Curriculum Learning Effectively Improves Low Data VQA

Narjes Askarian
Dept. of Data Science and Al
Monash University

Ehsan Abbasnejad

Australian Institute for Machine Learning

The Univ. of Adelaide

Ingrid Zukerman and Wray Buntine and Gholamreza Haffari
Dept. of Data Science and Al
Monash University

Abstract

Visual question answering (VQA) models, in
particular modular ones, are commonly trained
on large-scale datasets to achieve state of the
art performance. However, such datasets are
sometimes not available. Further, it has been
shown that training these models on small
datasets significantly reduces their accuracy.
In this paper, we propose a curriculum-based
learning (CL) regime to increase the accu-
racy of VQA models trained on small datasets.
Specifically, we offer three criteria to rank
the samples in these datasets, and propose a
training strategy for each criterion. Our re-
sults show that, for small datasets, our CL ap-
proach yields more accurate results than those
obtained when training with no curriculum.

1 Introduction

Visual question answering (VQA) models are com-
monly trained on large-scale datasets to achieve the
state of the art performance (Johnson et al., 2017a;
Antol et al., 2015; Hudson and Manning, 2019).
Modular VQA models, in particular, require large
data sets for training. These models dynamically
combine a number of neural networks according to
a pre-specified layout (Andreas et al., 2016; John-
son et al., 2017b; Yu et al., 2018) to form a new
larger network that produces an answer to an input
question. The layout, or program, is generated for
each question on the fly. As a consequence, the ar-
chitecture of the resulting network varies according
to the program.

Combining neural networks often leads to a wide
and deep network. Training such a large-sized net-
work with a varying architecture calls for a massive
amount of labeled data, which is either expensive
or very limited in many realistic settings. With in-
sufficient data, a large and complex network can
perform unsuccessfully. An example of this is our

experience in training the VQA model by John-
son et al. (2017b) with only 20% of the CLEVR
dataset (Johnson et al., 2017a). Our results showed
only 54.24% accuracy compared to the accuracy
of 96.90% on the full dataset according to the au-
thors’ report (Johnson et al., 2017b). Motivated by
this experience, the work presented in this paper
studies VQA in low data scenarios, and sheds light
on the performance of current modular VQA mod-
els under data scarcity conditions. To the best of
our knowledge, this is the first study to investigate
VQA models in low-data regime.

Many approaches have been investigated to
improve the performance of deep learning mod-
els when training on limited data, ranging from
data augmentations (Zhang et al., 2019) and pre-
training (Erhan et al., 2010) to semi-supervised
learning (Kingma et al., 2014) and transfer learn-
ing (Raina et al., 2007). However, these works
mostly deal with the scarcity of labeled data by
assuming help from available unlabeled data, or
by transferring knowledge from similar domains.
Unlike them, our goal is to train a modular VQA
model from scratch by using only a small amount
of labeled data without using any other resources.

Specifically, we take the CL approach to tackle
the problem of VQA models’ low performance un-
der low data conditions. Curriculum learning (Ben-
gio et al., 2009) was introduced as a method to
supervise the order in which data examples are ex-
posed to the model. Our hope is to maximize the
usage of training samples by performing supervi-
sion on the order of training data that are fed into
the model.

The underlying idea of CL is to start learning
from easy examples, and gradually consider harder
ones, rather than using examples in a random se-
quence. To rank training examples from easy to
hard, CL must define the concepts of easy and hard
examples. Such a ranking is a key challenge in CL.

Many of the ranking criteria introduced in the CL
literature are problem-specific heuristics (Liu et al.,
2018) or automated measures based on model per-
formance (Hacohen and Weinshall, 2019). In this
paper, we propose and analyze the performance
of three ranking criteria: (1) a length-based cri-
terion, which considers longer questions as more
complex than shorter questions, and ranks the ex-
amples in increasing order of their program length;
(2) a criterion based on an answer hierarchy, which
organizes all possible answers from coarse to fine;
and (3) a criterion that relies on model loss for de-
ciding about the hardness level of the examples and
ranking them accordingly.

