Normalization and Back-Transliteration for Code-Switched Data

Dwija Parikh and Thamar Solorio
Department of Computer Science
University of Houston
Houston, TX 77204-3010
{dkparikh, tsolorio}@uh.edu

Abstract

Code-switching is an omnipresent phe-
nomenon in multilingual communities all
around the world but remains a challenge for
NLP systems due to the lack of proper data
and processing techniques. Hindi-English
code-switched text on social media is often
transliterated to the Roman script which
prevents from utilizing monolingual resources
available in the native Devanagari script.
In this paper, we propose a method to nor-
malize and back-transliterate code-switched
Hindi-English text. In addition, we present
a grapheme-to-phoneme (G2P) conversion
technique for romanized Hindi data. We
also release a dataset of script-corrected
Hindi-English ~ code-switched sentences
labeled for the named entity recognition
and part-of-speech tagging tasks to facilitate
further research in this area.

1 Introduction

Linguistic code-switching (CS) is the phenomenon
of mixing two or more languages in the context of
a single utterance. Multilingual speakers around
the world engage in code-switching on a regular
basis. Code-switched data differs from monolin-
gual data to a great extent which discourages use
of existing NLP technologies on code-switched
text. Code-switching also combines the syntax and
lexicon of the languages used, making it difficult
for monolingual models to adapt to code-switched
data (Cetinoglu and Coltekin, 2019).

In textual code-switching, text is frequently
romanized' due to various technical constraints.
This is especially true in the case of Hindi-English
since the Devanagari script for Hindi is not widely
available or efficient on modern technology. Fig-
ure 1 shows an example of a code-switched Hindi-
English tweet. As we can see in the example, key-
board layouts force users to choose a single script

'Throughout this paper, we use romanized to mean
transliterated to the Roman script

Original: bhai..why r u crying,
me to boht maza a aajyega...!! © ©©

film

Translation: brother why are you crying, the film
will be fun!

Figure 1: An example of a code-switched Hindi-
English tweet. English text appears in italics and Hindi
text is underlined.

during time of purchase or adapt to using the stan-
dard QWERTY layout for transliterating multiple
scripts. Since most users need to use English in
their daily life, it is impractical to choose a differ-
ent keyboard layout. The ease of convenience due
to Latin script keyboard layouts and the lack of a
standardized transliteration process leads users to
employ ad-hoc phonetic transcription rules when
transcribing Hindi in the Roman script (Aguilar
and Solorio, 2020). Variations in transliteration
and the informality of social media adds noise
which makes Hindi-English code-switched data in-
creasingly different from standard script text and
harder to process. Further, transliteration also pre-
vents from leveraging the resources available for
standard Devanagari text like Wikipedia entries
and monolingual models for Hindi.

Recent trends in NLP research on code-
switching have explored the performance of large
pre-trained models on code-switching tasks. State-
of-the-art multilingual models are typically trained
on standard script text like Wikipedia and struggle
at adapting to transliterated noisy code-switched
input. Transfer learning has emerged as a promis-
ing method to adapt monolingual models trained
on high resource languages like English to code-
switched data. Large pre-trained models like multi-
lingual BERT (henceforth, mBERT) (Devlin et al.,
2019) have shown robust cross-lingual zero-shot
performance with code-switching data. Aguilar
and Solorio (2020) demonstrated the cross-lingual
transfer ability of ELMo (Peters et al., 2018) ,

119

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 119-124
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_015

which was trained on English, to Spanish-English,
Hindi-English, and Nepali-English code-switched
data. They observe that mBERT is outperformed
by their model (CS-ELMo) for Hindi-English, pos-
sibly due to the fact that mBERT is trained on
Hindi in Devanagari and their code-switched input
is Romanized. In another study, Pires et al. (2019)
tested mBERT’s zero-shot performance on code-
switched data in two formats: transliterated, where
Hindi words are written in the Roman script, and
corrected, where Hindi words have been converted
back to the Devanagari script by human annotators.
Their results show a substantial increase in zero-
shot performance with script-corrected data. Other
studies have also shown improvement in perfor-
mance after normalization and back-transliteration
on various tasks like named entity recognition and
part-of-speech tagging (Ball and Garrette, 2018;
Bhat et al., 2018). Thus, there is often a need for
computationally inexpensive systems to prepocess
data by normalization and/or back-transliteration.

