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Abstract

Obtaining high-quality parallel corpora is of
paramount importance for training NMT sys-
tems. However, as many language pairs lack
adequate gold-standard training data, a pop-
ular approach has been to mine so-called
"pseudo-parallel" sentences from paired doc-
uments in two languages. In this paper, we
outline some drawbacks with current methods
that rely on an embedding similarity thresh-
old, and propose a heuristic method in its
place. Our method involves translating both
halves of a paired corpus before mining, and
then performing a majority vote on sentence
pairs mined in three ways: after translating
documents in language x → language y, af-
ter translating y → x, and using the orig-
inal documents in languages x and y. We
demonstrate success with this novel approach
on the Tatoeba similarity search benchmark in
64 low-resource languages, and on NMT in
Kazakh and Gujarati. We also uncover the ef-
fect of resource-related factors (i.e. how much
monolingual/bilingual data is available for a
given language) on the optimal choice of bi-
text mining method, demonstrating that there is
currently no one-size-fits-all approach for this
task. We make the code and data used in our
experiments publicly available.1

1 Introduction

Mining so-called "pseudo-parallel" sentences from
sets of similar documents in different languages
("comparable corpora") has gained popularity in
recent years as a means of overcoming the dearth of
parallel training data for many language pairs. With
increasingly powerful computational resources and
highly efficient tools such as Faiss (Johnson
et al., 2017) at our disposal, the possibility of min-
ing billions of pseudo-parallel bitexts for thousands

1https://github.com/AlexJonesNLP/
alt-bitexts

of language pairs to the end of training a multilin-
gual NMT system has been realized. For example,
Fan et al. (2020) perform global mining over bil-
lions of sentences in 100 languages, resulting in a
massively multilingual NMT system that supports
supervised translation in 2200 directions.

Despite these breakthroughs in high-resource en-
gineering, many questions remain to be answered
about bitext mining from a research perspective,
with particular attention directed toward the low-
resource engineering case, i.e. research settings
with limited computational resources. While Fan
et al. (2020) yield impressive results using hun-
dreds of GPUs, aggressive computational optimiza-
tion, and a global bitext mining procedure (i.e.
searching the entire target corpus for a source sen-
tence match), how these results transfer to the low
computational resource case is not clear. More-
over, the effect of circumstantial (e.g. the resources
available for a given language or language pair)
or linguistic (e.g. typological) factors on bitext
mining performance remains highly understudied.

In light of these issues, our contributions are as
follows:

• We demonstrate the problematic nature of
using similarity-score-based thresholding for
mining bitexts, with particular attention given
to document-level mining of low-resource lan-
guages.

• We propose a novel, heuristic approach for
bitext mining that involves translating both
halves of a bilingual corpus, mining with
three sets of documents (two distinct trans-
lated pairs of documents plus the original doc-
uments), and then performing a majority vote
on the resulting sentence pairs. This approach
avoids the pitfalls of laboriously tuning a sim-
ilarity score threshold, a practice we believe
to have been weakly motivated in past studies.

https://github.com/AlexJonesNLP/alt-bitexts
https://github.com/AlexJonesNLP/alt-bitexts
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• We show the success of our method on NMT
in English-Kazakh and English-Gujarati, and
also on the gold-standard bitext retrieval task
(“similarity search" on the Tatoeba dataset),
and show the optimal choice of mining ap-
proach to be partially dependent on the re-
source availability of the language(s) in-
volved.

2 Related Work

Mining pseudo-parallel sentences from paired cor-
pora for the purpose of training NMT systems
is a decades-old problem, and dozens of solu-
tions have been tried, ranging from statistical
or heuristic-based approaches (Zhao and Vogel,
2002; Resnik and Smith, 2003; Munteanu et al.,
2004; Fung and Cheung, 2004; Munteanu and
Marcu, 2006) to similarity-based, rule-based, and
hybrid approaches (Azpeitia et al., 2017, 2018;
Bouamor and Sajjad, 2018; Hangya et al., 2018;
Schwenk, 2018; Ramesh and Sankaranarayanan,
2018; Artetxe and Schwenk, 2019a,b; Hangya
and Fraser, 2019; Schwenk et al., 2019a,b; Wu
et al., 2019; Keung et al., 2020; Tran et al., 2020;
Kvapilíková et al., 2020; Feng et al., 2020; Fan
et al., 2020). Benchmarks to measure performance
on this task include the BUCC2 ’17/18 datasets
(Zweigenbaum et al., 2017, 2018), whose task in-
volves spotting gold-standard bitexts within compa-
rable corpora, and the Tatoeba dataset (Artetxe and
Schwenk, 2019b), whose task involves matching
gold-standard pairs in truly parallel corpora.
Relevant to similarity-based mining methods are
well-aligned cross-lingual word and sentence em-
beddings, which are some of the oldest constructs
in NLP and have been tackled using hundreds of di-
verse approaches. Even among relatively recent ef-
forts, these approaches range from static, monolin-
gual embeddings (Pennington et al., 2014; Mikolov
et al., 2013; Arora et al., 2017; Kiros et al., 2015) to
static, multilingual ones (Klementiev et al., 2012;
Ammar et al., 2016; Schwenk and Douze, 2017)
to contextualized, monolingual ones (Peters et al.,
2018; Subramanian et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Conneau et al., 2017; Reimers
and Gurevych, 2019) to contextualized, multilin-
gual ones (Song et al., 2019; Conneau et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2020;
Wang et al., 2019). In this paper, our approach
centers around using contextualized, multilingual

2Building and Using Comparable Corpora

sentence embeddings for the task of bitext mining.
For low-resource languages where parallel train-

ing data is little to none, unsupervised NMT can
play a crucial role (Artetxe et al., 2018a, 2019a,b,
2018b; Hoang et al., 2018; Lample et al., 2017,
2018b,c; Pourdamghani et al., 2019; Wu et al.,
2019). However, previous works have only focused
on high-resource languages and/or languages that
are typologically similar to English. Most recently,
several works have questioned the universal useful-
ness of unsupervised NMT and showed its poor re-
sults for low-resource languages (Kim et al., 2020;
Marchisio et al., 2020). They note the importance
of typological similarity between source and tar-
get language, in addition to domain proximity and
the size and quality of the monolingual corpora
involved. They reason that since these conditions
can hardly be satisfied in the case of low-resource
languages, they result in poor unsupervised per-
formance for these languages. However, recently
it has been shown that training a language model
on monolingual corpora, followed by training with
an unsupervised MT objective, and then training
on mined comparable data (Kuwanto et al., 2021)
can improve MT performance for low-resource lan-
guages. In this work, we explore the usefulness
of our mined bitext using a similar pipeline. We
show an improvement over using only supervised
training data for low-resource MT.

