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Abstract

Disease name recognition and normalization
, which is generally called biomedical entity
linking, is a fundamental process in biomedi-
cal text mining. Recently, neural joint learning
of both tasks has been proposed to utilize the
mutual benefits. While this approach achieves
high performance, disease concepts that do not
appear in the training dataset cannot be accu-
rately predicted. This study introduces a novel
end-to-end approach that combines span rep-
resentations with dictionary-matching features
to address this problem. Our model handles
unseen concepts by referring to a dictionary
while maintaining the performance of neural
network-based models, in an end-to-end fash-
ion. Experiments using two major datasets
demonstrate that our model achieved compet-
itive results with strong baselines, especially
for unseen concepts during training.

1 Introduction

Identifying disease names , which is generally
called biomedical entity linking, is the fundamental
process of biomedical natural language processing,
and it can be utilized in applications such as a lit-
erature search system (Lee et al., 2016) and a
biomedical relation extraction (Xu et al., 2016).
The usual system to identify disease names consists
of two modules: named entity recognition (NER)
and named entity normalization (NEN). NER is
the task that recognizes the span of a disease name,
from the start position to the end position. NEN is
the post-processing of NER, normalizing a disease
name into a controlled vocabulary, such as a MeSH
or Online Mendelian Inheritance in Man (OMIM).

Although most previous studies have developed
pipeline systems, in which the NER model first rec-
ognizs disease mentions (Lee et al., 2020; Weber
et al., 2020) and the NEN model normalizes the
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recognized mention (Leaman et al., 2013; Ferré
et al., 2020; Xu et al., 2020; Vashishth et al., 2020),
a few approaches employ a joint learning architec-
ture for these tasks (Leaman and Lu, 2016; Lou
et al., 2017). These joint approaches simultane-
ously recognize and normalize disease names uti-
lizing their mutual benefits. For example, Leaman
et al. (2013) demonstrated that dictionary-matching
features, which are commonly used for NEN, are
also effective for NER. While these joint learning
models achieve high performance for both NER
and NEN, they predominately rely on hand-crafted
features, which are difficult to construct because of
the domain knowledge requirement.

Recently, a neural network (NN)-based model
that does not require any hand-crafted features
was applied to the joint learning of NER and
NEN (Zhao et al., 2019). NER and NEN were
defined as two token-level classification tasks, i.e.,
their model classified each token into IOB2 tags
and concepts, respectively. Although their model
achieved the state-of-the-art performance for both
NER and NEN, a concept that does not appear in
training data (i.e., zero-shot situation) can not be
predicted properly.

One possible approach to handle this zero-shot
situation is utilizing the dictionary-matching fea-
tures. Suppose that an input sentence “Classic pol-
yarteritis nodosa is a systemic vasculitis” is given,
where “polyarteritis nodosa” is the target entity.
Even if it does not appear in the training data, it
can be recognized and normalized by referring to
a controlled vocabulary that contains “Polyarteri-
tis Nodosa (MeSH: D010488).” Combining such
looking-up mechanisms with NN-based models,
however, is not a trivial task; dictionary matching
must be performed at the entity-level, whereas stan-
dard NN-based NER and NEN tasks are performed
at the token-level (for example, Zhao et al., 2019).

To overcome this problem, we propose a novel
end-to-end approach for NER and NEN that com-
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Figure 1: The overview of our model. It combines the dictionary-matching scores with the context score obtained
from PubMedBERT. The red boxes are the target span and “ci” in the figure is the “i”-th concept in the dictionary.

bines dictionary-matching features with NN-based
models. Based on the span-based model introduced
by Lee et al. (2017), our model first computes
span representations for all possible spans of the
input sentence and then combines the dictionary-
matching features with the span representations.
Using the score obtained from both features, it
directly classifies the disease concept. Thus, our
model can handle the zero-shot problem by using
dictionary-matching features while maintaining the
performance of the NN-based models.