We begin by providing background for the
normalization and back-transliteration tasks.
Then, we describe our system for normalization,
grapheme-to-phoneme, and back-transliteration.
Finally, we provide results and statistics of
our system against human annotated data. Our
contributions include: (1) a model to normal-
ize phonetic typing variations, (2) a simplified
back-transliteration technique, (3) a grapheme-
to-phoneme conversion technique for romanized
Hindi, and (4) publicly available data sets of script
corrected Hindi-English text.

2 Related Work

Normalization. Research in phonetic typing vari-
ations when transliterating Hindi has gained in-
creasing attention recently due to the presence
of code-switched data on social media. Singh
et al. (2018c) proposed a normalization model us-
ing skip-gram and clustering techniques for Hindi-
English data. Mandal and Nanmaran (2018) pre-
sented the first sequence-to-sequence model for
normalizing Bengali-English code-switched data.

Transliteration. Previous work in Hindi transliter-
ation has fallen in two classes: rule based systems
and machine translation based approaches. Multi-
ple libraries like indic-transliteration? exist for sim-
ple transliteration tasks using rule based systems;

*https://pypi.org/project/
indic-transliteration/

however, they require input to be normalized and
fail at adapting to non-standard data that is typ-
ical on social media. Before the advent of neu-
ral machine translation, statistical machine trans-
lation tools such as Moses (Koehn et al., 2007)
were deployed for transliteration. Neural machine
translation based approaches have continued to
treat transliteration as a translation problem and ap-
plied methods such as sequence-to-sequence learn-
ing successfully. For instance, Bhat et al. (2018)
proposed a three step encoder-decoder model for
normalization and transliteration of Hindi-English
code-switched text.

Grapheme-to-Phoneme. Grapheme-to-phomene
(G2P) is an important task for speech recogni-
tion. Mortensen et al. (2018) presented a multi-
lingual G2P system for transcribing a multitude of
languages using simple mappings. G2P for stan-
dard Hindi is a straightforward task using simple
phonetic mappings. However, for non-standard
transliterated Hindi, it can be tricky to generate ac-
curate phonemic representations.

3 Background

User generated code-switched data is noisy and rid-
dled with word variations, spelling mistakes, and
grammatical errors. Since the Latin script does not
possess all the consonants and vowels required to
transliterate Hindi, users come up with the most
convenient ways to transcribe Hindi. Common
variations in transliterated Hindi are:

* Ambiguous consonant transliteration: For
consonants not covered by the Roman script,
users rely on the most appropriate translitera-
tion available which leads to multiple sounds
being transliterated to the same grapheme in
the roman script. For example, both f&et
<heart> and S&dl <box> are transliterated
as dil and dabba respectively but the charac-
ter <d> corresponds to different consonants in
Hindi.

* Vowel dropping: Since native speakers of
Hindi do not require explicit notation for vow-
els that can be easily inferred, they tend to
skip their transcription in text. For instance,
the Hindi word IX is generally transliterated
as yaar. However, vowel dropping changes it
to yr.

* Long vowel transliteration: Users transliter-
ate long vowels in various ways. For ex-

120

https://pypi.org/project/indic-transliteration/
https://pypi.org/project/indic-transliteration/

ample, the most standard way to transliter-
ate the word MM would be kaam but it is
often transliterated as kam. During back-
transliteration, this can be confused as ®H in-
stead of T,

* Double consonant transliteration: Singh et al.
(2018c¢) describe informal variations in dou-
ble consonant transliteration, similar to long
vowel transliteration, where users use vari-
ants with or without repeating the respec-
tive consonant. For example, g59Id can be
transliterated as izzat or izat.

* Slang and abbreviations: We define some
commonly used slang and abbreviations for
both Hindi and English. Some examples in-
clude:

btw -> by the way

wassup -> what's up?