3 Model selection

3.1 Cross-lingual Sentence Embeddings

We initially experiment with XLM-RoBERTa (Con-
neau et al., 2020) for our bitext mining task, using
averaged token embeddings (Keung et al., 2020)
or the [CLS] (final) token embedding as makeshift
sentence embeddings. However, we replicate re-
sults from Reimers and Gurevych (2020) in show-
ing these ad-hoc sentence embeddings to have rela-
tively poor performance on the BUCC ’17/18 EN-
FR train data (Zweigenbaum et al., 2017, 2018)
compared to bona fide sentence embeddings like
LASER (Artetxe and Schwenk, 2019b) and LaBSE
(Feng et al., 2020). Thus, we opt to use LaBSE
as our sentence embedding model, using its im-
plementation in the Sentence Transformers 3 li-
brary. LaBSE performs state-of-the-art (SOTA)
or near-SOTA on the BUCC and Tatoeba datasets

3https://www.sbert.net

https://www.sbert.net
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Figure 1: The pipeline we offer for selecting sentence translation pairs from comparable or parallel (e.g. Tatoeba)
corpora using a heuristic voting approach. See Algorithms 1 and 2 for further details.

(Artetxe and Schwenk, 2019b)4, and has demon-
strated cross-lingual transfer capabilities for low-
resource languages in particular. Moreover, being
more recent than LASER, LaBSE has been inves-
tigated less thoroughly in the context of the bitext
mining task.

4 Methods

An overview of our method for extracting bitexts
is given in Figure 1; the processes are sketched in
greater detail in Algorithms 1 and 2. The retrieval
process begins with a set of English documents
and a set of documents in another language XX.
Both sets of documents are then translated using a
pretrained NMT model to obtain XX’ documents
(English documents translated to XX) and EN’ doc-
uments (XX documents translated to English).

We then perform margin-based translation min-
ing (described below in Section 4.1 and in Algo-
rithm 1) on three sets of documents: the original
EN-XX documents, the EN-EN’ documents, and
the XX-XX’ documents. Lastly, we perform a ma-
jority vote (see Algorithm 2, “majority voting”)
on the resulting sentence pairs, keeping any pair
that occurs in ≥ 2 of the three sets of sentence
pairs. If mined from a comparable corpus such as
Wikipedia, these pseudoparallel sentence pairs can
then be used to augment the training data of the
pretrained NMT models, or (help) train an NMT
model from scratch, as in Fan et al. (2020).

Alternative methods for filtering an initial set

4https://github.com/facebookresearch/LASER/tree/master/
data/tatoeba/v1

of sentence pairs are also given in Algorithm 2
(see comments in blue). Empirically, we find our
majority voting method to be superior when a pre-
trained NMT model is available for both languages,
while vanilla margin-based mining (Artetxe and
Schwenk, 2019a) performs best in the absence of
a pretrained NMT model. Results are discussed in
greater detail in Section 6.

4.1 Primary retrieval procedure:
Margin-based Mining

For our primary mining procedure, we use margin-
based mining as described in Artetxe and Schwenk
(2019a). Seeking to mitigate the hubness problem
(Dinu et al., 2014), margin scoring poses an alter-
native to raw cosine similarity in that it selects the
candidate embedding that "stands out" the most
from its k nearest neighbors. We use the ratio mar-
gin score, as described in Artetxe and Schwenk
(2019a) and defined below:

(1)

score(x, y) =
cos(x, y)

1
2k (

∑
z∈NNk(x)

cos(x, z) +
∑

z∈NNk(y)
cos(y, z))

As in Artetxe and Schwenk (2019a), we use
k = 4 for all our mining procedures. We acknowl-
edge that k is indeed a tuneable and important
hyperparameter of KNN search, and that higher
values of k may work better for bitext mining in
certain scenarios, depending on factors such as the
size of the search space (Schwenk et al., 2019b).

https://github.com/facebookresearch/LASER/tree/master/data/tatoeba/v1
https://github.com/facebookresearch/LASER/tree/master/data/tatoeba/v1
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Algorithm 1: Doc-level margin-based mining

1 Given X , Y , k, t, JOIN_METHOD
2 X : Set of sentences in language X. May be grouped

into documents or standalone sentences.
3 Y: Set of sentences in language Y that are parallel or

comparable to those in X .
4 k: Number of neighbors
5 JOIN_METHOD: Method of combining sentence

pairs after mining in the forward and backward
directions. One of either INTERSECT or UNION.

6 t: Margin similarity threshold

7 MINE SENTENCE PAIRS IN BOTH DIRECTIONS
8 for document D ∈ X do
9 for x ∈ D do

10 nnx ← NN(x,YD, k) ;
// NN(x,D, k) := Faiss
k-nearest neighbors search

11 besty = argmaxy∈nnx
score(x, y) ;

// score(x,y) := Eq.(1)
12 if score(x, besty) > t then
13 fwdD ← (x, besty)
14 end
15 fwd← fwdD
16 end
17 end
18 for D ∈ Y do
19 for y ∈ D do
20 nny ← NN(y,XD, k)

bestx = argmaxx∈nny
score(y, x)

21 if score(bestx, y) > t then
22 bwdD ← (bestx, y)
23 end
24 bwd← bwdD
25 end
26 end
27 if INTERSECT then
28 P ← {fwd} ∩ {bwd}
29 end
30 else if UNION then
31 P ← {fwd} ∪ {bwd}
32 end
33 return P

M
ine

in
the

forw
ard

direction
M

ine
in

the
backw

ard
direction

However, we don’t make this hyperparameter a
focus of this paper, instead addressing the problem
of margin score thresholding and its relation to
the size of the search space. We leave a thorough
examination of k and its effect on bitext mining
performance for future work.