In addition to the ranking heuristics, in §5, we
propose a CL training strategy for each criterion.
We also argue that under CL training in low data
regimes, a model is very susceptible to overfitting
and poor generalization. Employing a regularizer
is crucially important to prevent the model from
becoming over-confident on the training data. We
demonstrate that the proposed training strategies,
when coupled with L2-norm regularization, lead to
a significant improvement in performance, in some
cases over 30% increase in accuracy.

We apply our approach to the model proposed
by Johnson et al. (2017b) as a modular VQA model.
The model originally consists of two main compo-
nents: (1) a program generator that takes a question
and generates a program; and (2) an execution en-
gine that combines neural modules according to
the program in order to create a network to produce
an answer from the input image. Johnson et al.
(2017b) demonstrate that the program generator
can produce acceptable programs by training only
on a small fraction of all possible programs (< 4%).
Thus, we focus on training the execution engine in
a low-data setting and use ground-truth programs
as input to the execution engine. To simulate a
low data regime, we use four randomly chosen
small subsets of the CLEVR dataset (Johnson et al.,
2017a) for training. Our results show that our CL
approach yields more accurate results than those
obtained when training with no curriculum.

2 Background

Visual question answering is the task of infer-
ring the answer by reasoning on the input question
and image. Most of the current approaches map
question-image pairs into a cross-modal common
embedding space. A question is usually treated

holistically in such approaches, thus the reasoning
process is hard to explain (Tan and Bansal, 2019;
Lu et al., 2019; Selvaraju et al., 2020).

In contrast, modular approaches perform visual
reasoning by semantically parsing the question and
generating a reasoning chain called a program (An-
dreas et al., 2016; Johnson et al., 2017b). The
program shows the reasoning steps required for
answering the question as a layout for the mod-
ules. The algorithm then combines the modules
according to the program. Modules are small neu-
ral networks treated as single-task functions that
are combined into a larger network to accomplish
a complex job. The resulting network is executed
on the input image to predict the answer.

Modular approaches naturally have a strong po-
tential for interpretability. Hu et al. (2018) showed
human evaluators can more clearly understand their
modular VQA model compared to a non-modular
model (Hudson and Manning, 2018). Thus, we are
interested in studying modular models.

Similar to other VQA models, modular ap-
proaches call for a large amount of annotated data
for both the semantic parser (program generator)
and the executor. This issue has led to recent stud-
ies on sample efficient training strategies, ranging
from multi-task learning (Hu et al., 2018) and ac-
tive learning (Misra et al., 2018) to disentangling
reasoning from vision and language understand-
ing (Yi et al., 2018). For instance, Misra et al.
(2018) propose an agent that, instead of operating
on the training set, interactively learns by asking
questions. Regarding the simulated low data setting
in our work, efficient use of training data becomes
extremely important. We employ curriculum learn-
ing in §4 and §5 as a method of making the best
use of limited available data where a model can
establish its understanding on simple concepts and
gradually develop it by seeing harder examples
over training.

3 VQA Model

In a VQA task, a model receives as input a pair
(x,q) of image x and a question g about the image.
The model learns to select an answer a € A to the
questions from a set .A of possible answers.

The VQA model (Johnson et al., 2017b) includes
two main components: a program generator G and
an execution engine £. The program generator
predicts a program p to address a question g. The
execution engine combines the modules according

00

@
=)

Accuracy (%)

=
=1

20 40 60 80 100

Training subset size (% of the full dataset)

Figure 1: Accuracy of vanilla training of the execu-
tion engine on CLEVR val where trained on different-
sized random subsets of the CLEVR train set.

to the program, and executes the obtained network
on the image to produce an answer.

Johnson et al. (2017b) train the model using a
semi-supervised learning approach. They demon-
strate that the program generator can produce ac-
ceptable programs while training on only a small
fraction of possible programs (< 4%). To evaluate
&’s performance in a low data regime, we con-
ducted a number of vanilla supervised training ex-
periments with decreasing sized training sets. Note
that we use ground truth program and image pairs
as the input to £ in all experiments. Figure 1 shows
the best accuracy of each experiment on CLEVR’s
validation set while the execution engine is trained
on a subset of the CLEVR’s train set e.g., 50%
(See Figure 2 for some examples of the CLEVR
dataset). The results verify execution engine’s poor
performance on the small sized training subsets.

