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Abstract

Code-switching is an omnipresent phe-
nomenon in multilingual communities all
around the world but remains a challenge for
NLP systems due to the lack of proper data
and processing techniques. Hindi-English
code-switched text on social media is often
transliterated to the Roman script which
prevents from utilizing monolingual resources
available in the native Devanagari script.
In this paper, we propose a method to nor-
malize and back-transliterate code-switched
Hindi-English text. In addition, we present
a grapheme-to-phoneme (G2P) conversion
technique for romanized Hindi data. We
also release a dataset of script-corrected
Hindi-English ~ code-switched  sentences
labeled for the named entity recognition
and part-of-speech tagging tasks to facilitate
further research in this area.

1 Introduction

Linguistic code-switching (CS) is the phenomenon
of mixing two or more languages in the context of
a single utterance. Multilingual speakers around
the world engage in code-switching on a regular
basis. Code-switched data differs from monolin-
gual data to a great extent which discourages use
of existing NLP technologies on code-switched
text. Code-switching also combines the syntax and
lexicon of the languages used, making it difficult
for monolingual models to adapt to code-switched
data (Cetinoglu and Coltekin, 2019).

In textual code-switching, text is frequently
romanized' due to various technical constraints.
This is especially true in the case of Hindi-English
since the Devanagari script for Hindi is not widely
available or efficient on modern technology. Fig-
ure 1 shows an example of a code-switched Hindi-
English tweet. As we can see in the example, key-
board layouts force users to choose a single script

'Throughout this paper, we use romanized to mean
transliterated to the Roman script

Original: bhai..why r u crying,
me to boht maza a aajyega...!! © ©©

film

Translation: brother why are you crying, the film
will be fun!

Figure 1: An example of a code-switched Hindi-
English tweet. English text appears in italics and Hindi
text is underlined.

during time of purchase or adapt to using the stan-
dard QWERTY layout for transliterating multiple
scripts. Since most users need to use English in
their daily life, it is impractical to choose a differ-
ent keyboard layout. The ease of convenience due
to Latin script keyboard layouts and the lack of a
standardized transliteration process leads users to
employ ad-hoc phonetic transcription rules when
transcribing Hindi in the Roman script (Aguilar
and Solorio, 2020). Variations in transliteration
and the informality of social media adds noise
which makes Hindi-English code-switched data in-
creasingly different from standard script text and
harder to process. Further, transliteration also pre-
vents from leveraging the resources available for
standard Devanagari text like Wikipedia entries
and monolingual models for Hindi.

Recent trends in NLP research on code-
switching have explored the performance of large
pre-trained models on code-switching tasks. State-
of-the-art multilingual models are typically trained
on standard script text like Wikipedia and struggle
at adapting to transliterated noisy code-switched
input. Transfer learning has emerged as a promis-
ing method to adapt monolingual models trained
on high resource languages like English to code-
switched data. Large pre-trained models like multi-
lingual BERT (henceforth, mBERT) (Devlin et al.,
2019) have shown robust cross-lingual zero-shot
performance with code-switching data. Aguilar
and Solorio (2020) demonstrated the cross-lingual
transfer ability of ELMo (Peters et al., 2018) ,
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which was trained on English, to Spanish-English,
Hindi-English, and Nepali-English code-switched
data. They observe that mBERT is outperformed
by their model (CS-ELMo) for Hindi-English, pos-
sibly due to the fact that mBERT is trained on
Hindi in Devanagari and their code-switched input
is Romanized. In another study, Pires et al. (2019)
tested mBERT’s zero-shot performance on code-
switched data in two formats: transliterated, where
Hindi words are written in the Roman script, and
corrected, where Hindi words have been converted
back to the Devanagari script by human annotators.
Their results show a substantial increase in zero-
shot performance with script-corrected data. Other
studies have also shown improvement in perfor-
mance after normalization and back-transliteration
on various tasks like named entity recognition and
part-of-speech tagging (Ball and Garrette, 2018;
Bhat et al., 2018). Thus, there is often a need for
computationally inexpensive systems to prepocess
data by normalization and/or back-transliteration.

We begin by providing background for the
normalization and back-transliteration tasks.
Then, we describe our system for normalization,
grapheme-to-phoneme, and back-transliteration.
Finally, we provide results and statistics of
our system against human annotated data. Our
contributions include: (1) a model to normal-
ize phonetic typing variations, (2) a simplified
back-transliteration technique, (3) a grapheme-
to-phoneme conversion technique for romanized
Hindi, and (4) publicly available data sets of script
corrected Hindi-English text.

2 Related Work

Normalization. Research in phonetic typing vari-
ations when transliterating Hindi has gained in-
creasing attention recently due to the presence
of code-switched data on social media. Singh
et al. (2018c) proposed a normalization model us-
ing skip-gram and clustering techniques for Hindi-
English data. Mandal and Nanmaran (2018) pre-
sented the first sequence-to-sequence model for
normalizing Bengali-English code-switched data.