4.2 Filtering Procedures
4.2.1 Thresholding
The most straightforward measure for filtering
mined sentence pairs after an initial (“primary")
mining pass is to set a similarity score threshold,
as shown in Artetxe and Schwenk (2019a). Of
course, there is a precision-recall trade-off inherent
to adjusting this threshold, and we show that sim-
ply using a threshold is problematic in two other

Algorithm 2: Secondary retrieval procedures

1 Given X ,Y, k, t,M, JOIN_METHOD
2 t: Margin score threshold
3 M: An NMT model
4 if TRANSLATE then
5 if EN_TO_XX then
6 for x ∈ X do
7 Xtrans ←M(x→ langy)
8 Pen_xx ←

AlgorithmI(Xtrans,Y, k, JOIN_METHOD, t)

9 end
10 if not STRICT_INT or PAIRWISE_INT then

; // EN-to-XX trans. only
11 return Pen_xx

12 end
13 if XX_TO_EN then
14 for y ∈ Y do
15 Ytrans ←M(y → langx)
16 Pxx_en ←

AlgorithmI(Ytrans,X , k, JOIN_METHOD, t)

17 end
18 if not STRICT_INT or PAIRWISE_INT then
19 ; // XX-to-EN trans. only
20 return Pxx_en

21 end
22 end
23 Porig ← AlgorithmI(X ,Y, k, JOIN_METHOD, t)

; // All-or-nothing voting
24 if STRICT_INT then
25 return Porig ∩ Pen_xx ∩ Pxx_en

26 end
; // Majority voting (preferred)

27 else if PAIRWISE_INT then
28 return Porig ∩ Pen_xx

⋃
Porig ∩

Pxx_en
⋃
Pen_xx ∩ Pxx_en

29 end
; // Vanilla mining

30 else
31 return Porig

32 end

ways as well: (1) in the case of document-level min-
ing, the size of the search space (document size)
is variable, so a threshold that works well for one
document may function poorly for another; and (2)
when mining bitexts for NMT training, it can be
incredibly expensive to tune this threshold as a hy-
perparameter, as this entails re-training of the NMT
system. Our heuristic method outperforms a previ-
ously used margin score threshold (Schwenk et al.,
2019b,a; Fan et al., 2020) on document-level min-
ing for Kazakh and Gujarati, doesn’t require tuning
any hyperparameter, and works for any language
for which a supervised MT system is available.

4.2.2 Pre-translation
Our approach capitalizes on multiple similarity-
related signals by first translating either the source
texts (i.e. en→xx), target texts (xx→en), or both.
In our experiments on the Tatoeba dataset (Artetxe
and Schwenk, 2019b), we translate with Google



50

Translate / GNMT (Wu et al., 2016) using Cloud
Translation API. However, due to the cost of using
this API on large bodies of text, when mining on the
English-Kazakh and English-Gujarati comparable
corpora, we use an NMT system that we train on
WMT’19 data (Barrault et al., 2019), with training
corpora sizes given in Table 1. When translating in
either direction, we translate the entire corpus, e.g.
all English sentences in the Wikipedia corpus are
translated to Kazakh.

4.3 Supervised and Unsupervised NMT
We follow the same pipeline for training MT in
(Kuwanto et al., 2021) that is based on XLM (Con-
neau and Lample, 2019). Following their pipeline,
we first pretrain a bilingual Language Model (LM)
using the Masked Language Model (MLM) ob-
jective (Devlin et al., 2019) on the monolingual
corpora of two languages (e.g. Kazakh and En-
glish for en-kk) obtained from Wikipedia, WMT
2018/20195 and Leipzig corpora (2016)6. For both
the LM pretraining and NMT model fine-tuning,
unless otherwise noted, we follow the hyperparam-
eter settings suggested in the XLM repository7. For
every language pair we extract a shared 60,000 sub-
word vocabulary using Byte-Pair Encoding (BPE)
(Sennrich et al., 2016). After pretraining the LM,
we train an NMT model in an unsupervised manner
following the setup recommended in Conneau and
Lample (2019), where both encoder and decoder
are initialized using the same pretrained encoder
block. For training unsupervised NMT, we use
back-translation (BT) and denoising auto-encoding
(AE) losses (Lample et al., 2018a), and the same
monolingual data as in LM pretraining. Lastly,
to train a supervised MT model using our mined
comparable data, we follow BT+AE with BT+MT,
where MT stands for supervised machine transla-
tion objective for which we use the mined data. We
stop training when the validation perplexity (LM
pre-training) or BLEU (translation training) was
not improved for ten checkpoints. We run all our
experiments on 2 GPUs, each with 12GB memory.

We compare the performance in terms of BLEU
score of our MT model with a model that follows
the same pipeline (LM pre-training, unsupervised
MT training, followed by supervised MT train-
ing) but that uses gold-standard training data from
WMT19 (Table 1). The sizes of the monolingual

5http://data.statmt.org/news-crawl/
6https://wortschatz.uni-leipzig.de/en/download/
7http://github.com/facebookresearch/XLM

data we use for LM pretraining are also shown in
Table 1.

Train data Number of sentences
en-kk en-gu

Monolingual 9.51M 1.36M
Supervised
WMT’19 222,165 22,321
Comparable
Doc-level mining, thresh-
old = 1.06

430,762 120,989

Doc-level mining
with bidirectional pre-
translation→ majority
voting

154,679 113,955

Table 1: Sizes (in number of sentences) of training cor-
pora used in training supervised and semi-supervised
NMT. The comparable/pseudoparallel sentences are
mined using margin-based scoring with LaBSE with
the indicated secondary retrieval procedures. These
procedures are described in Section 4.