Besides the above, there are other non standard
variations observed in transliterated Hindi as well.
These variations make it difficult to properly
transliterate text using simple phonetic mappings
due to the lack of a standard transliteration scheme.
Numerous schemes like WX notation (Chaitanya
et al., 1996), BrahmiNet-ITRANS (Kunchukuttan
et al., 2015), and others have been introduced.
However, none of these have been widely em-
ployed by the general public.

4 Methodology

We follow a two step system to transliterate Ro-
manized Hindi to the Devanagari orthography.
First, we normalize the input using a sequence-to-
sequence model. Then, for the back-transliteration
task, we syllabify the token and transcribe to De-
vanagari. For the grapheme-to-phoneme task, we
directly map the normalized tokens into the inter-
national phonetic alphabet (IPA).

5 Data

We use the hinglishNorm dataset by Makhija et al.
(2020) to train the normalization model. The
dataset comprises of romanized code-switched sen-
tences and their normalized forms annotated by hu-
mans. The data contains both Hindi and English
tokens along with their normalized forms. We cre-
ate pairs of tokens and their normalized forms to
train our model. We further augment the dataset

with some frequently encountered Hindi words on
social media and their variations.

6 Experiments

6.1 Normalization

Rule based systems are not the most efficient solu-
tion to normalization since they are not capable of
capturing all possible variations. Instead, we treat
normalization as a general machine translation
problem. We train a character level sequence-to-
sequence model for normalization following the ar-
chitecture of Sutskever et al. (2014). The model is
comprised of a Long Short-Term Memory(LSTM)
encoder and LSTM decoder. We use the Keras li-
brary (Chollet, 2015) for training the model. Ta-
ble 1 compares our model’s performance with
the baselines provided by Makhija et al. (2020).
We evaluate our system using Word Error Rate
(NieBen et al., 2000), BLEU score (Papineni et al.,
2002), and METEOR score (Banerjee and Lavie,
2005).

Model WER | BLEU | METEOR
(Makhija et al., 2020) | 15.55 | 71.21 0.50
Ours 18.5 | 80.48 0.56

Table 1: Results showing the effectiveness of the nor-
malization model using the WER, BLEU, and ME-
TEOR metrics.

It is likely that some of the errors are due to
inconsistencies in the transcription scheme in the
hinglishNorm dataset since it is annotated by hu-
mans. One such instance is the long vowel 3T
which is normalized to “aa” through most of the
data. However, in some instances, the annotators
normalize it to “a”. For example, “bt control to
krma pdega” from the training data is normalized
to “but control to karana padega”. A sample nor-
malized output is shown in Table 2. Here we see
that the Hindi token “bhai” has been normalized to
“bhaai” while the English tokens “wher”, “r”, “u”,
and “frmm” have all been corrected to their correct

spellings.

Original bhaiyy wher r u frmm
Translation | brother, where are you from?
Normalized | bhaai where are you from

Table 2: An example of normalized output

121

6.2 Back-transliteration

Contemporary approaches treat transliteration us-
ing computationally intensive deep learning ap-
proaches. However, once data is normalized in ef-
fort to mitigate these variations, transliterating data
does not require any sophisticated approaches.

Roman | IPA | Dev || Roman | IPA | Dev
k,q ko D kh ks | @
g g | T gh gs | ™
h s g ch o | =
chh s | B] dzo | oF
jh dz | & y jo | T
sh fo a t to d
th N) d d S
dh dh g r n X
n no bl 1 Io of
S S9 H p ps | U
f,ph p" | W b bo | ¥
bh b | H m mo | H
\% 09 q z 79 N

Table 3: Mappings for consonants

Table 3 shows mappings between orthographic
forms and phonemic forms for consonants. Table 4
describes the corresponding mappings for vowels.

Roman | IPA Dev || Roman | IPA | Dev
a 9 3 aa a 3T

1 i E} ee i 3

u u 3 00 u 52
i, ru T S e Iy
ai,el ai Q 0 0 an
ou awu, o 3t am om | 3
ah oh CH

Table 4: Mappings for vowels

A sample process for transliteration is outlined
in Table 5.

