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Abstract

Synthetic data generation is widely known to
boost the accuracy of neural grammatical error
correction (GEC) systems, but existing meth-
ods often lack diversity or are too simplistic
to generate the broad range of grammatical er-
rors made by human writers. In this work, we
use error type tags from automatic annotation
tools such as ERRANT to guide synthetic data
generation. We compare several models that
can produce an ungrammatical sentence given
a clean sentence and an error type tag. We
use these models to build a new, large syn-
thetic pre-training data set with error tag fre-
quency distributions matching a given devel-
opment set. Our synthetic data set yields large
and consistent gains, improving the state-of-
the-art on the BEA-19 and CoNLL-14 test sets.
We also show that our approach is particularly
effective in adapting a GEC system, trained on
mixed native and non-native English, to a na-
tive English test set, even surpassing real train-
ing data consisting of high-quality sentence
pairs.

1 Introduction

Grammatical error correction (GEC) systems aim
to automatically correct grammatical and other
types of writing errors in text. It is common to view
this problem as a sequence-to-sequence task (i.e.
ungrammatical sentence→ grammatical sentence)
and borrow models that were originally developed
for neural machine translation (NMT) (Chollam-
patt and Ng, 2018; Junczys-Dowmunt et al., 2018;
Ge et al., 2018b). Back-translation (Sennrich et al.,
2016) is a synthetic data generation technique for
NMT that employs a translation system trained in
the reverse direction to synthesize source sentences
from sentences in the target language, and is still
one of the most effective strategies to use mono-
lingual data in NMT training. Similarly, synthetic
training data generation for GEC has also been

widely studied in the literature (Brockett et al.,
2006; Foster and Andersen, 2009; Rozovskaya
and Roth, 2010; Felice et al., 2014; Rei et al.,
2017; Kasewa et al., 2018; Xie et al., 2018; Ge
et al., 2018a,b; Kiyono et al., 2019; Lichtarge et al.,
2019; Stahlberg and Byrne, 2019; Zhao et al., 2019;
Xu et al., 2019; Grundkiewicz et al., 2019; Choe
et al., 2019; Takahashi et al., 2020). This work
is inspired by previous efforts to use ideas from
back-translation for GEC (Kasewa et al., 2018; Xie
et al., 2018; Kiyono et al., 2019). In contrast to
prior work, we use error type tags such as SPELL
(spelling error) or SVA (subject-verb agreement er-
ror) to control the output of our corruption models
and generate more realistic as well as diverse gram-
matical errors. Our tagged corruption models are
trained to output the corrupted sentence given a
clean sentence and an error tag, e.g.:

“NOUN:INFL There were a lot of sheep.”
→ “There were a lot of sheeps.”

The tags mitigate the tendency of untagged cor-
ruption models to produce simplistic corruptions
since many error type tags require more complex
rewrites. In general, there is a one-to-many map-
ping from a clean sentence to a noisy sentence. Us-
ing a regular corruption model, many of these syn-
thetic errors tend to be simplistic,1 but adding tag
information allows the model to generate specific
patterns of errors that can be found in actual GEC
corpora. The benefit of covering a wide range of er-
ror types when generating pseudo data for GEC has
also been demonstrated by Takahashi et al. (2020);
Wan et al. (2020). Moreover, the tag distribution
in the synthetic data can be made to match the dis-
tribution of a specific target domain. We use this
distribution matching technique to adapt a GEC
system to better correct errors by native speakers.

1Example outputs from untagged and tagged corruption
models can be found in Appendix B.
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(a) NOSIGMA (b) POSTSIGMA (c) PREPOSTSIGMA

Figure 1: Constraining FSTs for the SPELL tag. The σ-self loops can match any tag. SELF is used by Seq2Edits
to mark source spans that are not modified.