Our model is also effective in situations other
than the zero-shot condition. Consider the follow-
ing input sentence: “We report the case of a patient
who developed acute hepatitis,” where “hepatitis”
is the target entity that should be normalized to
“drug-induced hepatitis.” While the longer span
“acute hepatitis” also appears plausible for stand-
alone NER models, our end-to-end architecture
assigns a higher score to the correct shorter span
“hepatitis” due to the existence of the normalized
term (“drug-induced hepatitis”) in the dictionary.

Through the experiments using two major NER
and NEN corpora, we demonstrate that our model
achieves competitive results for both corpora.
Further analysis illustrates that the dictionary-
matching features improve the performance of
NEN in the zero-shot and other situations.

Our main contributions are twofold: (i) We
propose a novel end-to-end model for disease
name recognition and normalization that utilizes
both NN-based features and dictionary-matching
features; (ii) We demonstrate that combining
dictionary-matching features with an NN-based

model is highly effective for normalization, espe-
cially in the zero-shot situations.

2 Methods

2.1 Task Definition
Given an input sentence, which is a sequence of
words x = {x1, x2, · · · , x|X|} in the biomedi-
cal literature, let us define S as a set of all pos-
sible spans, and L as a set of concepts that con-
tains the special label Null for a non-disease span.
Our goal is to predict a set of labeled spans y =

{〈i, j, d〉k}
|Y |
k=1, where (i, j) ∈ S is the word in-

dex in the sentence, and d ∈ L is the concept of
diseases.

2.2 Model Architecture
Our model predicts the concepts for each span
based on the score, which is represented by the
weighted sum of two factors: the context score
scorecont obtained from span representations and
the dictionary-matching score scoredict. Figure 1
illustrates the overall architecture of our model. We
denote the score of the span s as follows:

score(s, c) = scorecont(s, c) + λscoredict(s, c)

where c ∈ L is the candidate concept and λ is the
hyperparameter that balances the scores. For the
concept prediction, the scores of all possible spans
and concepts are calculated, and then the concept
with the highest score is selected as the predicted
concept for each span as follows:

y = argmax
c∈L

score(s, c)
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Context score The context score is computed in
a similar way to that of Lee et al. (2017), which is
based on the span representations. To compute the
representations of each span, the input tokens are
first encoded into the token embeddings. We used
BioBERT (Lee et al., 2020) as the encoder, which
is a variation of bidirectional encoder representa-
tions from transformers (BERT) that is trained on
a large amount of biomedical text. Given an in-
put sentence containing T words, we can obtain
the contextualized embeddings of each token using
BioBERT as follows:

h1:T = BERT(x1, x2, · · · , xT )

where h1:T is the input tokens embeddings.
Span representations are obtained by concatenat-

ing several features from the token embeddings:

gs = [hstart(s),hend(s), ĥs, φ(s)]

g′s = GELU(FFNN(gs))

where hstart(s) and hend(s) are the start and end
token embeddings of the span, respectively; and ĥs

is the weighted sum of the token embeddings in the
span, which is obtained using an attention mech-
anism (Bahdanau et al., 2015). φ(i) is the size of
span s. These representations gs are then fed into a
simple feed-forward NN, FFNN, and a nonlinear
function, GELU (Hendrycks and Gimpel, 2016).

Given a particular span representation and a can-
didate concept as the inputs, we formulate the con-
text score as follows:

scorecont(s, c) = gs ·Wc

where W ∈ R|L|×dg is the weight matrix associ-
ated with each concept c, and Wc represents the
weight vector for the concept c.

Dictionary-matching score We used the cosine
similarity of the TF-IDF vectors as the dictionary-
matching features. Because there are several syn-
onyms for a concept, we calculated the cosine sim-
ilarity for all synonyms of the concept and used
the maximum cosine similarity as the score for
each concept. The TF-IDF is calculated using the
character-level n-gram statistics computed for all
diseases appearing in the training dataset and con-
trolled vocabulary. For example, given the span
“breast cancer,” synonyms with high cosine simi-
larity are “breast cancer (1.0)” and “male breast
cancer (0.829).”