Original let’s go bhaaiyy abhigy
kitnaagy wait karogeyy

Translation let’s go brother how long
will you wait

Transliterated | let’s go TS 3T fha 1T wait
FRRY

Table 5: An example of back-transliteration

We test our system against human annotated

data from the Xlit-Crowd® corpus for Hindi-
English transliteration (Khapra et al., 2014). The
corpus provides crowd-sourced data for roman-
ized Hindi back-transliterated by human annota-
tors. Results show that our system is 78.6% ac-
curate. Most of the errors are due to inconsisten-
cies in transcription schemes and the rest are due
to mistakes in normalizing by our model. For com-
parison, the popular indic-trans* library achieves
63.56% on the same data set (Bhat et al., 2015).

6.3 Grapheme-to-Phoneme

For the grapheme-to-phoneme task, we describe
many-to-one mappings from romanized Hindi to
IPA and Devanagari as shown in Tables 4 and 3.
We use the Epitran’ library by Mortensen et al.
(2018) for transcribing English tokens to IPA. We
extend Epitran with customized mappings for the
Hindi tokens. Since the Roman script doesn’t
cover all the consonants required for transcribing
Hindi, there are multiple ways of transcribing the
same phoneme. However, prepocessing by nor-
malization reduces the variation to a large extent.
An example of grapheme-to-phoneme is provided
in Table 6.

Original let’s go bhaaiyy abhigy
kitnaayy wait karogeyn

Translation | let’s go brother how long will
you wait

IPA lets gou bar kitna wert karo:ge:

Table 6: An example of Grapheme to Phoneme

7 Released Datasets

We use our system to back-transliterate the Hindi-
English corpora from the LinCE® benchmark
(Aguilar et al., 2020). The NER corpus is from
Singh et al. (2018a) and has 2,079 tweets while the
POS tagging corpus is from Singh et al. (2018b)
and has 1,489 tweets. Some statistics about the
datasets are presented in Table 7.

8 Conclusion and Future Work

Our method can easily be extended to other lan-
guages that employ variations of the Devanagari

*https://github.com/anoopkunchukuttan/
crowd-indic-transliteration-data
*https://github.com/libindic/indic-trans
https://github.com/dmort27/epitran
*https://ritual.uh.edu/lince/home

122

https://github.com/anoopkunchukuttan/crowd-indic-transliteration-data
https://github.com/anoopkunchukuttan/crowd-indic-transliteration-data
https://github.com/libindic/indic-trans
https://github.com/dmort27/epitran
https://ritual.uh.edu/lince/home

Task Corpus Hindi | English
NER | Singh et al. (2018a) | 13,860 | 11,391
POS | Singh etal. (2018b) | 12,589 | 9,882

Table 7: Statistics on the datasets

script, for instance Gujarati and Nepali. For other
Romanized languages, simple phonetic mappings
can be generated by domain experts. Using back-
transliteration can help pre-process code-switched
data to improve performance on a variety of tasks.
We also plan to augment the normalization pro-
cess with a dictionary of common word varia-
tions to make the normalization task more effi-
cient. Our ongoing work includes testing perfor-
mance of cross-lingual transfer on romanized and
scrip-corrected text using multilingual models like
mBERT.

9 Acknowledgements

This work was supported by the National Science
Foundation (NSF) on the grant #1910192. We also
thank Gustavo Aguilar for insightful discussions
during preliminary investigations.

References

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
2020. LinCE: A centralized benchmark for linguis-
tic code-switching evaluation. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 1803—1813, Marseille, France. Euro-
pean Language Resources Association.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8033—8044, Online. As-
sociation for Computational Linguistics.

Kelsey Ball and Dan Garrette. 2018. Part-of-speech tag-
ging for code-switched, transliterated texts without
explicit language identification. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3084-3089, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987-998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Irshad Ahmad Bhat, Vandan Mujadia, Aniruddha Tam-
mewar, Riyaz Ahmad Bhat, and Manish Shrivastava.
2015. liit-h system submission for fire2014 shared
task on transliterated search. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE
’14, pages 48-53, New York, NY, USA. ACM.