As an alternative to adding the tag directly
to the input sequence, we add inference-time
constraints to the recently proposed Seq2Edits
model (Stahlberg and Kumar, 2020) to force the
generation of a particular tag. We implement such
constraints using Finite State Transducers (FSTs).
We then use these corruption models to generate
synthetic training data that follows a desired tag
distribution, for example the tag distribution on
the development set. Using our new synthetic pre-
training sets2 we report state-of-the-art results on
two popular GEC test sets (BEA-test: 74.9 F0.5,
CoNLL-14: 68.3 F0.5). In our experiments on
GEC for native English, a model fine-tuned on syn-
thetic data that follows a native English error-tag
distribution can even surpass a model fine-tuned on
high-quality, real (i.e. non-synthetic) data.

2 Tagged Corruption Models

At the core of our approach is a model that gener-
ates an ungrammatical sentence from a clean sen-
tence given an error tag t ∈ T that describes the
desired type of error. T is the set of 25 error type
tags supported by the automatic annotation toolkit
ERRANT (Felice et al., 2016; Bryant et al., 2017).

A straightforward way to train such a tagged
corruption model is to annotate a parallel corpus
with ERRANT, prepend the ERRANT tag to the
clean sentence, and train a model such as a standard
Transformer (Vaswani et al., 2017) to generate the
ungrammatical sentence.3 This idea is similar to
the multi-lingual NMT system of Johnson et al.
(2017) that adds the target language ID tag to the
source sentence.

Alternatively, the recently proposed Seq2Edits4

(Stahlberg and Kumar, 2020) model is able to di-
rectly predict error tags along with the edits, and

2The data set will be made publicly available.
3If a sentence pair has multiple tags we duplicate it in the

training set for each unique tag. This potentially enables the
corruption model to learn co-occurrences of error categories
since multiple errors may be labelled with a single tag.

4A short description of the Seq2Edits model is provided in
Appendix A for convenience.

Tag Log-prob.Corruption model output
ADJ -3.06 There were a lot of many sheep.
ADJ:FORM -2.49 There were a more better of sheep.
ADV -2.63 There were a lot of sheep there.
CONJ -1.39 And there were a lot of sheep.
CONTR -0.90 There’re a lot of sheep.
DET -1.06 There were lot of sheep.
K -1.45 There were a lot of.
MORPH -0.67 There were a lot of sheeps.
NOUN -3.31 There were a lot of seep.
NOUN:INFL -0.61 There were a lot of sheeps.
NOUN:NUM -1.33 There were a lots of sheep.
NOUN:POSS -0.92 There were a lot of sheep’s.
ORTH -0.79 There were alot of sheep.
OTHER -2.60 There were many sheep.
PART -1.22 There were a lot off sheep.
PREP -1.08 There were a lot sheep.
PRON -1.55 It was a lot of sheep.
PUNCT -1.00 There were a lot of sheep
SPELL -2.79 There were a lot of sheeps.
VERB -2.58 There had a lot of sheep.
VERB:FORM -2.34 There being a lot of sheep.
VERB:INFL -1.09 There were a lot of sheeps.
VERB:SVA -0.44 There was a lot of sheep.
VERB:TENSE -0.57 There are a lot of sheep.
WO -1.87 There were a lot sheep of.

Table 1: Outputs of a tagged Seq2Edits corruption
model for the example input sentence “There were a lot
of sheep.”. The ERRANT error type tags are described
in Bryant et al. (2017).

does not need to be provided error tags in the input
sequence. Instead, during beam search we con-
strain the tag output tape of Seq2Edits with an FST
that forces the generation of a certain tag. Fig. 1
illustrates three types of constraint FSTs with the
example tag, SPELL. All FSTs require at least one
occurrence of the SPELL tag. NOSIGMA (Fig. 1a)
is the most restrictive constraint as it only allows
SPELL and SELF (used by Seq2Edits for unmodi-
fied source spans). POSTSIGMA (Fig. 1b) allows
other tags after SPELL, but constrains the hypoth-
esis to start with either SELF or SPELL to prevent
beam search from committing to a corruption that
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Figure 2: The minimum-cost flow graph of the Offline-Optimal method for a training set of N = 4 sentences, two
error type tags (SVA: subject-verb agreement, and WO: word order) and the desired tag distribution P ∗(SVA) = 0.25
and P ∗(WO) = 0.75. Each sentence is represented by a node on the left side with a flow capacity of one. Each
tag is represented by a node on the right side with a capacity equal to the absolute number of sentences for each
tag P ∗(t)N . Arcs connecting sentences and tags are weighted by the corruption model score P (yt,n|t,xn). A
possible flow through the graph is highlighted in orange, this assigns the WO tag to the sentences x1, x3, x4 and
the SVA tag to the sentence x2.

is incompatible with SPELL.5 PREPOSTSIGMA

(Fig. 1c) allows other tags both before and after
SPELL.

