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Abstract

The detection of hyperbole is an important
stepping stone to understanding the intentions
of a hyperbolic utterance. We propose a model
that combines pre-trained language models
with privileged information for the task of hy-
perbole detection. We also introduce a suite of
behavioural tests to probe the capabilities of
hyperbole detection models across a range of
hyperbole types. Our experiments show that
our model improves upon baseline models on
an existing hyperbole detection dataset. Prob-
ing experiments combined with analysis using
local linear approximations (LIME) show that
our model excels at detecting one particular
type of hyperbole. Further, we discover that
our experiments highlight annotation artifacts
introduced through the process of literal para-
phrasing of hyperbole. These annotation arti-
facts are likely to be a roadblock to further im-
provements in hyperbole detection.

1 Introduction

The analysis of figurative language by Natural Lan-
guage Processing (NLP) systems is a challenge con-
fronting researchers and practitioners (Reyes and
Rosso, 2014; Rai and Chakraverty, 2020). Hyper-
bole is a common type of figurative language that
is defined by an intentionally excessive contrast be-
tween utterance meaning and reality along a seman-
tic scale to convey an evaluation (e.g., ‘my bedroom
is the size of a postage stamp’) (McCarthy and
Carter, 2004; Mora, 2009; Claridge, 2010; Carston
and Wearing, 2015; Burgers et al., 2016). The de-
tection of hyperbole has proven to be a challenging
problem for NLP systems, much like the detec-
tion of other figures of speech (Troiano et al., 2018;
Kong et al., 2020; Abulaish et al., 2020). The evalu-
ative nature of hyperbole motivates the importance
of understanding hyperbole for affective computing
applications (e.g., sentiment analysis).

Learning under Privileged Information (LUPI)
is a learning paradigm that involves providing ad-
ditional information during training to help teach
a model to learn a particular phenomenon (Pechy-
ony and Vapnik, 2010). The source and type of
privileged information (PI) varies depending on ap-
plication, such as a list of ingredients present in
an image to help teach a computer vision model
to detect food in images (Meng et al., 2019), or
the human ratings of various aesthetic categories
of images for automated assessment of aesthetic
photo quality (Shu et al., 2020). We propose to
use literal paraphrases of hyperbole as a source of
PI for hyperbole detection. We hypothesise that
this information will help a model to learn the ex-
cessive contrast within a particular hyperbole (e.g.,
‘my head is exploding right now’ — ‘my head is
hurting right now’).

Our contributions in this paper are as follows; (1)
We propose a method for hyperbole detection based
on the injection of PI; (2) We introduce Hyper-
Probe, a suite of behavioural tests for hyperbole
detection models; (3) We reveal that annotation
artifacts are a potential roadblock for progress on
hyperbole detection.

2 HYPO

The HYPO dataset is an annotated collection of
hyperbole introduced by Troiano et al. (2018). The
dataset consists of manually composed hyperbole
and hyperbole sourced from various online sources
including click-bait headlines, love letters, adver-
tisements, and animated cartoons.

Annotation for HYPO was carried out by crowd
workers who were given several tasks based on
each example. The crowd workers had to assess
whether they thought the utterance contained hy-
perbolic content. A follow up task was to highlight
the specific words in the utterance they considered



Hyperbole Corpus

Paraphrase Corpus

Minimal Units Corpus

The principal is unhappy...we’re

The principal is unhappy...we’re in

Well cooked vegetables can be pureed

cooked. trouble. easily.
Her morning jog turned into a | Her morning jog turned into a long run | There was a marathon in the city to-
marathon day

Table 1: HYPO examples. Hyperbole Corpus contains original hyperbolic utterances. Paraphrase Corpus

contains a literal paraphrase. Minimal Units Corpus contains examples that contain the hyperbolic words/phrases

in a non-hyperbolic context.

Type Keywords

ECF absolute, complete, entire, pure, whole, im-
possible, never, no, nobody, nowhere, per-
fect, flawless, endless, eternal, infinite, all,
always, every, everybody, everyone, every-

where, definite, exact, undeniable

Quantitative | small, big, slow, fast, thin, thick, tall, length,

large, high

Qualitative bad, corrupt, evil, fraud, wicked, chaos,
confusion, disorder, garbage, riot, dead,
hell, misery, murder, nightmare, alarm, fear,
panic, scared, shock, anxiety, autism, blind,
deaf, insomnia, bitter, pierce, sharp, spicy,
toxic, cancer, fever, headache, pain, sad,
suffer, attack, explode, fight, rape, ruin,
wreck, dream, heaven, paradise, utopia, vi-
tal, attract, beauty, charm, grace, handsome,
amaze, good, great, ideal, impress

Table 2: Hyperbole term lists. Type refers to the type
of hyperbole as defined by Mora (Mora, 2009). Key-
words is a list of the keywords in word list.

to be hyperbolic. Additionally, the workers were
then asked to paraphrase the original hyperbolic
sentence such that it was no longer hyperbolic.