Transliteration. Previous work in Hindi transliter-
ation has fallen in two classes: rule based systems
and machine translation based approaches. Multi-
ple libraries like indic-transliteration? exist for sim-
ple transliteration tasks using rule based systems;

*https://pypi.org/project/
indic-transliteration/

however, they require input to be normalized and
fail at adapting to non-standard data that is typ-
ical on social media. Before the advent of neu-
ral machine translation, statistical machine trans-
lation tools such as Moses (Koehn et al., 2007)
were deployed for transliteration. Neural machine
translation based approaches have continued to
treat transliteration as a translation problem and ap-
plied methods such as sequence-to-sequence learn-
ing successfully. For instance, Bhat et al. (2018)
proposed a three step encoder-decoder model for
normalization and transliteration of Hindi-English
code-switched text.

Grapheme-to-Phoneme. Grapheme-to-phomene
(G2P) is an important task for speech recogni-
tion. Mortensen et al. (2018) presented a multi-
lingual G2P system for transcribing a multitude of
languages using simple mappings. G2P for stan-
dard Hindi is a straightforward task using simple
phonetic mappings. However, for non-standard
transliterated Hindi, it can be tricky to generate ac-
curate phonemic representations.

3 Background

User generated code-switched data is noisy and rid-
dled with word variations, spelling mistakes, and
grammatical errors. Since the Latin script does not
possess all the consonants and vowels required to
transliterate Hindi, users come up with the most
convenient ways to transcribe Hindi. Common
variations in transliterated Hindi are:

* Ambiguous consonant transliteration: For
consonants not covered by the Roman script,
users rely on the most appropriate translitera-
tion available which leads to multiple sounds
being transliterated to the same grapheme in
the roman script. For example, both f&et
<heart> and S&dl <box> are transliterated
as dil and dabba respectively but the charac-
ter <d> corresponds to different consonants in
Hindi.

* Vowel dropping: Since native speakers of
Hindi do not require explicit notation for vow-
els that can be easily inferred, they tend to
skip their transcription in text. For instance,
the Hindi word IX is generally transliterated
as yaar. However, vowel dropping changes it
to yr.

* Long vowel transliteration: Users transliter-
ate long vowels in various ways. For ex-
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ample, the most standard way to transliter-
ate the word MM would be kaam but it is
often transliterated as kam. During back-
transliteration, this can be confused as ®H in-
stead of T,

* Double consonant transliteration: Singh et al.
(2018c¢) describe informal variations in dou-
ble consonant transliteration, similar to long
vowel transliteration, where users use vari-
ants with or without repeating the respec-
tive consonant. For example, g59Id can be
transliterated as izzat or izat.

* Slang and abbreviations: We define some
commonly used slang and abbreviations for
both Hindi and English. Some examples in-
clude:

btw -> by the way

wassup -> what's up?

Besides the above, there are other non standard
variations observed in transliterated Hindi as well.
These variations make it difficult to properly
transliterate text using simple phonetic mappings
due to the lack of a standard transliteration scheme.
Numerous schemes like WX notation (Chaitanya
et al., 1996), BrahmiNet-ITRANS (Kunchukuttan
et al., 2015), and others have been introduced.
However, none of these have been widely em-
ployed by the general public.

4 Methodology

We follow a two step system to transliterate Ro-
manized Hindi to the Devanagari orthography.
First, we normalize the input using a sequence-to-
sequence model. Then, for the back-transliteration
task, we syllabify the token and transcribe to De-
vanagari. For the grapheme-to-phoneme task, we
directly map the normalized tokens into the inter-
national phonetic alphabet (IPA).

5 Data

We use the hinglishNorm dataset by Makhija et al.
(2020) to train the normalization model. The
dataset comprises of romanized code-switched sen-
tences and their normalized forms annotated by hu-
mans. The data contains both Hindi and English
tokens along with their normalized forms. We cre-
ate pairs of tokens and their normalized forms to
train our model. We further augment the dataset

with some frequently encountered Hindi words on
social media and their variations.

6 Experiments

6.1 Normalization

Rule based systems are not the most efficient solu-
tion to normalization since they are not capable of
capturing all possible variations. Instead, we treat
normalization as a general machine translation
problem. We train a character level sequence-to-
sequence model for normalization following the ar-
chitecture of Sutskever et al. (2014). The model is
comprised of a Long Short-Term Memory(LSTM)
encoder and LSTM decoder. We use the Keras li-
brary (Chollet, 2015) for training the model. Ta-
ble 1 compares our model’s performance with
the baselines provided by Makhija et al. (2020).
We evaluate our system using Word Error Rate
(NieBen et al., 2000), BLEU score (Papineni et al.,
2002), and METEOR score (Banerjee and Lavie,
2005).

Model WER | BLEU | METEOR
(Makhija et al., 2020) | 15.55 | 71.21 0.50
Ours 18.5 | 80.48 0.56

Table 1: Results showing the effectiveness of the nor-
malization model using the WER, BLEU, and ME-
TEOR metrics.