3 Experiment

3.1 Datasets
To evaluate our model, we chose two major datasets
used in disease name recognition and normal-
ization against a popular controlled vocabulary,
MEDIC (Davis et al., 2012). Both datasets, the
National Center for Biotechnology Information
Disease (NCBID) corpus (Doğan et al., 2014)
and the BioCreative V Chemical Disease Relation
(BC5CDR) task corpus (Li et al., 2016), comprise
of PubMed titles and abstracts annotated with dis-
ease names and their corresponding normalized
term IDs (CUIs). NCBID provides 593 training,
100 development, and 100 test data splits, while
BC5CDR evenly divides 1500 data into the three
sets. We adopted the same version of MEDIC as
TaggerOne (Leaman and Lu, 2016) used, and that
we dismissed non-disease entity annotations con-
tained in BC5CDR.

3.2 Baseline Models
We compared several baselines to evaluate our
model. DNorm (Leaman et al., 2013) and
NormCo (Wright et al., 2019) were used as pipeline
models due to their high performance. In addition,
we used the pipeline systems consisting of state-
of-the-art models: BioBERT (Lee et al., 2020) for
NER and BioSyn (Sung et al., 2020) for NEN.

TaggerOne (Leaman and Lu, 2016) and
Transition-based model (Lou et al., 2017) are
used as joint-learning models. These models out-
performed the pipeline models in NCBID and
BC5CDR. For the model introduced by Zhao et al.
(2019), we cannot reproduce the performance re-
ported by them. Instead, we report the performance
of the simple token-level joint learning model based
on the BioBERT, which referred as “joint (token)”.

3.3 Implementation
We performed several preprocessing steps: split-
ting the text into sentences using the NLTK toolkit
(Bird et al., 2009), removing punctuations, and
resolving abbreviations using Ab3P (Sohn et al.,
2008), a common abbreviation resolution module.
We also merged disease names in each training set
into a controlled vocabulary, following the methods
of Lou et al. (2017).

For training, we set the learning rate to 5e-5, and
mini-batch size to 32. λ was set to 0.9 using the
development sets. For BC5CDR, we trained the
model using both the training and development sets
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NCBID BC5CDR

Models NER NEN NER NEN

TaggerOne 0.829 0.807 0.826 0.837
Transition-based model 0.821 0.826 0.862 0.876
NormCo 0.829 0.840 0.826 0.830
pipeline 0.874 0.841 0.865 0.818
joint (token) 0.864 0.765 0.855 0.817

Ours without dictionary 0.884 0.781 0.864 0.808
Ours 0.891 0.854 0.867 0.851

Table 1: F1 scores of NER and NEN in NCBID and
BC5CDR. Bold font represents the highest score.

following Leaman and Lu (2016). For computa-
tional efficiency, we only consider spans with up to
10 words.

3.4 Evaluation Metrics

We evaluated the recognition performance of our
model using micro-F1 at the entity level. We con-
sider the predicted spans as true positive when
their spans are identical. Following the previ-
ous work (Wright et al., 2019; Leaman and Lu,
2016), the performance of NEN was evaluated us-
ing micro-F1 at the abstract level. If a predicted
concept was found within the gold standard con-
cepts in the abstract, regardless of its location, it
was considered as a true positive.

4 Results & Discussions

Table 1 illustrates that our model mostly achieved
the highest F1-scores in both NER and NEN,
except for the NEN in BC5CDR, in which the
transition-based model displays its strength as a
baseline. The proposed model outperformed the
pipeline model of the state-of-the-art models for
both tasks, which demonstrates that the improve-
ment is attributed not to the strength of BioBERT
but the model architecture, including the end-
to-end approach and combinations of dictionary-
matching features.

Comparing the model variation results, adding
dictionary-matching features improved the perfor-
mance in NEN. The results clearly suggest that
dictionary-matching features are effective for NN-
based NEN models.