Table 1 lists example outputs of a tagged
Seq2Edits corruption model for all 25 ERRANT
tags and demonstrates the model’s capability to
generate a broad variety of realistic errors.

3 Synthetic Data Generation with
Tagged Corruption Models

For a grammatical input sentence xn (n ∈ [1, N ]
where N is the training set size), we denote the
corrupted sentence according to the tag t ∈ T as
yt,n. Our goal is to assign a single tag t∗n to each
training sentence such that the overall distribution
follows a certain desired tag distribution P ∗(t):

∀t ∈ T : P ∗(t) ≈ |{t
∗
n = t|n ∈ [1, N ]}|

N
(1)

We compare three different methods: Offline-
Optimal, Offline-Probabilistic, and Online.

Offline-Optimal The Offline-Optimal method
frames this task as a constrained optimization prob-
lem:

max
t∗

N∑
n=1

logP (yt∗n,n|t
∗
n,xn) (2)

under the constraint that the observed distribution
of tags matches the desired distribution, i.e. Eq. 1 is

5An example of this garden-path problem would be a
subject-verb-agreement (SVA) constraint, but all active hy-
potheses in the beam already contain an adjective error and
the correct subject and verb (e.g.: “SVA He owns a large bike
with tiny wheels” → “He owns a wide bike with. . . ”).

satisfied. Fig. 2 illustrates that this is an instance of
a well-studied problem called maximum weighted
bipartite matching (Schrijver, 2003) and can be
solved efficiently with a standard minimum-cost
flow solver.

Offline-Probabilistic The intuition behind the
Offline-Probabilistic method is to first draw a tag
according to the desired tag distribution P ∗(t) and
then sample sentences which are most likely to
contain this tag, i.e. draw N sentences from the
distribution P ((x,y)|t).

P ((x,y)|t) =
P (x,y)P (t|x,y)∑N

n=1 P (xn,yn)P (t|xn,yn)

=
P (t|x,y)∑N

n=1 P (t|xn,yn)
,

where we assume each sentence-pair has the same
probability P (x,y) = 1

N .

P (t|(x,y)) =
P (t,x,y)

P (x,y)

=
P (x)P (t|x)P (y|t,x)

P (x,y)

≈
1
N

1
|T |P (y|t,x)

1
N

=
1

|T |
P (y|t,x),

where we assume that a) each sample has equal
probability i.e. P (x) ≈ P (x,y) = 1

N , b) each
tag is equally likely given the source sentence,
P (t|x) = 1

|T | , where |T | is the size of the tag
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Data set Synthetic Number of sentences Used for
WikiEdits (Lichtarge et al., 2019) No 170M Pre-training
RoundTripGerman (Lichtarge et al., 2019) Yes 176M Pre-training
Lang-8 (Mizumoto et al., 2011) No 1.9M Stage 1 fine-tuning
FCE-train (Yannakoudakis et al., 2011) No 26K Stage 2 fine-tuning
BEA-train (Bryant et al., 2019) No 34K Stage 2 fine-tuning
This work: C4200M Yes 200M Pre-training

Table 2: Training data sets used in this work.

vocabulary. P (y|t,x) is the probability assigned
by the corruption model to the target sequence y
given the source x and tag t.

Unlike the Offline-Optimal approach, this
method does not guarantee that each sentence from
the original training set will be included in the sam-
ple. However, this may not matter in practice when
drawing from a large pool of examples.

Online A major limitation that prevents the
Offline-Optimal and Offline-Probabilistic methods
from scaling up efficiently is that we need to run
the corruption model for every combination of tag
and source sentence (Ω(N |T |) runtime).6 The On-
line method avoids this computational complexity
by drawing the tag t∗n for each example from the
desired tag distribution P ∗(·), and then generating
the target yn given the source xn and tag t∗n.