The worker responses to the first task were used
to filter out non-hyperbolic utterances resulting in
709 hyperbolic utterances in total, denoted as the
Hyperbole Corpus. The list of hyperbolic tokens
identified by the crowd workers was used to create
a second corpus, denoted the Minimal Units Corpus
(709 sentences). The literal paraphrases also made
up another corpus, the Paraphrase Corpus (709
sentences). Combining these three corpora, every
hyperbolic utterance in the Hyperbole Corpus has
two non-hyperbolic counterparts from the Minimal
Units Corpus and Paraphrase Corpus respectively,
see Table 1. In total just over 2.1k sentences make
up the final version of HYPO.

3 HyperProbe

Our HyperProbe suite consists of synthetic data
generated to probe the ability of models to de-
tect hyperbole!. The suite is created to target the
three types of hyperbole identified by (Mora, 2009):

"https://github.com/biddle-r/HyperProbe

Extreme Case Formulations (ECF), Qualitative
Hyperbole and Quantitative Hyperbole. The cre-
ation of test sentences follows a general four step
procedure:

1. Word List Creation: we create seed word
lists containing words to be used in test sen-
tences. These seed word lists are divided by
part-of-speech class and are created based on
the word lists curated by Mora (2009), see
Table 2, for hyperbole-prone words.

2. Sentence Template Creation: we create syn-
tactic templates to be filled by a sentence gen-
erator. The syntax for sentence templates is as
follows; {TAG} indicates that a word is drawn
from a user-defined seed word list (based
on part-of-speech tags), {TAG} indicates
that the word is drawn from a user-defined
hyperbole-prone seed word list, {MASK} in-
dicates that RoOBERTa (Liu et al., 2019) will in-
fill this token, a functionality provided by the
CheckList framework (Ribeiro et al., 2020)?.

3. Test Sentence Generation: consists of the
generation of test sentences, via CheckList,
using the word lists and templates generated
in the previous steps.

4. Manual Assessment and Annotation: we
assess the grammar and semantics of the gen-
erated test sentences and annotate the sen-
tences. Our annotation consists of a binary
label indicating the presence of hyperbolic
content.

3.1 Extreme Case Formulation Tests

ECFs are semantic formulations that invoke ex-
treme descriptions of events or objects (Whitehead,
2015; Pomerantz, 1986). A simple example of
an ECF is a sentence that contains an extreme de-
scription via an adjective (absolute, entire, infi-
nite, etc.), adverb (always, never, etc.), quantifier

*https://github.com/marcotcr/checklist



(all, none, etc.) or indefinite pronoun (everybody,
nobody, etc.) (Edwards, 2000; Norrick, 2004).
The intentionally non-literal use of ECFs has been
identified as a rich source for hyperbolic expres-
sions (McCarthy and Carter, 2004; Norrick, 2004;
Mora, 2009; Whitehead, 2015; Carston and Wear-
ing, 2015). The detection of ECFs is a fundamental
requirement for a hyperbole detection model, and
we design a set of test sentences to probe this abil-
ity. Given that ECF prone-words from Table 2
belong to various word classes and can appear in a
myriad of grammatical patterns, we design several
sentence templates, see Table 3. Upon comple-
tion of assessment and annotation there were 181
test sentences, 95 (52%) of which were labelled as
hyperbolic, see Table 3.

3.2 Qualitative Hyperbole Tests

Qualitative hyperboles align with the subjective-
emotional dimension of hyperbole (Mora, 2009).
A subjective evaluation made to an excessive de-
gree is the defining feature of qualitative hyper-
boles (e.g., ‘this video is cancer’, ‘Sweet n sour
chicken is God Tier’). The ability to detect and
interpret qualitative hyperbole is a fundamental re-
quirement of a hyperbole detection model. From
the list of qualitative terms in Table 2, we compile
a list containing 54 adjectives. We create six sen-
tence templates to incorporate the adjectives into a
sentence, see Table 4. Upon completion of assess-
ment and annotation there were 306 test sentences,
87 (28%) of which were labelled as hyperbolic, see
Table 4.