5 Experiments

5.1 Gold-standard Bitext Retrieval

In gold-standard bitext retrieval tasks, the goal is to
mine gold-standard bitexts from a set of parallel or
comparable corpora. We use the common approach
of finding k-nearest neighbors for each sentence
pair (in both directions, if using INTERSECT in
Algorithm 1), then choosing the sentence that maxi-
mizes the ratio margin score (Equation 1 in Section
4.1).

Tatoeba Dataset8 The Tatoeba dataset, intro-
duced by Artetxe and Schwenk (2019b), contains
up to 1,000 English-aligned, gold-standard sen-
tence pairs for 112 languages. In light of our focus
on lower-resource languages, we experiment only
on the languages listed in Table 10 of Reimers and
Gurevych (2020), which are languages without par-
allel data for the distillation process they undertake.
This heuristic choice is supported by relative per-
formance against languages with parallel data for
distillation: the average raw cosine similarity base-
line with LaBSE for the latter was 96.3, in contrast
with 73.7 for the former. Specifically, the ISO 639-
2 codes9 for the languages we use are as follows:

8https://github.com/facebookresearch/LASER/tree/master/
data/tatoeba/v1

9https://www.loc.gov/standards/iso639-
2/php/code_list.php

http://data.statmt.org/news-crawl/
https://wortschatz.uni-leipzig.de/en/download/
http://github.com/facebookresearch/XLM
https://github.com/facebookresearch/LASER/tree/master/data/tatoeba/v1
https://github.com/facebookresearch/LASER/tree/master/data/tatoeba/v1
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
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afr, amh, ang, arq, arz, ast, awa, aze, bel, ben, ber, bos, bre,
cbk, ceb, cha, cor, csb, cym, dsb, dtp, epo, eus, fao, fry, gla,
gle, gsw, hsb, ido, ile, ina, isl, jav, ksb, kaz, khm, kur, kzj, lat,
lfn, mal, mhr, nds, nno, nov, oci, orv, pam, pms, swg, swh,
tam, tat, tel, tgl tuk, tzl, uig, uzb, war, wuu, xho, yid.

5.2 Pseudo-parallel Sentences From
Comparable Corpora

In addition to gold-standard bitext mining, we
also mine pseudo-parallel sentences from com-
parable corpora. The aim of this task is as fol-
lows: given two sets of similar documents in dif-
ferent languages, find sentence pairs that are close
enough to being translations to act as training data
for an NMT system. Of course, unlike the gold-
standard mining task, there are not ground-truth
labels present for this task, and so evaluation must
be performed on a downstream task like NMT.

Comparable Corpora Our comparable data is
mined from comparable documents, which are
linked Wikipedia pages in different languages ob-
tained using the langlinks from Wikimedia dumps.
For each sentence in a foreign language Wikipedia
page, we use all sentences in its corresponding
linked English language Wikipedia page as poten-
tial comparable sentences.

Pre-processing Since our comparable corpora
for both EN-KK and EN-GU are grouped into doc-
uments, the most important pre-processing step we
perform is eliminating especially short documents
before similarity search. The motivation for this is
that since we search at document-level, the quality
of the resulting pairs could be highly degraded in
particularly small search spaces, in a way that nei-
ther thresholding nor voting could mitigate. Note
that average document length was much shorter for
both Gujarati and Kazakh than for English, due
simply to shorter Wikipedia articles in those lan-
guages. For the EN-KK corpus, we omit any paired
documents whose English version was < 30 words
or whose Kazakh version was < 8 words, which
we determine somewhat arbitrarily by seeing what
values allowed for a sufficient number of remain-
ing sentences. For the EN-GU corpus, we take a
more disciplined approach and lop off the bottom
35% of shortest document pairs, which happened to
be document_length = 21 sentences for English
and 5 sentences for Gujarati. This step accounted
for the large number of documents in each corpus
that contained very few sentences.

5.3 NMT Training Data

We conduct experiments on Kazakh and Gujarati.
They are spoken by 22M and 55M speakers world-
wide, respectively. Additionally, the languages
have few parallel but some comparable and/or
monolingual data available, which makes them
ideal and important candidates for our low-resource
unsupervised NMT research.

Our monolingual data for LM pre-training of
these languages (shown in Table 1) are carefully
chosen from the same topics (for Wikipedia) and
the same domain (for news data). For the news
data, we also select data from similar time peri-
ods (late 2010s) to mitigate domain discrepancy
between source and target languages as per previ-
ous research (Kim et al., 2020). We also randomly
downsample the English part of WMT NewsCrawl
corpus so that our English and the corresponding
foreign news data are equal in size.

6 Results & Analysis

6.1 Tatoeba Dataset

We mine bitexts on the Tatoeba test set in 64 gener-
ally low-resource languages (listed in Section 5.1)
using the primary mining procedure described in
Algorithm 1 with intersection retrieval, in addition
to seven different secondary mining procedures,
namely:

1. Cosine similarity (Reimers and Gurevych,
2020)

2. Margin scoring with no threshold
3. Margin scoring, threshold=1.06
4. Margin scoring, threshold=1.20 (shown to be

optimal on BUCC mining task 10)
5. Margin scoring using EN sentences translated

to XX
6. Margin scoring using XX sentences translated

to EN
7. The strict intersection of pairs generated by

methods 2, 5, and 6
8. The pairwise intersection of pairs generated

by method 2, 5, and 6 (majority voting)
We report F1 instead of accuracy because the in-
tersection methods (in both primary and secondary
procedures) permit less than 100% recall.