4 Curriculum Heuristics for VQA

Studies introduce various heuristics for measuring
the hardness of examples. Some heuristics define
hardness based on human judgment, in the sense
that an example can be challenging for a machine
if a human finds it difficult. Such criteria take fea-
tures of examples into consideration such as word
frequency and sentence length for texts (Spitkovsky
et al., 2010; Platanios et al., 2019; Liu et al., 2018)
and shape complexity for images (Bengio et al.,
2009; Duan et al., 2020). The ordering of exam-
ples provided by these heuristics is task-dependent
and does not change during training. In contrast,
more general criteria determine the ordering of ex-
amples by incorporating the machine’s response,
e.g., a teacher network supervises the learning pro-
cess (Hacohen and Weinshall, 2019) or the progress
of a model is taken into account (Kumar et al.,
2010; Sachan and Xing, 2016; Zhou et al., 2021).
In this study, we explore the heuristics described in
the rest of this section.

4.1 Curriculum by program length

An intuitive measure of hardness for a VQA task
is based on question length i.e., longer questions
are more complex to be understood and answered
than shorter ones. This assumption has its root in
the observation that a longer question generally in-
volves understanding a larger number of objects
and relations. We consider the length of the pro-
gram corresponding to a question as an indicator
of question length.

Under the program length curriculum, the net-
work is fed with easy-to-hard ranked examples
starting from shorter programs and gradually in-
creasing programs’ length.

4.2 Curriculum by answer hierarchy

Investigating the learning process of £ while train-
ing with IID data batching, we hypothesized the
model implicit curriculum to be as follows: the
model quickly learns to correctly predict the type
of the answers, e.g., color, size or digit. However,
the more distinct values each type includes, the
longer it takes for the model to distinguish them.
For instance, the model needs a longer time to dis-
tinguish between eight different color values com-
pared to large and small as the values of size. We
also assume that the model struggles to identify
visual features that are hard to detect, regardless
of the number of distinct values, e.g., whether the
material of an object is metal or rubber.

Motivated by the above observations, we define
another measure based on a hand-crafted answer hi-
erarchy in order to shift the focus from questions to
answers. The higher level in the hierarchy includes
a coarser categorization of each answer type, and
the answer types are vertically extended downward
to finer classes of types. In other words, the direct
link between an answer type and its values is inter-
leaved with intermediate levels of abstraction, e.g.,
digit at a lower level is divided into three groups,
such as ’0’, ’I’ and many. This classification splits
into finer groups toward the bottom of the path.
The details of the hierarchy are given in Appendix
A of the supplementary material.

4.3 Curriculum by hard examples

The intuition of this heuristic is to focus training on
the hard examples where the learner does not per-
form well and consequently the loss is high. The
notion of hardness is considered dynamic, as a hard
problem tends to be deemed easier while it is be-

Easy Q: There is an object
that is both right of the yellow
rubber object and behind the

large brown thing; what is its

color? A: cyan

(A) Easy Question

Medium Q: What number
of large objects are cyan metal-
lic spheres or yellow spheres?

A:0

(B) Medium Question

Hard Q: What size is the
metal block right of the brown
metal thing right of the blue
thing in front of the small blue

rubber thing? A: large
(C) Hard Question

Figure 2: Examples of easy, medium and hard questions according to their H scores. The proposed heuristics do
not always agree. According to the length-based heuristic, example A is harder than example B.

Hardness Epoch
1 10 25 50 75 98
Easy 090 0.81 1.16 093 1.16 1.12

Medium 5.49
Hard 11.78

1.87 231 140 133 1.27
3,57 1.74 1.10 0.94 1.40

Table 1: Hardness scores at different epochs. The hard-
ness scores decrease as training progresses.

ing understood. Following Zhou et al. (2020), we
employ a dynamic hardness criterion based on the
running average of instantaneous hardness, which
is defined as the loss difference between two con-
secutive training iterations.