3.3 Quantitative Hyperbole Tests

Quantitative hyperboles align with the objective-
gradational dimension of hyperbole (Mora, 2009).
The defining feature of this type of hyperbole is the
up-scaling of an obvious quantity or magnitude to
an excessive degree (e.g., ‘i have a million things
left to do’, ‘this year has felt like a decade’). We
design a set of test sentences that allows us to probe
the ability of models to detect hyperbolic expres-
sions along quantitative dimensions. We use the
list of quantitative terms in Table 2 and their com-
parative forms (e.g., bigger, smaller, lighter, etc.)
as seed word lists for these sentences. We create
two sentence templates to incorporate these into a
sentence, see Table 5. Upon completion of assess-
ment and annotation there were 43 test sentences,
21 (48%) of which were labelled as hyperbolic, see
Table 5.

[ Multi-Task Loss

N [ ‘ Backpropagation

Triplet Sampler ]

Figure 1: BERT+PI. Model contains a BERT encoder,
a linear classification head and a Triplet Sampler. We
incorporate PI via the triplet sampler.

4 Privileged Information for Hyperbole
Detection

Our motivation for incorporating privileged infor-
mation into a hyperbole detection model is based
on observations from the foundational work of
Troiano et al. (2018). The authors found that mod-
els trained on hyperboles and literal paraphrases
performed marginally better on the task of hyper-
bole detection than models trained on hyperboles
and non-literal sentences that used the hyperbolic
words/phrases in a non-hyperbole context. We pro-
pose that treating literal paraphrases as privileged
information and incorporating this information into
a hyperbole detection model could improve the
ability of a model to detect when a word or phrase
was being used in an excessive hyperbolic manner.

In our proposed model, BERT+PI, we incor-
porate privileged information via triplet loss. We
utilise a triplet loss because we want to force our
model to differentiate between hyperbolic and non-
hyperbolic usage of words and phrases, and we can
strictly enforce this via triplet loss. Specifically,
by specifying a hyperbolic sentence as an anchor
sample, another hyperbole as a positive sample and
a manually composed literal paraphrase (i.e., PI) as
a negative sample, we are enforcing this difference
in representation space.

4.1 BERT+PI

BERT+PI is based on a multi-task text classifica-
tion framework. We use a triplet sampling module
to sample negative and positive sentences for each
sentence in the dataset. We use BERT (?) to en-
code a representation for each of these sentences
and send the representation of the original sentence
to a linear classification head. Representations of



Template

Example

{DT}{MASK}{MASK}{VB}{JJ}

the dishonest words are endless

{DT}{JT}{MASK}{VB}{MASK}

the endless combinations are daunting

{DT}{MASK}{MASK}{RB}{VB,

the code was never cracked

{DT}{MASK}{MASK }{RB}{MASK}

the good times always roll

{DT{MASK}{VB, J{RBJ{MASK}

the dog was never silent

{DT}{MASK{MASK}{VB, ] {RB}

the drug problem is everywhere

{DT}{MASK}{MASK}{DT} {MASK}

The mother of every invention

{DT}{MASK }{MASK }{IN}{MASK}

all rights reserved in copyright

{DT}{MASK}{VB}{MASK}{MASK}

every child will be impacted

{DT}{MASK}{MASK}{MASK}{PRON}

The law applies to everybody

{PRON}{IN}{DT}{MASK]{VB}{MASK]

nobody on the street is home

Table 3:

Extreme Case Formulation Test Examples. Template shows templates as provided to CheckList,

Example is an example sentence as generated by CheckList.

Template Example
{DT}{MASK}{MASK}{VB}{MASK}{JJ} a world that is truly wicked
{DT}{MASK}{VB}{JJ} The argument is confusing

{DT}{MASK}{VB -{MASK}{JJ}

The wine is very bitter

(DT} {MASK}{MASK}{VBH{JJ}

the oil residue is toxic

{DTH{JTT{MASK}{VB }{MASK}

A great story was completed

{DT}H{JJ}{MASK}{VB}{MASK} {MASK]

The shocking video was posted here

Table 4: Qualitative Adjectives Test Examples. Template shows templates as provided to CheckList, Example

is an example sentence generated by CheckList.

