table 3: Example type representations for a sentence of the type ORG CRIME. For the disj-kw representation,
each phrase in the pipe-delimited list is given separately to the NLI model as sentence2.

Type rep’n µAcc macAcc
definition 0.5461 0.5672
keywords 0.4610 0.5243

name 0.8723 0.8456
disj-kw 0.8936 0.9048

Table 4: Effect of different type representations on
zero-shot accuracy for the 142-example dev set for the
three unseen types.

type. The extent to which a text implies a type t
is the maximum score produced by the NLI model
for any of t’s keywords kw(t)i.

4.2 Data

The original 25 ACLED event types include the
type OTHER, which indicates a closed-world as-
sumption: any event that is not one of the 24 main
event types is of type OTHER. In the evolving type
system scenario, the closed-world assumption does
not hold. Texts labeled OTHER in the classifier
training data may describe events of the unseen
types. For this reason, we trained our classifiers
(section 3) on all known types (including OTHER),
but remove OTHER from the top N types submitted
to the reranker. We also exclude OTHER instances
from any training data used to fine-tune the rerank-
ing models.

To compare zero-shot reranking and reranking
fine-tuned to known types, we prepared two new
datasets.

For the 24 ACLED event types (ignoring
OTHER), we created a training dataset derived
from a subset of 10% of Piskorki’s fold 1 train-

ing set (section 3.1). This initial data gave 46,886
positive instances. We added two negative exam-
ples for each positive example giving 140,658 total
instances. The process for generating both posi-
tive and negative examples is described below in
section 4.2.1.

To fine tune a few-shot supervised NLI model
for the three unseen types of subtask 2, we cre-
ated a dataset derived from the small dataset de-
scribed in section 3.1. The 222 instances from that
dataset provided the positive examples, to which
we again added two negatives each, giving 666 total
instances.

4.2.1 Labeling NLI Data
The labeled data for classification (section 3.1)
consists of sentences with gold event type labels
(REM EXPLOS, ORG CRIME, etc.). We need to
adapt the data in two ways to use it for fine-tuning
NLI models.

First, the labels must be replaced by a textual
representation of the class, which will be used as
sentence2 by the NLI model. We chose a disjunc-
tive keyword representation as described in sec-
tion 4.1. To create positive examples, we paired
each sentence with each of the disjunctive key-
words of the gold label. We then used the untuned
roberta-large-mnli model to score each of
these pairs to determine which of the disjunctive
keywords was most strongly implied by the sen-
tence. This gave us the best single keyword to use
as sentence 2 for each positive training sentence.

Second, fine-tuning the model requires negative
examples. For each positive example, we created
two negative examples by replacing the gold type
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positive s1 A hacker group called DarkSide is behind the cyberattack on Colonial Pipeline
that shut down a major oil pipeline over the weekend.

s2 cyber crime
random
negative

s1 A hacker group called DarkSide is behind the cyberattack on Colonial Pipeline
that shut down a major oil pipeline over the weekend.

s2 forced disappearance
imposter
negative

s1 A hacker group called DarkSide is behind the cyberattack on Colonial Pipeline
that shut down a major oil pipeline over the weekend.

s2 attack

Table 5: Example positive and negative instances generated from a sentence whose gold event type label is
ORG CRIME. Sentence 2 (s2) for the positive instance is the keyword from the gold event type keywords scored
highest by roberta-large-mnli. Sentence 2 for the imposter instance is the highest-scoring keyword from
the non-gold event types.

representation with the type representation of a dif-
ferent event type: one random and one imposter.
The random negative example is the original sen-
tence paired with a random keyword selected from
all of the keywords of types other than the gold
type. The imposter is the keyword most likely to
confuse the model. We paired each sentence with
each of the disjunctive keywords for all of the types
other than the gold type. We used the top scoring
pair (the most strongly implied incorrect type rep-
resentation) as the imposter example.

Table 5 shows positive and negative training in-
stances created for an example sentence.

4.3 Development Experiments and Results

4.3.1 Classification + Reranking

Using an NLI model as described in section 4 is
needed for unseen types, since the classification
model cannot predict types it was not trained on.
But NLI reranking might also improve predictions
on the known types. To explore this possibility,
we fine-tuned the bart-large-mnli model for
the 24 non-OTHER ACLED event types using
the 140,658 NLI training pairs from the dataset
described in section 4.2. We then ran our fine-
tuned RoBERTa classifier (roberta-FT25) on
the 117,788 instances of the ACLED development
set and collected its ranked list of predictions for
all of the instances where its top-scoring prediction
was wrong (6,002 instances, accuracy = 0.0000).