∀n ∈ [1, N ] : t∗n ∼ P ∗. (3)

Thus, it does not rely on the corruption model prob-
abilities. The Online method assigns tags on-the-fly
to each sentence independently and hence runs in
Θ(N).

4 Results

For comparability to related work, we report span-
based ERRANT F0.5-scores on the development
and test sets (BEA-dev and BEA-test) of the BEA-
2019 shared task (Bryant et al., 2019). We use the
M2 scorer (Dahlmeier and Ng, 2012) to compute
F0.5-scores on the CoNLL-13 (Ng et al., 2013) and
CoNLL-14 (Ng et al., 2013) sets, and the GLEU
metric (Napoles et al., 2015) on JFLEG-dev and
JFLEG-test (Napoles et al., 2017).

4.1 Training Setup
All our grammar correction models are standard
Seq2Seq (not Seq2Edits) Transformers (Vaswani
et al., 2017) trained with Adafactor (Shazeer and
Stern, 2018) using the Tensor2Tensor (Vaswani

6We ignore the runtime of beam search when describing
the asymptotic time complexity for simplification.

et al., 2018) TensorFlow (Abadi et al., 2015) li-
brary. Our corruption models are either standard
Transformers or Seq2Edits models (Stahlberg and
Kumar, 2020).7 We use a Tensor2Tensor joint 32K
subword vocabulary and the ‘Big’ hyper-parameter
set for all our models. For our tagged corruption
models we extend the subword vocabulary by the
25 ERRANT error tags.

We use both existing and new data sets to
train our models (Table 2). WikiEdits and
RoundTripGerman are large but noisy pre-training
sets described by Lichtarge et al. (2019). In this
work we introduce a new synthetic pre-training cor-
pus – C4200M – that we generated by applying our
corruption methods to 200M sentences sampled
randomly from the Colossal Clean Crawled Cor-
pus (Raffel et al., 2020, C4).8 Our final correction
models are trained using the two stage fine-tuning
recipe of Lichtarge et al. (2020): after pre-training
we first fine-tune on Lang-8 (Mizumoto et al., 2011)
and then on BEA+FCE which is the combination
of the FCE corpus (Yannakoudakis et al., 2011) and
the training split of the Cambridge English Write
& Improve corpus used in the BEA-2019 shared
task (Bryant et al., 2019). Our corruption mod-
els are trained using a similar setup but do not use
C4200M in pre-training. In our ablation experiments,
however, we modify specific stages of this training
pipeline to gain more insight into our methods.

4.2 Synthetic vs. Real Parallel Data

In initial experiments (Tables 3 to 5) we explore
how well our synthetic data generation methods can
replace real parallel data. The corruption models
used in this section are fine-tuned on Lang-8 but not
on BEA+FCE. The seed correction model is pre-
trained on WikiEdits and RoundTripGerman and
fine-tuned on Lang-8. We discard the source sen-
tences in BEA+FCE, replace them with synthetic

7The focus of our work was to examine techniques for
synthetic data correction while keeping the correction model
fixed. Hence, we do not use Seq2Edits models for correction.

8We filtered C4 with language ID and removed sentences
longer than 250 words before selecting the 200M sentences.
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Corruption model Constraint Tagged Offline-Optimal Offline-Probabilistic Online
input? P R F0.5 P R F0.5 P R F0.5

a Full sequence - X 54.5 16.7 37.5 51.0 20.7 39.4 53.5 18.5 38.8
b Seq2Edits NOSIGMA 57.2 21.8 43.2 57.1 25.6 45.8 57.5 26.4 46.6
c Seq2Edits POSTSIGMA 56.5 21.6 42.7 56.6 25.7 45.6 59.4 27.2 48.0
d Seq2Edits PREPOSTSIGMA 56.3 22.4 43.3 55.7 25.5 45.0 53.0 30.6 46.2
e Seq2Edits - X 55.3 26.7 45.5 55.6 25.9 45.2 54.4 29.0 46.3

Table 3: Tagged synthetic data generation where tags are chosen according to the BEA-dev tag distribution. The
GEC seed model (Table 4a) is fine-tuned on BEA+FCE with synthetic source sentences and evaluated on the
BEA-dev set. Rows a and e prepend the desired tag to the input sequence while rows b-d use FST constraints.