The results are broken down across languages by
resource availability (as in "high-resource" or "low-

10https://www.sbert.net/examples/
applications/parallel-sentence-mining/
README.html

https://www.sbert.net/examples/applications/parallel-sentence-mining/README.html
https://www.sbert.net/examples/applications/parallel-sentence-mining/README.html
https://www.sbert.net/examples/applications/parallel-sentence-mining/README.html
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Procedure Average gain
over baseline
(best results
only)

Average gain
over baseline
(all results)

Average gain
over baseline
(langs with
transl. support)

Best results
by resource
capacity*

Average gain
over baseline
(by resource
capacity)

Margin scoring
only (Artetxe and
Schwenk, 2019a)

+6.9 +5.2 +3.6 Level 0: 6 lang.
Level 1: 18 lang.
Level 2: 2 lang.
Level 3: 2 lang.
2†, 6‡

Level 0: +7.2
Level 1: +5.2
Level 2: +1.8
Level 3: +3.4
Level 4: +1.0

xx-to-en transla-
tion→ margin
scoring

+5.2 +3.3 +3.3 Level 0: 1 lang.
Level 1: 7 lang.
Level 2: 2 lang.
Level 3: 7 lang.
Level 4: 1 lang.

Level 0: +3.9
Level 1: +2.8
Level 2: +0.1
Level 3: +4.3
Level 4: +1.8

Bidirectional
translation→
margin scoring
→ pairwise inter-
section of three
sets of sentence
pairs

+4.6 +4.0 +4.0 Level 0: 2 lang.
Level 1: 3 lang.
Level 2: 2 lang.
Level 3: 1 lang.

Level 0: +7.3
Level 1: +3.9
Level 2: +2.6
Level 3: +4.0
Level 4: +1.0

* Using resource categorizations from Joshi et al. (2020) † Extinct languages ‡ Constructed (artificial)
languages

Table 2: Average gain (F1) over the baseline for each mining method on the low-resource subset of the Tatoeba
test data, broken down by several categories. The baseline is the F1 achieved using raw cosine similarity with
LaBSE. The "best results" for a given method are those results on which that method achieved superior results
compared to all other methods. "All results" refers to all languages in the Tatoeba test set.

Corpus Language pair
kk→en en→kk gu→en en→gu

Unsupervised
Kim et al. (2020) 2.0 0.8 0.6 0.6
Supervised
WMT’19 (Kim et al., 2020) 10.3 2.4 9.9 3.5
WMT’19 (Tran et al., 2020) Iter 1 9.8 3.4 8.1 8.1
WMT’19 (Tran et al., 2020) Iter 3 13.2 4.3 18.0 16.9
Google MT (Wu et al., 2016) 28.9 23.1 26.2 31.4
Our pipeline: unsup.+sup.
WMT’19 11.2 7.3 5.7 10.2
Threshold=1.06 6.6 4.1 16.2 19.8
Majority voting 8.6 6.1 16.4 20.2
Threshold=1.06+WMT’19 11.8 7.9 15.4 18.5
Majority voting+WMT’19 12.6 9.0 15.8 19.1

Table 3: NMT training schemes and corresponding BLEU scores on WMT’19 test set. We train supervised systems with
gold-standard data, comparable/pseudoparallel ("silver-standard") data, and combinations of both. We also try supplementing
unsupervised training with each of these three types of supervised data. We provide a supervised benchmark from Wu et al.
(2016).

resource"), as ranked on a 0-5 scale11 according to
Joshi et al. (2020). These results are summarized in
Table 2. We only display results for simple margin
scoring (with no threshold), margin scoring with
XX-to-EN translation beforehand, and margin scor-
ing with bidirectional pre-translation + majority

11rb.gy/psmfnz

voting, as these are the best-performing methods
for the Tatoeba bitext retrieval task.

Because many of the languages in Table 2 lack
support in GNMT, the dominant method overall is
simple margin scoring, being the best-performing
method on 28/64 languages12 and seeing an aver-

126/64 languages lack a resource categorization, so we re-
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age gain over the baseline of +5.2 for all languages
and +6.9 for languages on which it was the best-
performing method. However, for languages with
translation support (i.e. for which a supervised
NMT system is available), the majority voting ap-
proach won out, with an average gain over the
baseline of +4.0, in contrast to vanilla margin scor-
ing (+3.6). In fact, among these 38 languages,
vanilla margin scoring outperformed translation-
based or hybrid (intersection) methods on only 11
languages.

Simply translating non-English sentences into
English before mining (Method 6) also performed
well, netting best results on 18 languages and
outperforming other methods on resource level 3
(+4.3 F1 over baseline) and level 4 (+1.8) lan-
guages. Meanwhile, pairwise intersection per-
formed best on level 0 (+7.3) and level 2 (+2.6)
languages, with vanilla margin scoring outperform-
ing other approaches on level 1 (+5.2).

These results show that the optimal choice of
mining approach is very much dependent on the re-
source availability of the languages involved (most
directly, the amount of data available during pre-
training), and that if a supervised MT system is
already available for a given language, that sys-
tem can be used for efficient mining of parallel or
pseudo-parallel sentences, in tandem with a pre-
trained language model like LaBSE. As shown in
Table 2, even high-resource (i.e. level 4) languages
can be helped by pre-translation of paired corpora.

6.2 NMT

In Table 3, we show the performance in terms of
BLEU scores of various NMT training schemes
on the same WMT’19 test set. We train the su-
pervised MT part of our pipeline system with
gold-standard (WMT’19) data, our mined compa-
rable/pseudoparallel ("silver-standard") data, and
combinations of both i.e., training with compara-
ble data followed by training with gold-standard
data. We also provide Google massively multilin-
gual MT performance on the same WMT’19 test
set (Wu et al., 2016).

As can be seen in Table 3, our method of mining
bitext without thresholding results in higher BLEU
performance than when using bitexts mined using
margin scoring with a threshold of 1.06, which is
a commonly used threshold recommended by pre-
vious works for margin-based mining (Schwenk

port results on the remaining 58

et al., 2019b,a). Our preferred method also results
in the best en→gu performance, which outperforms
previous unsupervised or supervised works. It out-
performs the best previous work that uses WMT’19
data and iterative bitext mining by +3.3 BLEU.
Since we do not perform iterative mining, if we
consider the same previous work without iterative
mining i.e., Tran et al. (2020) Iter 1, our approach
outperforms that model by +12.1 BLEU in en→gu
direction and by +8.3 BLEU in gu→en direction.