4.1 Contribution of Dictionary-Matching

To analyze the behavior of our model in the zero-
shot situation, we investigated the NEN perfor-
mance on two subsets of both corpora: disease
names with concepts that appear in the training

standard zero-shot

dataset mention concept mention concept

NCBID 781 135 179 56
BC5CDR 4031 461 391 179

Table 2: Number of mentions and concepts in standard
and zero-shot situations.

Methods NCBID BC5CDR

zero-shot Ours without dictionary 0 0
Ours 0.704 0.597

standard Ours without dictionary 0.854 0.846
Ours 0.905 0.877

Table 3: F1 scores for NEN of NCBID and BC5CDR
subsets for zero-shot situation where disease concepts
do not appear in training data and the standard situation
where they do appear in training data.

data (i.e., standard situation), and disease names
with concepts that do not appear in the training
data (i.e., the zero-shot situation). Table 2 shows
the number of mentions and concepts in each situa-
tion. Table 3 displays the results of the zero-shot
and standard situation. The proposed model with
dictionary-matching features can classify disease
concepts in the zero-shot situation, whereas the
NN-based classification model cannot normalize
the disease names.

The results of the standard situation demonstrate
that combining dictionary-matching features also
improves the performance even when target con-
cepts appear in the training data. This finding im-
plies that an NN-based model can benefit from
dictionary-matching features, even if the models
can learn from many training data.

4.2 Case study

We examined 100 randomly sampled sentences to
determine the contributions of dictionary-matching
features. There are 32 samples in which the models
predicted concepts correctly by adding dictionary-
matching features. Most of these samples are dis-
ease concepts that do not appear in the training set
but appear in the dictionary. For example, “pure
red cell aplasis (MeSH: D012010)” is not in the
BC5CDR training set while the MEDIC contains
“Pure Red-Cell Aplasias” for “D012010”. In this
case, a high dictionary-matching score clearly leads
to a correct prediction in the zero-shot situation.

In contrast, there are 32 samples in which the
dictionary-matching features cause errors. The
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sources of this error type are typically general dis-
ease names in the MEDIC. For example, “Death
(MeSH:D003643)” is incorrectly predicted as a dis-
ease concept in NER. Because these words are also
used in the general context, our model overesti-
mated their dictionary-matching scores.

Furthermore, in the remaining samples, our
model predicted the code properly and the span in-
correctly. For example, although “thoracic hemato-
myelia” is labeled as “MeSH: D020758” in the
BC5CDR test set, our model recognized this as
“hematomyelia.” In this case, our model mostly
relied on the dictionary-matching features and mis-
classifies the span because ‘hematomyelia” is in
the MEDIC but not in the training data.

4.3 Limitations

Our model is inferior to the transition-based model
for BC5CDR. One possible reason is that the
transition-based model utilizes normalized terms
that co-occur within a sentence, whereas our model
does not. Certain disease names that co-occur
within a sentence are strongly useful for normaliz-
ing disease names. Although BERT implicitly con-
siders the interaction between disease names via
the attention mechanism, a more explicit method is
preferable for normalizing diseases.

Another limitation is that our model treats the
dictionary entries equally. Because certain terms
in the dictionary may also be used for non-disease
concepts, such as gene names, we must consider
the relative importance of each concept.

5 Conclusion

We proposed a end-to-end model for disease name
recognition and normalization that combines the
NN-based model with the dictionary-matching
features. Our model achieved highly compet-
itive results for the NCBI disease corpus and
BC5CDR corpus, demonstrating that incorporat-
ing dictionary-matching features into an NN-based
model can improve its performance. Further exper-
iments exhibited that dictionary-matching features
enable our model to accurately predict the con-
cepts in the zero-shot situation, and they are also
beneficial in the other situation. While the results
illustrate the effectiveness of our model, we found
several areas for improvement, such as the general
terms in the dictionary and the interaction between
disease names within a sentence. A possible future
direction to deal with general terms is to jointly

train the parameters representing the importance of
each synonyms.
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