Algorithm 1 Semi-Random Triplet Sampling

Require: D = [tg, t1,...,1p]

Require: s € ZT > Sampling Factor
H «+ tVt € D | t.label == 1 > t.label contains
annotated label for ¢
P «+ tvt € D | t.label ==
literal paraphrases (i.e., PI)
S0
fori =0,i < |D|,i+ + do

a < Dz
T+ 0
for j=0,j<s,j+ +do
if a.label == 1 then
p < sample(H ) > sample(X) draws
a random sample from X
n < p.par
paraphrase of ¢
else if a.label == 0 then
p < sample(P)
n < p.hyp > t.hyp is a hyperbolic
expression of ¢
end if
T insert([a, p, n))
end for
S.insert(T")
end for
return S

> N consists of

> t.par is a literal

all three sentences are used in the computation of
the triplet loss. An important aspect of models
based on any type of contrastive loss, including
triplet loss, is the sampling methodology (Wu et al.,
2017). For BERT+PI our triplet sampling algo-
rithm involves randomly sampling examples based
on label and the relationship between a hyperbole
and its literal paraphrase, see Algorithm 1 and see
Table 6 for examples.

The logic in our sampling algorithm is that if the
anchor is a hyperbole, then we randomly sample
another hyperbole as a positive (i.e., same class)
sample for that triplet. We then set the negative
sample to be the literal paraphrase of the positive
sample (note: This sample is PI). This ensures that
optimisation of the triplet loss forces a hyperbole
to be closer to another hyperbole than its literal
paraphrase in representation space.

If the anchor is not a hyperbole, we randomly
sample a literal paraphrase as a positive sample
for that triplet (note: This sample is PI). We then
set the negative sample to be the hyperbole of the
positive. The motivation here is that optimisation
of the triplet loss will result in a non-hyperbolic
sentence and a literal paraphrase being closer in
representation space than a non-hyperbolic text and
a hyperbole.

Formally, the class probability for an individual



Template

Example

{MASK}{MASK} is as {JJ} as {MASK}{MASK}

my heart is as heavy as the world

{MASK}{MASK} is {JJR} than {MASK}{MASK}

this version is longer than I expected

Table 5: Quantitative Dimensions Test Examples. Template shows templates as provided to CheckList, Example

is an example sentence generated by CheckList.

Anchor Positive Negative

Inviting my mother-in-law to stay here | He eats a mountain of junk food. He eats a lot of junk food.*
is a recipe for disaster.

This supersonic airliner breaks the sound | Football is important to him.* Football is his oxygen.
barrier.

Table 6: Semi-Random Triplet Sampling - Example Triplets. Anchor indicates an anchor text. Positive indi-
cates a positive text. Negative indicates negative text. Note: * indicates that the example is PL.

sentence is calculated by BERT+PI as follows:
Yi = o(efW +b), )

where e is the dense representation of anchor ex-
ample ¢ computed by BERT, WY and bY are learn-
able parameters and o is a softmax function. The
model is optimised via multi-task loss, see eq. 2.

L=L.~+ Ny (2)

Where L. is a binary cross entropy loss (eq 3), and
L, is a triplet loss (see eq. 4). A is a parameter to
weight the importance of the triplet loss and as a
result the influence of the PI. In the cross-entropy
loss, y; is a binary indicator for class label, and j is
the prediction output from eq. 1. In the triplet loss,
D is the cosine distance, m is a hyperparamater
indicating the margin, ¢, e ;» €7 are the BERT rep-
resentations for an anchor, positive and negative
sample, and s is the sampling factor (i.e., how many
positive and negative examples per anchor).

L ——1§:[ i log(vi) + (1 —y;) log(1 — A)}
c= Ni:1 Yi 108\ Yi Yi) 108 Yi

3)

S

N
1 a a n
;Ct = m Z Z |:maX(D(€i 5 efj) —D(el 5 Eij)“’-m, O):|
i=1 j=1
“

5 Experiments

5.1 Baselines

We implement models presented in previous re-
search on hyperbole as baseline methods for our
experiments on hyperbole detection. Troiano et al.
(2018) introduce an NLP pipeline style approach
to detecting hyperbole in their foundational work

on computational hyperbole detection. They in-
troduce a number of hand-crafted features that are
motivated by findings from cognitive linguistics on
the mechanisms humans use for identifying and
interpreting hyperbole. These features range from
unexpectedness, imageability, polarity, subjectivity
and intensity. These features are concatenated to-
gether and referred to as QQ (i.e., Qualitative and
Quantitative) features by the authors, we adhere to
that nomenclature and refer to our implementation
of these features as QQ for the remainder of the
paper. The authors experiment with several ‘tra-
ditional’ statistical learners for the classification
layer of their pipeline. We use Logistic Regression
and Naive Bayes, as those two methods were more
accurate at the detection of hyperbole compared to
the other methods in their experiments. We refer
to these methods as LR+QQ and NB+QQ for the
remainder of the paper.