When combined with supervised i.e., gold-
standard, data for training, our method for min-
ing bitext which does not use any thresholding
(majority voting+WMT’19) also outperforms the
same model which uses bitext mined using mar-
gin scoring with a threshold of 1.06 (Thresh-
old=1.06+WMT’19). Majority voting+WMT’19
also results in the best en→kk performance, which
outperforms previous unsupervised or supervised
works. It outperforms the best previous work that
uses WMT’19 data and iterative bitext mining by
+4.7 BLEU. Since we do not perform iterative min-
ing, if we consider the same previous work without
iterative mining i.e., Tran et al. (2020) Iter 1, our
approach outperforms that model by +5.6 BLEU
in the en→kk direction and by +2.8 BLEU in the
kk→en direction. It is also worth noting that for
training our pipeline model we use the default hy-
perparameter settings suggested in the XLM repos-
itory, while previous works perform extensive hy-
perparameter tuning. We believe our performance
can be improved further by tuning our hyperpa-
rameter settings, but for brevity leave this for a
future study. These results on low resource MT fur-
ther demonstrate the superiority of our method for
mining bitext without thresholding—compared to
margin scoring with thresholding—for downstream
low-resource MT applications. To our knowledge,
we are the first to thoroughly investigate secondary
filtering methods for selecting bitexts following a
primary, similarity-based mining procedure.

7 Conclusion

We propose a novel method of mining sentence
pairs from both comparable and parallel corpora,
and demonstrate success on both the Tatoeba gold-
standard similarity search task and on mining
pseudo-parallel sentences for downstream NMT
training. We uncover the problematic nature of
setting a similarity score threshold for this task,
particularly in the context of document-level min-
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ing. We introduce a heuristic algorithm that filters
translations from non-translations by voting on sen-
tence pairs mined in three different ways, which
avoids having to laboriously train and re-train NMT
systems to tune a similarity score threshold.
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A Appendix