Let (x;,p;) be the ith image-program pair as
a training example with the ground truth answer
a;. The instantaneous hardness () of (x;,p;) at
time-step t is defined as follows:

re(i) = [€e(ai—E(xi, piywe)) —Le—1(ai —E(Xi, pi; wt—l()1))|
where ¢ represents training epochs.

The hardness score of an example is obtained by
recursively computing a running average over in-
stantaneous hardness, which reflects the dynamics
of hardness,

where v € [0,1] is a discount factor, and S; C
{(x1,p1), ---, (XN, pnN)} is a subset of the training
set selected at each training step according to a sam-
pling strategy. We employ the strategy of Johnson
et al. (2017b), which uses a probability function
based on the hardness score H. This function fa-

vors harder examples so long as the probability of
selecting easy examples is not zero.

Once a sample is used to train the model, its H
score becomes small and it stays low relative to the
other samples. Thus samples’ H score converges
during training and remains consistent. This gives
the unselected samples a higher chance to be se-
lected by the sampling function in the future steps.
Figure 2 shows three samples with low, medium
and high H scores (denoted as easy, medium and
hard questions) at the first iteration and Table 1 lists
their corresponding H scores during training. It is
clear that the H score is decreasing over training
until convergence.

5 Curriculum Learning for VQA

We describe now our training procedure. A generic
curriculum learning requires a model M and a train-
ing dataset D as inputs. It also requires the exis-
tence of a hardness criterion /V, a curriculum sched-
uler E, a selection function L, and a performance
measure P.

According to traditional curriculum learning, at
every training iteration, the scheduler E decides
when to update the curriculum. Curriculum learn-
ing is applied on top of the conventional training
loop in machine learning. The output of each train-
ing loop is usually the model’s performance mea-
sure, which may be used by the scheduling function
L to specify the appropriate moment for modify-
ing the curriculum. The scheduler can also decide
merely based on the number of training iterations.
A curriculum update typically includes re-ranking
training examples according to the hardness cri-
terion V. In the next step, the algorithm selects

Algorithm 1 Scheduled Training with Curriculum

1: &: execution engine

2: {(xi,pi, a;) }i=1: training examples

3: ~: € [0, 1], discount factor for reducing subset size
4: T': number of iterations

5: Tp: number of warm-starting iterations

6: procedure HEMTRAINING

7: fort € {1,...,T} do

8: if t < T, then > Phasel: Warm-starting
9: St = [n]

10: else D> Phase2: Hard example mining
11: fori € {1,...,n} do

13: end for

14: Normalise(p;)

15: St «+—sample k¢ district elements from Categorical(p)

16: wiwy 1+ (Vm 2ies, e(aiag(phxi;wt—l)))
17: end if

18: Compute 74 (%) for i € St using Eq. (1)

19: Update Hy41(i) using Eq.(2)

20: kiy1 < v X ke

21: end for

22: end procedure

a subset D* of the training set D, which will be
used by the model in the next round of training.
The selection function S F’ can utilize different ap-
proaches, e.g., weighting (Liang et al., 2016; Zhou
et al., 2020), sampling (Zhou et al., 2021) or batch-
ing (Yong Jae Lee and Grauman, 2011).

Training by length-based curriculum. We de-
sign a CL training strategy for the length-based
curriculum by equipping the CL training with a
batching method as the selection function and a
linear paced scheduler. The scheduler controls the
curriculum update at a linear pace, i.e., a hyper-
parameter specifies the number of iterations for
learning a curriculum.

Training by answer hierarchy curriculum.
Our proposed training algorithm for the answer hi-
erarchy curriculum takes advantage of a simple self-
paced scheduler based on the model performance.
Specifically, the scheduler updates the curriculum
where the normalized difference of accuracy be-
tween two consecutive iterations goes higher than
a predefined threshold.

Training by hard examples curriculum. This
training strategy suggests training the model in two
phases. The first phase is a warm-up phase, where
the model sweeps all training examples. The next
phase is curriculum training, where the model ranks
the examples according to their hardness and learns
a selected subset of them.

Algorithm 1 summarizes our training approach.