For the 6,002 instances, the average classifier
score for the top (wrong) prediction was 0.9644.
The average position of the correct type within the
list ranked by classifier score was 3.1. When the
classifier predicted the correct type, the average
classifier top score was 0.9960. When the classifier

score was above 0.99, its accuracy was 0.9562.
Below that threshold, accuracy was 0.4851.

To explore the benefit of reranking even for
known types, we passed the top N classifier predic-
tions for the 6,002 incorrectly classified instances
to our fine-tuned BART NLI model for reranking.
We first set N to the position of the correct type for
each sentence, guaranteeing that the correct type
was in the list to be reranked (we refer to this as set-
ting N to “gold”). The fine-tuned NLI model pre-
dicted the correct type for 2,271 instances (37.8%
of the incorrectly classified instances). Setting N
to 5 (meaning for some sentences the correct type
would not be among the top N), the fine-tuned NLI
model predicted 2,027 instances correctly (33.7%).
See Table 6.

Surprisingly, using bart-large-mnli with-
out fine tuning performed even better on the incor-
rectly classified instances when the correct type
is always in the top N, recovering 2,600 of the
correct types (43.3%). When N was 5, however,
the untuned model did not perform as well as the
tuned model (29.6% recovered). As with other ex-
periments, the untuned roberta-large-mnli
model performs slightly better than the BART
model.

Based on this experiment, it makes sense to pair
a fine-tuned classifier with an NLI reranker (fine-
tuned or not) even for known types. In practice, we
invoke the reranker with the top 5 predictions from
the classifier when the classifier’s top prediction
score is less than 0.99.

4.3.2 Zero-Shot vs. Fine-Tuned Reranking on
Unseen Types

We also compared a fine-tuned NLI model to
an untuned model on unseen types. To simu-
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Model N Accuracy
bart-FT24 gold 0.3784
bart-FT24 5 0.3377
bart-large-mnli gold 0.4332
bart-large-mnli 5 0.2956
roberta-large-mnli gold 0.4347
roberta-large-mnli 5 0.3121

Table 6: Accuracy of NLI models on the top N predic-
tions from the roberta-FT25 classifier when its top
prediction is wrong (6,002 instances). N=gold means
that N is the position of the correct type in the ranked
list, guaranteeing that it is available to the reranker.

Model Tune µAcc macAcc
bart-large-mnli none 0.9104 0.7977
bart-mnli-FT24 24 0.9806 0.9708
bart-mnli-FT21 21 0.2396 0.2540

Table 7: Comparison of three NLI models tested on
data for three held-out types: an untuned model, a
model tuned on all types (including the held-out types),
and a model tuned on all types except the held-out
types.

late the unseen types scenario, we randomly se-
lected three of the original ACLED types and
removed their instances (6,080) from the NLI
fine-tuning dataset. We then fine-tuned the
bart-large-mnli model on the instances for
the remaining 21 types. Table 7 shows that fine-
tuning an NLI model significantly improves accu-
racy for types it was tuned on over an untuned NLI
model. Fine-tuning an NLI model on known types
and then applying to unseen types performs catas-
trophically worse than even the untuned model.
The fine-tuned model is clearly overfitting the 21
types in a way that significantly degrades perfor-
mance on unseen types. We tried reducing the size
of the fine-tuning set and balancing it to 1,000 in-
stances per type to avoid overfitting. The resulting
model performed worse by 5-6 micro-averaged ac-
curacy points in all experiments.

Based on this experiment, we conclude that us-
ing a fine-tuned NLI model improves reranking for
the types on which it was fine-tuned, but for un-
seen types, it is preferable to use an NLI reranking
model not fine-tuned on other types.

4.3.3 BART vs. RoBERTa
We conducted two additional experiments
to compare bart-large-mnli and
roberta-large-mnli (no fine tuning),

Model 457-all 3heldout
bart-large-mnli 0.2998 0.9104
roberta-large-mnli 0.3129 0.9533

Table 8: Accuracy of BART vs. RoBERTa NLI mod-
els with no fine-tuning on two ACLED datasets: 457
random instances covering all event types and 6,080 in-
stances covering three event types.

using keywords as the textual representation of
the types. The first dataset was 457 examples
from the ACLED test set, converted to the format
needed for the NLI models (section 4.2.1). The
457 examples cover all 24 non-OTHER ACLED
types, making this a particularly challenging
task for reranking. The second dataset was the
6,080 instances covering the three held out types
described in the previous section (4.3.2). Both
experiments show a preference for RoBERTa. The
experiments also show that the models are much
better at distinguishing among smaller numbers
of types. This supports the approach of using
NLI models as rerankers on the top N classifier
predictions (for small N) instead of using them
as classifiers themselves on the full inventory of
types.