GEC data (2. fine-tuning) BEA-dev
Source Target P R F0.5

a N/A (Seed model) 57.0 12.8 33.7
b Real data BEA+FCE 56.5 35.2 50.4
c Synthetic (Full seq.) BEA+FCE 57.6 20.6 42.4
d Synthetic (Seq2Edits) BEA+FCE 53.4 20.6 40.5

Table 4: Untagged synthetic data generation. The seed
GEC model (row a) is fine-tuned on BEA+FCE target
sentences that are either paired with the real source sen-
tences (row b) or with back-translated source sentences
using either a full sequence Transformer (row c) or a
Seq2Edits (row d) corruption model.

corruptions of the target sentences, and fine-tune
the seed correction model on this synthetic data,
i.e. all models in Tables 3 to 5 are trained by fine-
tuning the same seed model (Table 4a and 5a) on
the same set of target sentences but different sets
of source sentences.

Data generation without tags Fine-tuning the
seed model on the real parallel data improves the
F0.5-score on BEA-dev by 16.7 points (33.7 →
50.4 in rows a and b of Table 4). Our goal is
to close the gap relative to the F0.5 of 50.4 using
synthetic source sentences. The corruption models
in rows c and d of Table 4 do not use any error
tags, which is similar to previous attempts to apply
back-translation to GEC (Kasewa et al., 2018).

Data generation with tags Table 3 reports re-
sults from the tag-based corruption methods intro-
duced in this work. Seq2Edits (rows b-e) is more
amenable to tag-based corruption than a standard
full sequence Transformer model (row a) because
tag prediction is a component of the Seq2Edits
model. Interestingly, the Offline-Optimal method
tends to perform worse than Offline-Probabilistic
and Online in the constrained Seq2Edits experi-
ments (rows b-e). We hypothesize that Offline-
Optimal might generate duller and more systematic
errors because the corruption model score is used
to pair tags with sentences. Increasing the diversity

System Test set (F0.5)
A2 B2 C2 N2

Baselines
a Seed model 37.6 34.1 31.4 22.2
b FT on real data 50.3 51.5 44.1 42.1

Synthetic data using target tag distributions P ∗(t)
c CEFR-A (A1) 47.4 46.2 39.0 39.0
d CEFR-B (B1) 47.1 46.0 40.9 38.0
e CEFR-C (C1) 47.1 46.2 37.1 39.1
f Native (N1) 47.8 49.2 42.8 42.9

Table 5: Adapting GEC to non-native or native En-
glish. In rows c-f the GEC seed model (row a) is fine-
tuned on BEA+FCE with source sentences synthesized
by a tagged Seq2Edits corruption model by following
proficiency-dependent tag distributions (A1, B1, C1, or
N1). FT denotes fine-tuning.

of synthetic errors by selecting non-optimal tag-
sentence pairs ultimately improves the usefulness
of the synthetic data.9

Comparing Table 4 with Table 3 we observe that
controlling the tag distribution of the synthetic data
from a Seq2Edits model outperforms traditional
back-translation without tags. Our best model (On-
line column in Table 3c) achieves an F0.5-score
of 48.0 which is much better than our best system
without tags (42.4 F0.5 in Table 4c) and remark-
ably close to the oracle score of 50.4 F0.5 (Table
4b) obtained using a model trained on real parallel
data.

For all experiments in the remainder of this pa-
per we used the unconstrained tagged Seq2Edits
corruption models (Table 3e) because it yields rea-
sonable gains across all methods (Offline-Optimal,
Offline-Probabilistic, and Online) and is easiest and
most practical to run on a large scale.10 Further-
more, we will only use the Online method to avoid
the computational overhead of Offline-Optimal and
Offline-Probabilistic.

9The same intuition motivates our experiments in Sec. 4.3
that replace beam search with sampling.