To encourage diversity, we add a submodular opti-
mization C to the hardness score in line 12, which
is inspired by Zhou and Bilmes (2018). Since this
can be any submodular function, we choose a func-
tion based on the similarity between examples,

max Z Hy(7) + A\ C(Sh) 3)

1ES

where C(S;) = 3, icq, wi,; and w; ; represents
the similarity between example ¢ and j. The pref-
erence for diversity can be controlled by A\;. We
gradually reduce it during training to further focus
learning on hard examples. The input to C'is a
representation of a data point that can be a fusion
of both text and image modalities. For this, we use
the output of the model’s penultimate layer as the
representations of the examples.

Instead of deterministically choosing the top
k samples based on H, we randomly select the
examples for the next round of training with the
probability p: ; o< f(H¢—1(i)) where f(.) is a non-
decreasing function, similar to Zhou et al. (2020).
This probability function favors hard examples,
yet selecting easy ones is possible. At early train-
ing, when the H scores are poorly estimated, f(.)
should encourage exploration, and move toward
more exploitation as training progresses and H es-
timation is becoming more accurate. We balanced
the trade off between exploration and exploitation
using the upper confidence bandit (UCB) algorithm,
similar to Auer et al. (2003) and Zhou et al. (2020),

f(i,t) = Normalized [Ht(z) + cy/log T/Nt(i)}

where T is the number of iterations, and N;(7) is
the number of times that the ith sample has been
selected prior to time step ¢. UCB controls the de-
gree of exploration by the hyper-parameter ¢ which
we set as 0.001 in our implementation.

5.1 Improved Curriculum Learning

The idea of learning the answers in a non-random
ordering as what happens in CL has been shown to
be helpful for the learning process in many cases.
However, this idea has one essential deficiency. It
focuses on a particular subset of questions early
and is not exposed to a diverse set of questions.
When a new question arrives, the algorithm strug-
gles to adjust to it, as the learned representations fit
the previous questions. This problem exacerbates
in low data settings. Many studies highlight the

importance of selecting a diverse set of examples
as a solution to this issue (Sachan and Xing, 2016;
Zhou and Bilmes, 2018), and the CL algorithm gen-
erally benefits from diversity in training examples.
However, as confirmed by our experiments (§6.4),
it does not prevent the model from overfitting. We,
therefore, explore the effect of other techniques of
regularizing such as dropout and L2-norm.

6 Experiment

We use our implementation of the execution engine
model (Johnson et al., 2017b). A vanilla training
of the model posts the lowest threshold of the per-
formance in our setting. We also implemented and
compared the three heuristics for the hardness cri-
terion: program length (§4.1), answer hierarchy
(§4.2) and hard example (§4.3). The length-based
curriculum can be seen as a baseline to the answer
hierarchy criterion, while both of them play the
role of baseline for the hard example curriculum.
We do not compare with the state of the art, because
the goal of our paper is to study VQA in a low-data
regime, and to the best of our knowledge, there
is no other work that conducts similar research.
Thus, we focus on improving the performance of
our baseline models.

We assessed our baselines under the following
conditions: ¢) No-Reg when no regularizer is ap-
plied. iz) Dropout when we apply dropout tech-
nique to the final linear layer (classification layer)
in £. 4ii) L2-norm when L2-norm regularizer is
applied as a weight decay to the optimizer.

6.1 Dataset

We evaluate our approach on the CLEVR
dataset (Johnson et al., 2017a), which provides
a training set with 70k images, ~ 700k (x,q, a)
tuples and 32 answer classes. To simulate a low-
data regime, we randomly sample four subsets of
different sizes from CLEVR train. The size of
the subsets are 5%, 10%, 15% and 20% of the
full t rainset, which contain 35k, 70k, 105k, and
140k (x,q, a) tuples respectively. We call these
subsets s-CLEVR,,, where p denotes the percent-
age of the subset size wrt train,e.g., sS-CLEVR 5
refers to the subset of size 15% of train. As
CLEVR train and CLEVR val(the evaluation
set) have similar answer distributions, to perform
a fair comparison, it is important that the sampled
subsets also have similar answer distributions. Our
evaluation is conducted on the va1split, which con-
tains ~ 150k questions and 15k unique images.