Procedure afr amh ang arq arz ast awa aze bel ben ber bos bre
Raw cosine similarity
(Acc=F1) 97.4 94 64.2 46.2 78.4 90.6 73.2 96.1 96.2 91.3 10.4 96.2 17.3
Margin scoring, intersection,
no threshold (F1) 98.7 94.2 73.4 57.2 84.6 94.3 83.4 97.4 97.5 92.4 14.2 96.6 21.5
Precision 99.9 96.9 88.4 80.0 93.6 98.3 95.5 99.3 99.1 96.6 30.9 98.0 38.5
Recall 97.6 91.7 62.7 44.5 77.1 90.6 74.0 95.6 95.9 88.5 9.2 95.2 14.9
Margin scoring, intersection,
threshold = 1.06 (F1) 98.2 94.5 72.9 56.0 84.0 94.2 80.5 97.2 97.3 91.8 13.4 96.4 21.3
Precision 100 97.5 90.1 85.0 95.7 99.1 97.0 99.3 99.1 96.9 44.4 98.0 54.1
Recall 96.5 91.7 61.2 41.7 74.8 89.8 68.8 95.3 95.6 87.3 7.9 94.9 13.3
Margin scoring, intersection,
threshold = 1.20 (F1) 89.5 82.5 59.1 43.6 76.9 92.4 57.2 89.6 94.8 78.6 11.8 90.5 13.4
Precision 100 100 96.6 97.3 98.1 99.1 98.9 99.8 99.5 99.1 90.0 99.0 92.3
Recall 81.0 70.2 42.5 28.1 63.3 86.6 40.3 81.4 90.5 65.1 6.3 83.3 7.2
Margin scoring, intersection,
en-xx (F1) 98.4 93.2 * * * * * 96.7 97.6 91.8 * 96.3 *
Precision 99.6 96.8 * * * * * 98.6 99.1 96.5 * 98.2 *
Recall 97.3 89.9 * * * * * 94.9 96.1 87.6 * 94.4 *
Margin scoring, intersection,
xx-en (F1) 99.0 95.7 * * * * * 97.6 97.6 92.0 * 97.3 *
Precision 99.8 98.1 * * * * * 99.0 99.1 96.3 * 98.8 *
Recall 98.2 93.5 * * * * * 96.3 96.1 88.0 * 95.8 *
Margin scoring, intersection,
strict intersection (F1) 98.1 93.7 * * * * * 96.2 96.9 89.8 * 96.0 *
Precision 100 100 * * * * * 99.8 99.8 99.3 * 100 *
Recall 96.2 88.1 * * * * * 92.8 94.2 82.0 * 92.4 *
Margin scoring, intersection,
majority vote (F1) 98.9 95.4 * * * * * 97.5 97.9 93.0 * 97.1 *
Precision 99.9 98.7 * * * * * 99.3 99.6 97.9 * 98.8 *
Recall 97.9 92.3 * * * * * 95.9 96.2 88.6 * 95.5 *
Procedure cbk ceb cha cor csb cym dsb dtp epo eus fao fry gla
Raw cosine similarity
(Acc=F1) 82.5 70.9 39.8 12.8 56.1 93.6 69.3 13.3 98.4 95.8 90.6 89.9 88.8
Margin scoring, intersection,
no threshold (F1) 89.5 79.3 49.3 18.8 69.5 96.2 80.7 18.8 99.0 96.8 94.9 93.7 91.9
Precision 96.7 91.1 65.9 45.2 86.5 98.9 94.7 37.5 99.7 98.4 98.0 96.9 97.1
Recall 83.2 70.2 39.4 11.9 58.1 93.6 70.4 12.5 98.4 95.2 92.0 90.8 87.3
Margin scoring, intersection,
threshold = 1.06 (F1) 87.1 78.5 47.8 16.2 68.0 95.6 79.1 18.5 99.0 96.4 93.4 93.1 91.2
Precision 97.8 93.3 75.0 64.1 90.2 99.1 95.6 56.1 99.9 98.5 98.7 97.5 97.3
Recall 78.6 67.7 35.0 9.3 54.5 92.3 67.4 11.1 98.2 94.4 88.5 89.0 85.8
Margin scoring, intersection,
threshold = 1.20 (F1) 71.5 67.4 44.3 9.0 54.2 86.0 93.4 15.2 97.9 92.6 84.5 89.5 80.3
Precision 99.6 98.7 85.4 100 95..0 99.3 99.6 87.4 99.9 99.2 99.0 99.3 98.9
Recall 55.7 51.2 29.9 4.7 37.9 75.8 46.6 8.3 96.0 86.8 73.7 81.5 67.6
Margin scoring, intersection,
en-xx (F1) * 78.6 * 15.0 * 96.3 76.2 * 98.5 96.4 * 96.4 92.6
Precision * 90.6 * 36.0 * 98.9 95.0 * 99.5 98.6 * 98.8 97.1
Recall * 69.3 * 9.5 * 93.9 63.7 * 97.6 94.3 * 94.2 88.4
Margin scoring, intersection,
xx-en (F1) * 86.1 * 17.3 * 97.3 67.3 * 98.9 97.6 * 95.6 93.9
Precision * 94.2 * 41.8 * 98.9 85.5 * 99.6 98.8 * 97.6 97.5
Recall * 79.2 * 10.9 * 95.7 55.5 * 98.3 96.4 * 93.6 90.6
Margin scoring, intersection,
strict intersection (F1) * 77.3 * 13.0 * 95.2 63.0 * 98.5 96.2 * 93.9 89.9
Precision * 99.2 * 68.6 * 100 99.1 * 100 99.5 * 98.7 99.3
Recall * 63.3 * 7.2 * 90.8 46.1 * 97.1 93.1 * 89.6 82.1
Margin scoring, intersection,
majority vote (F1) * 81.8 * 18.7 * 96.7 79.4 * 98.8 96.8 * 95.8 93.5
Precision * 96.0 * 47.9 * 99.1 97.3 * 99.6 98.6 * 98.8 98.0
Recall * 71.3 * 11.6 * 94.4 67.0 * 98.1 95.2 * 93.1 89.4
Procedure gle gsw hsb ido ile ina isl jav kab kaz khm kur kzj
Raw cosine similarity
(Acc=F1) 95.0 52.1 71.2 90.9 87.1 95.8 96.2 84.4 6.2 90.5 83.2 87.1 14.2
Margin scoring, intersection,
no threshold (F1) 96.6 62.0 81.6 95.1 93.0 97.4 97.9 92.2 7.7 92.6 86.8 92.1 20.8
Precision 98.7 85.1 94.6 98.7 98.4 99.0 99.4 98.9 19.4 96.8 93.0 98.1 41.3
Recall 94.6 48.7 71.8 91.7 88.1 95.9 96.4 86.3 4.8 88.7 81.3 86.8 13.9
Margin scoring, intersection,
threshold = 1.06 (F1) 95.9 60.2 79.7 94.1 91.7 96.9 97.5 91.6 7.3 92.2 86.4 91.4 20.0
Precision 98.9 89.8 94.9 99.0 99.0 99.0 99.4 99.4 31.3 96.9 94.7 98.3 55.2
Recall 93.1 45.3 68.7 89.7 85.4 95.0 95.7 84.9 4.1 87.8 79.5 85.4 12.2
Margin scoring, intersection,
threshold = 1.20 (F1) 84.7 43.7 67.8 88.5 77.9 94.5 91.0 83.6 5.0 85.7 76.4 82.9 15.1
Precision 100 97.1 99.6 99.9 99.8 99.4 99.9 99.3 78.8 99.1 98.7 99.7 94.3
Recall 73.5 28.2 51.3 79.5 63.8 90.0 83.6 72.2 2.6 75.5 62.3 71.0 8.2
Margin scoring, intersection,
en-xx (F1) 96.9 58.7 76.6 80.4 76.4 96.3 91.9 * * 92.6 87.3 92.0 *
Precision 98.8 80.6 92.9 91.8 90.1 99.4 96.4 * * 97.0 93.9 97.5 *
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Recall 95.2 46.2 65.2 71.6 66.3 93.5 87.8 * * 88.7 81.6 97.1 *