Follow on from that work Kong et al. (2020)
leverage the QQ features adjusting them slightly to
compensate for differences in language and utilise
pre-trained language models (i.e., BERT) for a hy-
perbole detection model. The authors combine
the QQ features with the output from the BERT
embeddings and pass the concatenated vector to a
linear classification layer. We refer to this model
as BERT+QQ in the remainder of the paper. We
also include a simple vanilla BERT baseline that
we refer to as BERT in the remainder of the paper.

5.2 Experiment Setup

We merge the Hyperbole Corpus and Minimal
Units Corpus from HYPO and split into train-dev-
test sets based on a 70:20:10 ratio. The Paraphrase
Corpus is treated as a source of PI and thus only
available at training time, also note that no sen-
tences from HyperProbe were used for training,




Anchor Positive

Negative

When the girl lost her puppy she cried

an ocean of tears. tears.

The little girl was drowning in her

The little girl was crying a lot.*

I was crying for leaving my home.

My dad’ll be very angry when he finds
out that I wrecked his car.*

My dad’1l hit the roof when he finds out
that I wrecked his car.

Table 7: Triplet Samples. Examples of anchor, positive and negative samples generated by triplet sampler. Note:

* indicates PI.

Hyperparameter Values Model F1 Precision Recall
Dropout 0.1,02,03 LR+QQ 0.678() 0.747(-) 0.621(-)
Learning Rate le-04, 1e-05, 1e-06 NB+QQ 0.523(-) 0.690(-) 0.421(-)
A 0.25,0.5, 1 BERT 0.490(.340) | 0.751(.158) | 0.516(.453)
s (Sampling Factor) | 1,3,5 BERT+QQ | 0.540(.337) | 0.721(.184) | 0.632(.484)
Encoder BERT, RoBERTa [[BERT+PI | 0.701(.014) | 0.756(.033) | 0.656(.047) ]
Table 8: Hyperparameter search. Hyperparame-  Table 10: Hyperprobe Results. Extreme Case For-
ter indicates the hyperparameter. Values indicates the  mulations
values used in search. Note: Not all parameters are
applicable for all models (i.e., A, s only required for Model Fi Precision Recall
BERT+PI) BERT 0.407(-) 0.333(-) 0.522(-)
BERT 0.336(-) 0.400(-) 0.290(-)
BERT 0.278(.275) | 0.240(.209) | 0.401(.497)
Model F1 Precision Recall BERT+QQ | 0.352(.307) | 0.255(.227) | 0.599(.529)
LR+QQ 0.710(-) 0.679(-) 0.745(-) [ BERT+PI | 0.527(.030) | .486(.054) [ 0.590(.089) |
NB+QQ 0.693(-) 0.689(-) 0.696(-)
BERT 0.709(.064) | 0.711(.077) | 0.735(.177) Table 11: Hyperprobe Results. Qualitative Hyper-
BERT+QQ | 0.671(.086) | 0.650(.147) | 0.765(.246) bole
[ BERT+PI | 0.781(.012) | 0.754(.053) [ 0.814(.039) |

Table 9: HYPO Results. We provide the mean F1,
precision and recall score as well as standard deviation
across three runs for all models.

only testing. Overall we are left with four test
datasets, HYPO, Extreme Case Formulations, Qual-
itative Hyperbole and Quantitative Hyperbole. We
perform grid-search to find optimal hyperparame-
ters for BERT, BERT+QQ, BERT+PI, see Table
8.

6 Results

6.1 HYPO

Results of our experiments on HYPO show that
models that incorporate PI outperform the base-
lines, with respect to F'1 score, see Table 9. We see
a.071 (10%) increase in F1 for BERT+PI over the
best performing baseline (LR+QQ). We use LIME
(Ribeiro et al., 2016) to provide explanations for
model predictions, see Figure 2. From this Fig-
ure we see examples that suggest that the increase
in both precision and recall for BERT+PI seen in
Table 9 is a result of a better contextual understand-
ing of hyperbole-prone ECF terms. The first two
examples in particular highlight the understanding
of the word ‘brainless’ in both a hyperbolic and

non-hyperbolic context that are correctly classified
by BERT+PIL.