10We noticed that constrained decoding (Table 3b-d) often
fails in large-scale experiments if the selected tag and source
sentence are incompatible.
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Figure 3: ERRANT error tag distributions on BEA-dev for non-native (CEFR levels A, B, C) and native English.
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C4200M

RoundTripGerman
+WikiEdits+C4200M

 0  10  20  30  40  50

F0.5 on BEA-dev
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1 . fine-tuning (Lang-8)

2. fine-tuning (BEA+FCE)

24.3 33.7 50.4

24.0 33.8 52.1

32.4 35.6 52.9

Figure 4: Using C4200M (tagged Seq2Edits corruption model, BEA-dev tag distribution) in pre-training. The 2-
stage fine-tuning setup is described in Sec. 4.1.

Adapting GEC to English proficiency levels A
potential use case for tagged corruption models
is to adapt a GEC model to the proficiency level
of the user by changing the target tag distribution
P ∗(t) of the synthetic fine-tuning set. Each sen-
tence in the BEA-dev development set is annotated
with English proficiency labels (CEFR-levels A, B,
C, and ‘N’ for native English). We split BEA-dev
using these labels, and then split each set again
into two parts (development/test), resulting in eight
disjoint subsets A1, A2, B1, B2, C1, C2, N1, N2
with about 500 sentences each. We use A1, B1, C1,
and N1 to estimate proficiency-dependent target
tag distributions. As before we fine-tune the seed
model on the BEA-train target sentences with syn-
thetic source sentences that follow one of these tag
distributions, but evaluate the fine-tuned models
on the A2, B2, C2, and N2 splits. Table 5 shows
that the tag distributions from A1, B1, and C1 yield
similar performance (rows c-e in Table 5) across
most test sets. This suggests that our method is not
effective at discriminating between the different
CEFR-levels of non-native English. However, us-
ing the tag distribution from native speakers (N1 in
Table 5f) does yield substantial gains on the native
English test set (42.9 F0.5 on N2), even surpassing

the real parallel data (42.1 F0.5 Table 5b). This
demonstrates the potential of tag-based corruption
for improving GEC of native English.

Fig. 3 shows that the error tag distribution for
native English differs significantly from the non-
native distributions. Native speakers (orange bar)
tend to make more punctuation (PUNCT), and spel-
lling (SPELL) mistakes whereas the determiner
errors (DET) are more common in non-native text.

4.3 The C4200M Synthetic Data Set

We showed in the previous section that using an
unconstrained tagged Seq2Edits corruption model
that follows the BEA-dev tag distribution works
well in a controlled setup (corrupting ∼60K clean
target sentences from BEA+FCE). We now apply
the same corruption model to a much larger, clean
data set (C4200M) consisting of 200M sentences
and use the resulting synthetic data set as an addi-
tional pre-training set for our GEC models. Fig. 4
reports performance from three different GEC mod-
els with different pre-training sets, each using the
2-stage fine-tuning pipeline described in Sec. 4.1.
The RoundTripGerman+WikiEdits model resem-
bles the baseline of Lichtarge et al. (2020). Using
C4200M instead of RoundTripGerman+WikiEdits
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Tag distribution Decoding BEA-dev CoNLL-13 JFLEG-dev
P ∗(t) P R F0.5 P R F0.5 GLEU

a None (no tags) Beam search 58.1 36.5 51.9 58.5 29.0 48.6 57.2
b BEA-dev Beam search 58.0 39.3 52.9 58.5 33.0 50.7 57.9
c CoNLL-13 Beam search 58.8 39.6 53.6 58.9 33.3 51.0 57.9
d JFLEG-dev Beam search 58.3 39.1 53.1 58.9 31.6 50.2 57.6
e Uniform Beam search 59.1 39.6 53.8 58.3 33.4 50.7 57.7
f None (no tags) Sampling 57.5 36.0 51.4 56.9 29.4 47.9 57.1
g BEA-dev Sampling 59.5 41.3 54.7 59.2 34.7 51.9 58.5
h CoNLL-13 Sampling 58.6 40.7 53.9 58.5 33.3 50.8 58.1
i JFLEG-dev Sampling 59.0 39.7 53.8 58.2 34.0 51.0 58.4
j Uniform Sampling 59.6 40.6 54.5 58.3 34.3 51.1 58.3

Table 6: Using different target tag distributions to corrupt C4200M with a tagged Seq2Edits corruption model, either
using beam search or sampling. We report the best of five training runs after two-stage fine-tuning according to the
performance on the development set.