4.4 Models
Based on the lessons learned from our develop-
ment experiments, we ultimately fine-tuned two
NLI models on the data described in section 4.2

• roberta-mnli-FT24: roberta-large-mnli

fine-tuned on the 140,658 instance training
set for the base ACLED event types

• roberta-mnli-FT27: roberta-large-mnli

fine-tuned on the 140,658 ACLED instances
plus 666 instances for the three unseen types
of subtask 2

Using the roberta-mnli-FT24 fine-tuned
reranker in a system configuration makes that sys-
tem supervised on the 24 ACLED types of subtask
1. Using roberta-mnli-FT27 makes a sys-
tem supervised on the ACLED types and few-shot
supervised on the three unseen types of subtask 2.

5 Challenge Submissions and Results

Official task results appear in Table 10. The table
shows how little difference there was between the
top scoring team submissions. Full results and
analysis are presented in Haneczok et al. (2021).
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Sub# Classif model Rerank model 25 classif 25 rerank 3 classif 3 rerank 2 rerank
1.1 roberta-FT25 none sup
1.2 roberta-FT25 rob-large-mnli sup zero
1.3 roberta-FT25 rob-mnli-FT24 sup sup
2.1 roberta-FT28 none sup few
2.2 roberta-FT28 rob-large-mnli sup zero few zero
2.3 roberta-FT28 rob-mnli-FT27 sup sup few few
2.4 sub 1.3 output rob-large-mnli sup sup zero
3.1 roberta-FT25 rob-large-mnli sup zero zero zero
3.2 roberta-FT28 rob-large-mnli sup zero few zero zero
3.3 sub 1.3 output rob-large-mnli sup sup zero zero
3.4 sub 2.2 output rob-large-mnli sup zero few zero zero

Table 9: System configurations for each of the eleven submissions. The combination of classification model and
reranking model determines whether classification and reranking are supervised (sup), few-shot (few), or zero-shot
(zero) for each category of event types (the 25 seen types, the 3 unseen types of subtask 2, or the 2 unseen types of
subtask 3).

Best Our
task Our Score Other Score Rank

1 0.839 0.832 1
2 0.797 (0.785) 0.782 1
3 0.756 (0.746) 0.771 2

Table 10: Official challenge results (weighted F1

scores). Top score is boldface. For subtasks 2 and 3,
our highest scoring submission was few-shot fine-tuned
for the subtask 2 event types and zero-shot for the sub-
task 3 event types. The score for our best true zero-shot
submission appears in parentheses. Best Other Score is
the highest scoring submission from another team.

We now turn to a more detailed discussion of our
submissions and more detailed scores.

Combining classifiers and rerankers, we arrived
at eleven system configurations for submission to
the Challenge evaluation. Table 9 lists these con-
figurations, grouped by Challenge subtask. The ta-
ble specifies which classification model and which
reranking model were used for each submission, as
well as an indication of whether the configuration
was supervised, few-shot, or zero-shot for each of
the subsets of event types.

In every case, the classification model for the
known 25 ACLED event types was supervised. For
the first three submissions of subtask 2, classifica-
tion of the three unseen types was few-shot, trained
on our small corpus (see Section 3.1). For the
fourth subtask 2 submission, we used the output of
submission 1.3 as the “classifier”. Since submis-
sion 1.3 was tuned on data for the 25 known types
only, submission 2.4 is zero-shot for the three un-

seen types. No training data was used for the two
new unseen types of subtask 3, so those types were
always introduced during the reranking stage only
(no classification). These were always zero-shot.

Reranking of the 25 original types was super-
vised when using the RoBERTa NLI model fine-
tuned on the ACLED data (rob-mnli-FT24 in
the table. When using roberta-large-mnli
off-the-shelf, reranking the 25 was zero-shot. For
the 3 unseen types of subtask 2 (and subtask 3),
only submission 2.3 reranked using the NLI model
fine-tuned on the small amount of data for these
types, and is considered few-shot. Otherwise, all
reranking of the 3 unseen types and the 2 unseen
types of subtask 3 were zero-shot.