6.2 Extreme Case Formulations

From Table 10 we see models that incorporate
PI provide improvements in detecting ECF hyper-
bole, .023 increase in F1, compared to LR+QQ.
This aligns with results observed in Section 6.1
regarding the better understanding of hyperbole-
prone ECF words in hyperbolic and non-hyperbolic
contexts by BERT+PI compared to the baselines.
We provide LIME explanations, (see Figure 3),
and again observe examples that indicate a better
contextual understanding of hyperbole-prone ECF
terms by BERT+PL

6.2.1 Qualitative Hyperbole

From Table 11 we observe that all models strug-
gle to detect qualitative hyperbolic expressions,
BERT+PI achieves the highest F'1 of only 0.527
with a sub-0.5 precision of 0.486. With respect
to variance we see many models with wild vari-
ances in recall, (.529, .497), suggesting that some
of these runs are degenerating to outputting all pos-
itive class or all negative class predictions. These
results suggest that qualitative hyperbole is harder
to detect than ECF hyperbole.



BERT BERT-+PI
LIME Word Weightings P(h) LIME Word Weightings P(h)
Search engines are Brainless entities. 66 Search Biiig§ arc brainless entities. 18

Me, i wife Bf that boorish, brainless man. 78

Me, the WWif@ 6f fat boorish, brainless man. | .74

This Peliey will plunge the SN Hi6 o SHE6S. 20

This policy Wil plunge the BBl into a chaos. .79

Every fl@¥of is dynamite. 35

Every flavor is dynamite. 96

Figure 2: Model Explanation Comparisons - HYPO. LIME Word Weightings indicate the importance of a word

for a particular class,

highlights indicate hyperbolic words, blue highlights indicate non-hyperbolic words.

P(h) is the prediction probability that a sentence was hyperbolic with red indicating an incorrect classification

(assuming a .5 decision threshold)

LR+QQ BERT+PI
LIME Word Weightings P(k) LIME Word Weightings P(h)
flig absolute majority was significant .69 | the absolute FEJ@EE was significant 35
i exam Fesilt was absolute J0 the B result was absolute 12
8 dead will never return 53 the @ead will never [ 02
nobody in the §i§Hf looked interested | .51 | nobody il the group looked [fifSiested .10

Figure 3: Model Explanation Comparisons ECF Tests.

Model F1 Precision Recall
LR+QQ 0.615(-) 0.5(-) 0.8(-)
NB+QQ 0.565(-) 0.5(-) 0.65(-)
BERT 0.576(.048) | 0.463(.001) | 0.775(.177)
BERT+QQ | 0.552(.183) | 0.470(.073) | 0.733(.379)
[ BERT+PI [ 0.590(.088) [ 0.492(.048) [ 0.750(.200) ]

Table 12: Hyperprobe Results. Quantitative Dimen-
sions

6.2.2 Quantitative Hyperbole

From Table 12 we see that all models struggle to
detect quantitative hyperbole and display a simi-
lar pattern of high recall (0.633 to 0.800) and low
precision (0.463 to 0.5).

From an analysis of LIME explanations we iden-
tified one particular decision pattern as the source
of many false positives. For sentences gener-
ated using the comparative sentence template (i.e.,
{MASK}{MASK} is as {JJ} as {MASK}{MASK}),
the model always predicts a hyperbole irrespective
of the comparison being made (see Figure 4). We
observe that the first word of the sentence and the
words and phrases ‘is’, ‘as’, ‘is as’ and ‘as a’ are
the most influential words that lead to the decision
to classify the sentence as a hyperbole. Our hy-
pothesis for this error is that the literal paraphrases

BERT+PI
LIME Word Weightings P(h)
Hif brain is as small as a quarter .86
HEF hair is as thin as silk 84
my heart is 88 heavy & the world T3
hi§ mouth is as big as a barn .87
HiS beard is as thick as Hi§ mustache .87
flidt bag is as heavy as a suitcase J2
Hef sister i as tall as her mother 86
fhigif hair i§ as long as @ finger .14

Figure 4: LIME Explanations - Quantitative Dimen-
sions

of hyperbolic expressions that take this form re-
move many tokens from the original sentence (e.g.,
‘He’s as mad as a hippo with a hernia’ — ‘He’s
very mad’). We suspect this contributes to partic-
ular words and phrases (e.g., ‘is as’ and ‘as a’)
being incorrectly considered hyperbolic because



they were removed from the original sentence dur-
ing the literal paraphrase. We also note, that this is
a particularly common form of hyperbolic expres-
sion in the training data (e.g., ‘There lived a man
as big as a barge’ ‘He has as many debts as a dog
has fleas’, ‘He’s as mad as a hippo with a hernia’.
‘you look as white as a ghost’).