GEC data (pre-training) BEA-dev
Synthetic source Target P R F0.5

a Untagged corruption WikiEdits 40.8 4.0 14.3
b RoundTripGerman WikiEdits 33.6 11.6 24.3
c Tagged corruption WikiEdits 39.7 20.2 33.3

Table 7: Data generation on WikiEdits for pre-training.
Models are pre-trained on a mix of the original WikiEd-
its data set and a synthetic data set that consists of
WikiEdits target sentences corrupted with either (1)
an untagged Seq2Edits corruption model (row a), (2)
round-trip translation via German (row b, or row 1 in
Fig. 4), or (3) a tagged Seq2Edits corruption model
(row c) following the BEA-dev tag distribution.

improves the final F0.5-score to 52.1. Combining
all three pre-training sets leads to a large jump
in F0.5 to 32.4 after pre-training. The gains are re-
duced after fine-tuning, but our best model still uses
all three pre-training sets (52.9 F0.5 after the second
fine-tuning stage). The gains in Fig. 4 from using
C4200M can be attributed to a) the tagged corruption
method, or b) the use of C4 rather than Wikipedia
which covers a broader range of text types. In the
ablation experiment in Table 7, rather than using
C4200M, we corrupted the WikiRevision target sen-
tences with various corruption methods. Tagged
corruption (row c) outperforms both untagged cor-
ruption (row a) and round-trip translation (row b)
when the target sentences are kept constant.

A crucial practical question is whether our ap-
proach is sensitive to the particular target tag distri-
bution P ∗(t), and if the synthetic C4200M training
data can help generalization to other development
sets. Rows b-e in Table 6 show the performance
after fine-tuning for four different tag distributions:
BEA-dev, CoNLL-13, JFLEG-dev, and Uniform.
Each row reports the performance of a model pre-
trained using RoundTripGerman+WikiEdits and
C4200M corrupted using the desired tag distribution

followed by the 2-stage fine-tuning, i.e. row b cor-
responds to row 3 in Fig. 4. All tagged corruption
models improve upon the untagged models (rows
a and f).11 In contrast to our adaptation experi-
ments in Table 5, the variations between different
tag distributions are small. This indicates that even
though choosing the correct tag distribution is cru-
cial for adapting GEC to native English, at the
pre-training stage the ability of tagged corruption
models to generate diverse errors is more important
than matching a particular distribution.

Previous work on back-translation has found that
it can be beneficial to use sampling instead of beam
search for synthetic data generation (Edunov et al.,
2018; Kiyono et al., 2019). We confirm these find-
ings for our tagged corruption models: Sampling
(Table 6g-j) outperforms beam search (Table 6b-e)
for all tag distributions except CoNLL-13. Using
sampling and the BEA-dev tag distribution (Table
6g) yields good performance across all develop-
ment sets. The BEA-dev tag distribution reflects
a wide range of grammatical errors across various
proficiency levels compared to other corpora such
as CoNLL-14 (mostly beginner) or FCE (School)
(Bryant et al., 2019). Table 8 situates this single
model and an ensemble of five analogously trained
models in the context of related work. For our final
models in Table 8 we follow Lichtarge et al. (2019,
2020); Stahlberg and Kumar (2020) and multiply
the model score of the identity mapping with a fac-
tor (tuned on the development set) to balance pre-
cision and recall.12 Our single model outperforms
other single models on CoNLL-14 and JFLEG-

11For more insight into the difference between untagged
and tagged corruptions see Appendix B.