Ozlem Cetinoglu and Cagr1 Coltekin. 2019. Chal-
lenges of annotating a code-switching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 8290, Paris, France. Association for
Computational Linguistics.

Vineet Chaitanya, Rajeev Sangal, and Akshar Bharati
(Group), editors. 1996. Natural language process-
ing: a Paninian perspective, eastern economy ed edi-
tion. Prentice-Hall of India, New Delhi.

Frangois Chollet. 2015.
com/fchollet/keras.

keras. https://github.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mitesh M. Khapra, Ananthakrishnan Ramanathan,
Anoop Kunchukuttan, Karthik Visweswariah, and
Pushpak Bhattacharyya. 2014. When transliter-
ation met crowdsourcing : An empirical study
of transliteration via crowdsourcing using efficient,
non-redundant and fair quality control. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), Reyk-
javik, Iceland. European Language Resources Asso-
ciation (ELRA).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL. The Association for Computational Linguis-
tics.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-Net: A transliteration
and script conversion system for languages of the In-
dian subcontinent. In NAACL: System Demonstra-
tions.

123

https://www.aclweb.org/anthology/2020.lrec-1.223
https://www.aclweb.org/anthology/2020.lrec-1.223
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/D18-1347
https://doi.org/10.18653/v1/D18-1347
https://doi.org/10.18653/v1/D18-1347
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/N18-1090
https://doi.org/10.18653/v1/N18-1090
https://doi.org/10.1145/2824864.2824872
https://doi.org/10.1145/2824864.2824872
https://doi.org/10.18653/v1/W19-7809
https://doi.org/10.18653/v1/W19-7809
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2014/pdf/94_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/94_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/94_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/94_Paper.pdf
http://dblp.uni-trier.de/db/conf/acl/acl2007.html#KoehnHBCFBCSMZDBCH07
http://dblp.uni-trier.de/db/conf/acl/acl2007.html#KoehnHBCFBCSMZDBCH07

Piyush Makhija, Ankit Kumar, and Anuj Gupta. 2020.
hinglishNorm - a corpus of Hindi-English code
mixed sentences for text normalization. In Proceed-
ings of the 28th International Conference on Compu-
tational Linguistics: Industry Track, pages 136—145,
Online. International Committee on Computational
Linguistics.

Soumil Mandal and Karthick Nanmaran. 2018. Nor-
malization of transliterated words in code-mixed
data using Seq2Seq model & Levenshtein distance.
In Proceedings of the 2018 EMNLP Workshop W-
NUT: The 4th Workshop on Noisy User-generated
Text, pages 49-53, Brussels, Belgium. Association
for Computational Linguistics.

David R. Mortensen, Siddharth Dalmia, and Patrick Lit-
tell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Sonja Niellen, Franz Josef Och, Gregor Leusch, and
Hermann Ney. 2000. An evaluation tool for machine
translation: Fast evaluation for MT research. In
Proceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227—
2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996—
5001, Florence, Italy. Association for Computational
Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018a. Language identification and
named entity recognition in Hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 52—58, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018b. A Twitter corpus for Hindi-

English code mixed POS tagging. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 12—
17, Melbourne, Australia. Association for Computa-
tional Linguistics.

Rajat Singh, Nurendra Choudhary, and Manish Shrivas-

tava. 2018c. Automatic normalization of word vari-
ations in code-mixed social media text.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.

124

Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc.

https://doi.org/10.18653/v1/2020.coling-industry.13
https://doi.org/10.18653/v1/2020.coling-industry.13
https://doi.org/10.18653/v1/W18-6107
https://doi.org/10.18653/v1/W18-6107
https://doi.org/10.18653/v1/W18-6107
https://www.aclweb.org/anthology/L18-1429
https://www.aclweb.org/anthology/L18-1429
http://www.lrec-conf.org/proceedings/lrec2000/pdf/278.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/278.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/W18-3503
https://doi.org/10.18653/v1/W18-3503
http://arxiv.org/abs/1804.00804
http://arxiv.org/abs/1804.00804
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