6.2 Baselines

No-CL is used as the vanilla baseline where the
execution engine is trained with an IID sampling
on s-CLEVR subsets without any curriculum. In
other words, the model sees all examples in the
training set at every iteration.

Length-CL follows a linear paced scheduler when
training the execution engineunder the length-based
curriculum (4.1).

AnswerH-CL makes use of a self-paced sched-
uler based performance measurement and the an-
swer hierarchy curriculum (4.2). The curriculum
updates if the changes in normalized accuracy be-
tween two consecutive iterations are higher than a
pre-specified threshold. A batching function selects
the sampled for every training iteration.
HardEx-CL uses the hard example heuristic 4.3
as the criterion of ranking data and follows the al-
gorithm 1 for training. Unless stated otherwise, we
use HEM-CL in all ablation analysis experiments.

6.3 Implementation Details

The execution engine uses the images features
from conv4 of ResNet-101 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009). We use
Adam (Kingma, 2015) with a fixed learning rate of
1e4 to optimize the first three baselines and a cyclic
cosine annealing learning-rate schedule to optimize
HEM-CL. In the case of the experiments that use
L2-norm, a weight decay of 5e — 4 is added to the
ADAM optimizer. We also use dropout = 0.5 for
some experiments.

6.4 Results and Discussion

Curriculum heuristics’ effect. 'We evaluate the
impact of our proposed training strategies with the
three heuristics by looking at their performance on
CLEVR valin Table 2 while training on s-CLEVR
subsets. As the table shows, using the length-
based curriculum yields poor accuracy almost in
all cases of s-CLEVR training subsets with and
without regularization. An explanation for this
could be overfitting. As mentioned, overfitting is a
serious challenge in low data training.

According to our analysis, there is a high chance
for the model to overfit some modules because they
are more likely to appear in the first positions of a
program. Figure 3 depicts the frequency of mod-
ules’ appearance in various positions of programs
in about 28k programs. These modules are com-
monly related to an anchor object in a question,

Method No-Reg Drop-out L2-norm
5% 10% 15% 20% | 5% 10% 15% 20% | 5% 10% 15% 20%
No-CL 4691 4877 49.68 51.25 | 46.94 48.36 49.67 4992 | 46.71 50.25 5220 54.34
Length-CL 46.55 46.67 47.83 48.12 | 46.68 47.33 47.61 47.71 | 47.89 49.65 50.98 51.50
AnswerH-CL | 47.42 48.59 49.73 51.65 | 47.43 47.73 48.60 50.24 | 48.62 49.03 48.70 48.95
HardEx-CL 4793 50.04 5197 53.14 | 48.80 49.94 51.69 56.29 | 4895 5149 5327 87.62+1.3
Table 2: The execution engine accuracy (%) on CLEVR valwhen training on s-CLEVRj5, s-CLEVR;g,

s-CLEVR;5 and s-CLEVRgo with three different choices of curriculum. The length-based (Length-CL) and
answer hierarchy (AnswerH) curriculum does not improve the performance while hard example (HardEx-CL)
outperforms the vanilla baseline (No-CL) in all experiments.

where other objects are described by their relation
to this object, e.g., the yellow thing is the anchor in
the question “What is the size of cube to the right
of the yellow thing”. To identify the cube and de-
termine its size, one must find the yellow thing, and
attend to the objects on its left side. Since objects
are normally described by attributes such as color,
size and material, attribute-related modules tend to
appear at the beginning of a program.

Ranking programs by their length makes the
model focus on a limited number of modules dur-
ing early training, which increases the chance of
overfitting. The model thus struggles with learn-
ing other modules when they appear later in longer
programs. According to the results, dropout and
L2 regularizations do not effectively prevent over-
fitting where the curriculum forces the model to
over-concentrate on such structural biases in data.

Answer hierarchy curriculum makes a
marginal improvement on some subsets partic-
ularly s-CLEVR;. Hard example curriculum
produces impressive results, improving the
baselines in all cases. The result verifies the
effectiveness of emphasizing hard examples in
low data regimes where due to the limited size of
data and its large capacity, a deep network tends
to memorize easy data points without actually
learning a pattern. Forcing the model to focus
on hard examples induces a form of implicit
regularization. Additionally, the self-pacing
feature of the curriculum allows the algorithm to
update the curriculum based on its progress.