Margin scoring, intersection,
xx-en (F1) 97.7 59.3 80.0 82.1 78.7 95.8 80.8 * * 93.5 87.5 95.6 *
Precision 99.0 83.1 93.1 95.4 93.0 98.6 93.8 * * 96.8 93.5 99.2 *
Recall 96.4 46.2 70.2 72.0 68.2 93.2 71.0 * * 90.4 82.1 92.2 *
Margin scoring, intersection,
strict intersection (F1) 95.6 55.1 74.7 73.2 67.0 94.9 78.2 * * 91.2 85.6 90.3 *
Precision 99.6 91.2 96.1 100 99.8 99.7 99.8 * * 99.2 98.2 99.4 *
Recall 92.0 39.3 61.2 57.7 50.4 90.6 64.3 * * 84.3 75.9 82.7 *
Margin scoring, intersection,
majority vote (F1) 97.8 62.3 81.7 91.1 88.4 97.1 96.6 * * 93.1 87.8 94.0 *
Precision 99.3 86.4 94.8 99.5 99.3 99.1 99.3 * * 97.5 94.9 99.2 *
Recall 73.5 28.2 51.3 79.5 63.8 90.0 83.6 72.2 2.6 75.5 62.3 71.0 8.2
Procedure lat lfn mal mhr nds nno nov oci orv pam pms swg swh
Raw cosine similarity
(Acc=F1) 82.0 71.2 98.9 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0 65.2 88.6
Margin scoring, intersection,
no threshold (F1) 89.0 80.7 99.3* 26.3 89.0 97.5 85.4 78.7 57.4 17.9 78.9 80.4 93.2
Precision 96.8 93.4 99.7 46.0 96.9 99.4 93.5 90.6 78.6 34.6 92.8 95.1 97.7
Recall 82.4 71.0 98.8 18.4 82.2 95.7 78.6 69.6 45.3 12.1 68.6 69.6 89.0
Margin scoring, intersection,
threshold = 1.06 (F1) 87.2 79.4 99.3* 26.3 87.6 97.2 83.0 77.7 55.9 17.4 76.3 77.0 92.5
Precision 97.6 94.7 99.7 59.3 98.3 99.5 94.5 93.1 83.6 50.2 94.4 96.0 98.8
Recall 78.7 68.4 98.8 16.9 79.1 95.1 73.9 66.6 42.0 10.5 64.0 64.3 86.9
Margin scoring, intersection,
threshold = 1.20 (F1) 72.6 68.8 96.4 18.0 74.8 92.1 77.3 65.8 37.0 11.7 63.0 72.3 81.8
Precision 99.5 98.5 99.7 90.1 99.3 99.9 98.8 98.8 96.5 85.1 98.4 98.5 100
Recall 57.2 52.9 93.3 10.0 60.0 85.5 63.4 49.3 22.9 6.3 46.3 57.1 69.2
Margin scoring, intersection,
en-xx (F1) 83.5 * 98.0 * 86.0 97.3 * * * * * * 94.9
Precision 95.1 * 99.5 * 97.5 99.3 * * * * * * 98.6
Recall 74.4 * 96.5 * 76.9 95.4 * * * * * * 91.5
Margin scoring, intersection,
xx-en (F1) 86.1 * 98.2 * 83.8 97.7 * * * * * * 95.3
Precision 95.6 * 99.6 * 95.2 99.4 * * * * * * 98.1
Recall 78.3 * 96.9 * 74.9 96.1 * * * * * * 92.6
Margin scoring, intersection,
strict intersection (F1) 81.7 * 97.1 * 80.1 96.6 * * * * * * 92.1
Precision 98.2 * 100 * 99.3 99.8 * * * * * * 100
Recall 69.9 * 94.3 * 67.2 93.7 * * * * * * 85.4
Margin scoring, intersection,
majority vote (F1) 88.8 * 99.2 * 88.4 97.8 * * * * * * 95.5
Precision 97.1 * 99.9 * 98.3 99.6 * * * * * * 99.4
Recall 81.7 * 98.5 * 80.4 96.0 * * * * * * 91.2
Procedure tam tat tel tgl tuk tzl uig uzb war wuu xho yid
Raw cosine similarity
(Acc=F1) 90.7 87.9 98.3 97.4 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0 *
Margin scoring, intersection,
no threshold (F1) 93.0 92.0 99.1* 98.6 86.8 71.0 95.4 91.1 75.8 94.8 94.2 95.2 *
Precision 97.5 97.4 99.6 99.7 95.8 82.3 98.3 96.8 89.5 98.8 97.7 98.7 *
Recall 88.9 87.1 98.7 97.6 79.3 62.5 92.7 86.0 65.7 91.1 90.8 92.0 *
Margin scoring, intersection,
threshold = 1.06 (F1) 92.8 91.3 99.1* 98.4 87.3 70.9 95.1 90.7 73.8 94.0 94.2 94.3 *
Precision 97.8 97.9 99.6 99.8 99.4 87.3 98.3 97.1 93.5 99.0 97.7 99.1 *
Recall 88.3 85.5 98.7 97.1 77.8 59.6 92.2 85.0 60.9 89.4 90.8 90.0 *
Margin scoring, intersection,
threshold = 1.20 (F1) 88.9 83.9 97.1 93.3 58.8 56.0 91.5 85.8 57.6 86.6 87.6 87.6 *
Precision 98.8 98.9 100 100 98.8 91.3 99.6 99.4 99.8 99.5 97.4 99.5 *
Recall 80.8 72.8 94.4 87.5 41.9 40.4 84.6 75.5 40.5 76.7 79.6 78.2 *
Margin scoring, intersection,
en-xx (F1) 93.0 89.8 98.5 97.5 85.9 * 94.8 93.5 * * 92.9 93.6 *
Precision 98.2 95.4 99.1 99.2 95.8 * 98.2 98.7 * * 98.4 98.2 *
Recall 88.3 84.8 97.9 95.8 77.8 * 91.6 88.8 * * 88.0 89.5 *
Margin scoring, intersection,
xx-en (F1) 93.7 93.9 97.6 99.4 97.0 * 95.5 95.2 * * 97.2 97.2 *
Precision 97.5 97.7 99.1 99.9 99.5 * 98.6 97.8 * * 97.9 98.8 *
Recall 90.2 90.4 96.2 98.9 94.6 * 92.5 92.8 * * 96.5 95.8 *
Margin scoring, intersection,
strict intersection (F1) 92.0 89.9 97.4 97.6 79.9 * 93.7 91.2 * * 91.3 92.7 *
Precision 99.2 99.5 99.6 100 100 * 99.7 100 * * 98.4 99.6 *
Recall 85.7 81.9 95.3 95.3 66.5 * 88.5 83.9 * * 85.2 86.7 *
Margin scoring, intersection,
majority vote (F1) 93.7 92.5 99.1* 98.8 94.0 * 95.4 93.6 * * 95.7 95.9 *
Precision 98.6 97.9 99.6 100 100 * 98.7 99.2 * * 98.5 99.1 *
Recall 89.3 87.6 98.7 97.6 88.7 * 92.3 88.6 * * 93.0 92.8 *

Table 4: Tatoeba test set results for a subset of low-resource, English-aligned language pairs, broken down by the mining
method used. These language pairs are ones without parallel data for the multilingual distillation process described in
Reimers and Gurevych (2020) (cf. Table 10 in that paper). Note that LaBSE has training data for most of these languages.
Descriptions of the various mining methods are found in Section 4.