6 Observations and Discussion

Table 11 shows results on the official, Task 2 evalua-
tion. For subtask 1, fine-tuning the reranker did bet-
ter (submission 1.3) than using an untuned reranker
(1.2). This is the same result that we saw when
passing the top 5 classification predictions to the
reranker in the development experiments.

The best performing configuration for subtask
2 overall was supervised classification for all 28
types with untuned (zero-shot) reranking. In par-
ticular, the zero-shot reranking (submission 2.2)
outperformed the reranker tuned on the three un-
seen types. This runs counter to what we saw in
the development experiments. The configuration
that was most successful on the original 25 types
was the one whose classifier was the 1.3 submis-
sion (which had a fine-tuned reranker). Isolating
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All types 25 types 3 types 2 types
Sub# Sup µF macF wF µF macF µF macF µF macF
1.1 sup 0.830 0.792 0.828 0.830 0.792
1.2 sup 0.834 0.810 0.835 0.834 0.810
1.3 sup 0.838 0.814 0.839 0.838 0.814
2.1 few 0.782 0.752 0.779 0.790 0.785 0.712 0.703
2.2 few 0.797 0.773 0.797 0.800 0.786 0.779 0.756
2.3 few 0.794 0.764 0.790 0.799 0.785 0.749 0.746
2.4 zero 0.786 0.758 0.785 0.804 0.787 0.621 0.595
3.1 zero 0.744 0.720 0.746 0.783 0.780 0.591 0.572 0.362 0.379
3.2 few 0.755 0.728 0.756 0.776 0.765 0.766 0.745 0.424 0.432
3.3 zero 0.744 0.720 0.746 0.783 0.780 0.591 0.572 0.362 0.379
3.4 few 0.755 0.728 0.756 0.776 0.765 0.766 0.745 0.424 0.432

Table 11: Detailed scores for the eleven submissions. The “Sup” column denotes whether the submission overall
should be considered supervised, few-shot, or zero-shot. µF is micro-averaged F1 score; macF is macro-averaged
F1 score; wF is the weighted average F1 score (see section 1). The highest scores for a given subtask and type
subset are shown boldface.

the scores on the three unseen types versus the 25
known types shows strong performance in the few-
shot case, but significantly weaker performance
with zero-shot (2.4).

For subtask 3, submissions 3.1 and 3.3 produced
identical predictions (not just scores), as did sub-
missions 3.2 and 3.4. The configurations them-
selves are not equivalent, with the input to the 3.3
and 3.4 rerankers having already been reranked by
the 1.3 and 2.2 rerankers. Interestingly, the configu-
rations built on zero-shot rerankers only performed
best, again suggesting NLI models can be used
without fine-tuning for reranking classification for
both known and unseen types. Performance on
the two unseen types of subtask 3 (zero-shot) is
significantly weaker than the zero-shot scenario of
subtask 2 (2.4). It is possible that the two new types
are inherently more difficult to recognize. But we
suspect that tweaks to the textual representations
for these two types might improve performance.
Given the extreme differences that different rep-
resentations produce (section 4.1), we expect that
more carefully chosen representations would help.

7 Conclusion

The CASE 2021 Task 2 challenge accurately sim-
ulates a realistic, fine-grained, text classification
scenario in which many types in the type inven-
tory have abundant labeled data, some types are
recently new and may have a small amount of la-
beled data, and some types are completely new
and have no labeled data. Within these constraints,

we proposed a hybrid system that combines super-
vised classification with NLI-based reranking that
can be used in supervised, few-shot, and zero-shot
settings. Our results show strong performance on
known types with weaker results on unseen types.
Nevertheless, the experiments for this challenge
have produced some interesting conclusions. First,
we confirm that NLI models are useful for zero-
shot text classification, but only when distinguish-
ing between a small number of target types. Sec-
ond, even in a fully supervised scenario, where am-
ple training data can produce classification models
with extremely high accuracy, untuned NLI-based
reranking can improve classification performance
on known types. Third, the choice of textual repre-
sentation to transform a classification problem into
one amenable to an untuned NLI model greatly
affects performance. In future work we hope to
explore more rigorously what makes a good rep-
resentation for NLI-based zero-shot text classifi-
cation, and how to generate these representations
more automatically.
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