7 Related Work

Troiano et al. (2018) posed the hyperbole detection
task as a binary sequence classification task and
introduced a dataset of annotated hyperbole as a
benchmark for this task. The existing methods for
detecting hyperbole, albeit scant, share similari-
ties to methodologies for solving the problem of
detecting other figures of speech. Generally, fea-
tures are hand-crafted based on linguistic insights
of a particular phenomenon (e.g., hyperbole) then
combined with general purpose representations of
textual content (Barbieri and Saggion, 2014; Joshi
et al., 2016; Troiano et al., 2018; Abulaish et al.,
2020). We see this in sarcasm detection (Joshi
et al., 2016), irony detection (Barbieri et al., 2014)
and metaphor detection (Jang et al., 2015). With
respect to hyperbole, we see this approach in the
foundation work on hyperbole detection (Troiano
et al., 2018). Approaches to figurative language
detection based on deep learning models have been
also developed, such as irony detection (Huang
et al., 2017), sarcasm detection (Ghosh and Veale,
2016) and metaphor detection (Wu et al., 2018).
With respect to hyperbole detection, research has
shown that deep learning improves accuracy on the
task of detection of hyperbole in Mandarin Chinese
compared to the use of traditional statistical learn-
ers (Kong et al., 2020). We extend upon both of
these works by introducing a new model for hyper-
bole detection and introducing new data to evaluate
hyperbole detection models.

Recent research in NLP, and machine learning
in general, has focused on the idea of explainability
and interpretability. The problem of understanding
the reasoning behind decisions made by increas-
ingly complex models on increasingly complicated
data is a core challenge and can be a roadblock to
research progress (Ribeiro et al., 2016, 2020; Bhatt
et al., 2020; Linardatos et al., 2021). We design a
suite of synthetic test sentences to probe the capa-
bilities of hyperbole detection models and utilise
the LIME framework(Ribeiro et al., 2016) for local
explainability to understand the reasoning behind

the decisions made by hyperbole detection models.
Our approaches to probing and explainability are
based on existing efforts to uncover meaning in de-
cisions made by NLP models (Ribeiro et al., 2016,
2020; Rogers et al., 2020; Liu et al., 2021).

8 Conclusion

In this paper we proposed a hyperbole detection
model, BERT+PI, that incorporates PI via triplet
loss with a pre-trained language model (BERT)
into a multi-task text classification framework for
hyperbole detection.

Experiment results showed improvements in de-
tection using standard information retrieval metrics
(i.e., F1, precision and recall), for models that in-
corporate PI on the HYPO test set. However, these
results were not maintained across our synthetic
test suite HyperProbe. In fact, only on the ECF
test in HyperProbe did we observe similar results.
On both the quantitative and qualitative hyperbole
tests we observed poor performance.

Our hypothesis for this disparity is that the incor-
poration of PI into BERT+PI teaches the model to
learn annotation artifacts introduced by the creation
of literal paraphrases in the Paraphrase Corpus of
HYPO. Specifically, ECF hyperbole can often be
paraphrased quite simply by removing only a few
tokens (e.g., what an absolute idiot — what an id-
iot). BERT+PI effectively incorporates this infor-
mation well and as a result appears to be able to dif-
ferentiate between hyperbolic and non-hyperbolic
ECFs. However, for more complex hyperbole, un-
wanted annotation artifacts are introduced during
the process of creating a literal paraphrase. For ex-
ample, ‘my heart is as heavy as the world’ could be
paraphrased as ‘i am sad’. In this paraphrase, the
contrast and the semantic scale of the hyperbole are
lost in the paraphrase given the significant differ-
ence between the hyperbole and the paraphrase. In
future work, exploring better annotation methods
for complex hyperbole that encode the semantic
scale and the source of excessive contrast will be
an important focus to overcome the shortcomings
caused by unwanted annotation artifacts.
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