12This factor is around 1.0 for BEA-dev and CoNLL-13
(i.e. no impact) but it helps to re-balance precision and recall
on JFLEG (around 2.0).
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System BEA-test CoNLL-14 JFLEG-test
P R F0.5 P R F0.5 GLEU

Single systems
Kiyono et al. (2019) 65.5 59.4 64.2 67.9 44.1 61.3 59.7
Omelianchuk et al. (2020) 79.2 53.9 72.4 77.5 40.1 65.3 -
Lichtarge et al. (2020) 67.6 62.5 66.5 69.4 43.9 62.1 63.8
Kaneko et al. (2020) 67.1 60.1 65.6 69.2 45.6 62.6 61.3
Wan et al. (2020) 66.9 60.6 65.5 69.5 47.3 63.5 -
This work 72.1 64.4 70.4 72.8 49.5 66.6 64.7
Ensembles
Grundkiewicz et al. (2019) 72.3 60.1 69.5 - - 64.2 61.2
Kiyono et al. (2019) 74.7 56.7 70.2 72.4 46.1 65.0 61.4
Omelianchuk et al. (2020) 79.4 57.2 73.7 78.2 41.5 66.5 -
Lichtarge et al. (2020) 75.4 64.7 73.0 74.7 46.9 66.8 64.9
Kaneko et al. (2020) 72.3 61.4 69.8 72.6 46.4 65.2 62.0
Wan et al. (2020) 72.6 61.3 70.0 72.3 48.8 65.9 -
This work 77.7 65.4 74.9 75.6 49.3 68.3 64.7

Table 8: Comparison of our final system with related work.

test. Our ensemble establishes new state-of-the-
art scores on BEA-test (74.9 F0.5) and CoNLL-14
(68.3 F0.5). We would like to emphasize that these
gains are achieved without modifying the GEC
model architecture – our GEC models are vanilla
Transformers that were pre-trained using our new
synthetic C4200M data set. We will make our data
set publicly available to make it easy for other re-
searchers to benefit from our work. Appendix C
contains example outputs from our system trained
with C4200M that demonstrate improved fluency
and better handling of long-range reorderings.

5 Related Work

The body of literature on synthetic data generation
for GEC is large. Various heuristics have been pro-
posed to inject synthetic noise into grammatical
sentences such as random word- or character-level
insertion, substitution, deletion, or shuffling opera-
tions (Lichtarge et al., 2019; Zhao et al., 2019; Xu
et al., 2019), using spell checkers (Grundkiewicz
et al., 2019), or randomly applying word edits ex-
tracted from the training data (Choe et al., 2019).
Kasewa et al. (2018); Stahlberg and Byrne (2019)
applied back-translation (Sennrich et al., 2016) to
GEC and reported substantial gains. Similar to
MT (Edunov et al., 2018), back-translation for
GEC can be further improved by adding noise to
the decoding process (Xie et al., 2018) or by using
sampling instead of beam search (Kiyono et al.,
2019). Fluency-boost learning (Ge et al., 2018a,b)
can also be used to generate additional sentence
pairs during training. Lichtarge et al. (2019) pro-
posed to generate noisy counterparts of grammati-
cal English sentences by translating them to another

language (e.g. German) and back (“round-trip trans-
lation”), a technique we also use in this work. The
use of tags for back-translation in MT has been ex-
plored by Caswell et al. (2019). Our tagged corrup-
tion models are inspired by Wan et al. (2020) who
generated synthetic sentences from latent represen-
tations that are perturbed using explicit error type
tags. Our approach of adding the tags to the input
sequence is simpler as it requires no modifications
to the model architecture or training procedure.

6 Conclusion

We have introduced a synthetic data generation
method for grammatical error correction that is
able to produce a wide range of realistic gram-
matical errors. Our method is based on grammar
corruption models that corrupt a clean sentence
given an error type tag. Conditioning on the error
type tag enables us to control synthetic data genera-
tion much more precisely than alternative methods
such as round-trip translations or tag-independent
back-translation. We explored different ways of
using these tagged corruption models to generate
synthetic data that follows a certain error tag dis-
tribution. We found that fine-tuning a model on
synthetic data that follows a native English error
tag distribution can even outperform fine-tuning on
genuine parallel data from a mixture of proficiency
levels. Along with this paper we publish a new
200M sentence data set for GEC – C4200M. Using
C4200M in pre-training of vanilla Transformer GEC
models yields state-of-the-art performance on two
standard GEC test sets (BEA-test and CoNLL-14).
We expect this corpus to further stimulate the de-
velopment of new data-driven approaches in GEC.
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