It is likely that some of the errors are due to
inconsistencies in the transcription scheme in the
hinglishNorm dataset since it is annotated by hu-
mans. One such instance is the long vowel 3T
which is normalized to “aa” through most of the
data. However, in some instances, the annotators
normalize it to “a”. For example, “bt control to
krma pdega” from the training data is normalized
to “but control to karana padega”. A sample nor-
malized output is shown in Table 2. Here we see
that the Hindi token “bhai” has been normalized to
“bhaai” while the English tokens “wher”, “r”, “u”,
and “frmm” have all been corrected to their correct

spellings.

Original bhaiyy wher r u frmm
Translation | brother, where are you from?
Normalized | bhaai where are you from

Table 2: An example of normalized output
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6.2 Back-transliteration

Contemporary approaches treat transliteration us-
ing computationally intensive deep learning ap-
proaches. However, once data is normalized in ef-
fort to mitigate these variations, transliterating data
does not require any sophisticated approaches.

Roman | IPA | Dev || Roman | IPA | Dev
k,q ko D kh ks | @
g g | T gh gs | ™
h s g ch o | =
chh s | B ] dzo | oF
jh dz | & y jo | T
sh fo a t to d
th N ) d d S
dh dh g r n X
n no bl 1 Io of
S S9 H p ps | U
f,ph p" | W b bo | ¥
bh b | H m mo | H
\% 09 q z 79 N

Table 3: Mappings for consonants

Table 3 shows mappings between orthographic
forms and phonemic forms for consonants. Table 4
describes the corresponding mappings for vowels.

Roman | IPA Dev || Roman | IPA | Dev
a 9 3 aa a 3T

1 i E} ee i 3

u u 3 00 u 52
i, ru T S e Iy
ai,el ai Q 0 0 an
ou awu, o 3t am om | 3
ah oh CH

Table 4: Mappings for vowels

A sample process for transliteration is outlined
in Table 5.

Original let’s go bhaaiyy abhigy
kitnaagy wait karogeyy

Translation let’s go brother how long
will you wait

Transliterated | let’s go TS 3T fha 1T wait
FRRY

Table 5: An example of back-transliteration

We test our system against human annotated

data from the Xlit-Crowd® corpus for Hindi-
English transliteration (Khapra et al., 2014). The
corpus provides crowd-sourced data for roman-
ized Hindi back-transliterated by human annota-
tors. Results show that our system is 78.6% ac-
curate. Most of the errors are due to inconsisten-
cies in transcription schemes and the rest are due
to mistakes in normalizing by our model. For com-
parison, the popular indic-trans* library achieves
63.56% on the same data set (Bhat et al., 2015).

6.3 Grapheme-to-Phoneme

For the grapheme-to-phoneme task, we describe
many-to-one mappings from romanized Hindi to
IPA and Devanagari as shown in Tables 4 and 3.
We use the Epitran’ library by Mortensen et al.
(2018) for transcribing English tokens to IPA. We
extend Epitran with customized mappings for the
Hindi tokens. Since the Roman script doesn’t
cover all the consonants required for transcribing
Hindi, there are multiple ways of transcribing the
same phoneme. However, prepocessing by nor-
malization reduces the variation to a large extent.
An example of grapheme-to-phoneme is provided
in Table 6.

Original let’s go bhaaiyy abhigy
kitnaayy wait karogeyn

Translation | let’s go brother how long will
you wait

IPA lets gou bar kitna wert karo:ge:

Table 6: An example of Grapheme to Phoneme

7 Released Datasets

We use our system to back-transliterate the Hindi-
English corpora from the LinCE® benchmark
(Aguilar et al., 2020). The NER corpus is from
Singh et al. (2018a) and has 2,079 tweets while the
POS tagging corpus is from Singh et al. (2018b)
and has 1,489 tweets. Some statistics about the
datasets are presented in Table 7.

8 Conclusion and Future Work

Our method can easily be extended to other lan-
guages that employ variations of the Devanagari

*https://github.com/anoopkunchukuttan/
crowd-indic-transliteration-data
*https://github.com/libindic/indic-trans
https://github.com/dmort27/epitran
*https://ritual.uh.edu/lince/home
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Task Corpus Hindi | English
NER | Singh et al. (2018a) | 13,860 | 11,391
POS | Singh etal. (2018b) | 12,589 | 9,882

Table 7: Statistics on the datasets

script, for instance Gujarati and Nepali. For other
Romanized languages, simple phonetic mappings
can be generated by domain experts. Using back-
transliteration can help pre-process code-switched
data to improve performance on a variety of tasks.
We also plan to augment the normalization pro-
cess with a dictionary of common word varia-
tions to make the normalization task more effi-
cient. Our ongoing work includes testing perfor-
mance of cross-lingual transfer on romanized and
scrip-corrected text using multilingual models like
mBERT.
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