Table 2 also shows that HardEx-CL method
does not produce the best accuracy per se. Regard-
ing that the table reports the average results, it is
noteworthy to mention that the best accuracy we
achieved in the case of HardEx-CL is 88.83 score
in accuracy where the weights are uniformly ini-
tialized and L2-norm is used for regularization. In

count intersect

e equal_c0lOT query_color

equal.integer query_material

equal_material e query_shape

equal_shape query_size

; :
e equal_size — relate

exist same_color
= s ==« fiter_color same_material

e fiter_material

Frequency

same_shape

fiter_shape same_size

— e filer_size

....... unique

o 1 2 3 4 5 & 7 & & 10 1 12 13 W 15 1% 17 18 18 2

Position in program

Figure 3: Frequency of modules appearance in differ-
ent positions of programs. Some modules are more
likely to appear at the first positions.

fact, the regularization causes a huge rise in accu-
racy. The next paragraphs look into the reasons
that our regularization choice effectively boosts the
HardEx-CL approach.

Regularization impact. To investigate the im-
pact of different regularizers we conducted abla-
tion studies by applying L.1-norm in addition to L2
and drop-out regularization. Table 3 shows that in
contrast to dropout and L1-norm, using L2 regular-
ization results in improved performance in almost
all experiments. To investigate the role of L2 regu-
larization in CL training, we conducted an ablation
experiment on the selected examples in HardEx-
CL algorithm with and without L2-norm. First, we
record the hardness measures of selected examples
at every epoch Hy(i) and split the range of mea-
sures into three categories, easy, medium and hard.
The population distribution of examples by their
hardness measure has a long tail. This long tail
is excluded from the splitting and categorized as
very hard. We then calculate the proportion of each
category in the selected examples at 100 epochs as
plotted in Figure 4.

These plots provide insight into the behavior of
L2 regularization. Specifically, we observe that ex-

Proportion (%)

Epoch
A: Easy

Epoch
B: Medium

Epoch
C: Hard

Epoch
D: Very hard

Figure 4: The proportion of different hardness categories in selected examples at 100 epoch in case of with and
without L2 regularization. The regularization prevents forgetting by forcing the algorithm to incorporate more easy

samples in the training set.

No-Reg | Drop-out | L1-norm | L2-norm
No-CL | 51.25 49.92 45.12 54.34
CL 53.14 56.29 46.79 86.65

Table 3: The impact of different regularizer on HardEX-
CL accuracy when training on s-CLEVR.

cept for the easy category, the proportion of exam-
ples from other categories is higher for all epochs.
It can be explained by the fact that HardEx-CL
algorithm draws model attention to hard examples
during training. As the model is learning the exam-
ples, their corresponding hardness measure is de-
creasing so that they finally are learned and consid-
ered as easy. Without using L2 regularization the
model overly focuses on learning hard examples
and as a consequence forgets the learned patterns of
easy examples. L2-norm protects the model from
forgetting such patterns by incorporating in loss
and forcing the sampling function to also samples
more from easy category.

Accuracy
g

—— HardEx-CL on 30%

HardEx-CL on 25%
——— HardEx-CL on 20%
—— HardEx-CL on 15%

o 20 40 60 80 100 120

Epoch

Figure 5: The accuracy of HardEx-CL algorithm on
CLEVR valwhere execution engine weights is uni-
formly initialized and trained on s-CLEVR 5 20,25 30.

Why is there a jump in the accuracy of HardEx-
CL with L2 regularization when training on
s-CLEVRy,? Looking closely at the learning
curve of vanilla training in Figure 1 reveals that the
execution engine performance experiences a jump

using training subsets larger than 20%. Different
shapes of learning curves are defined in learning
theory (Ebbinghaus, 1913; Bills, 1934). The S-
curve that we can see here is the idealized general
form of learning where the learner slowly accumu-
lates small steps at first followed by a steep up stage
with larger steps and the smaller steps successively
occur to level off the curve. Due to lack of data, we
do not see this performance gap when training on
s-CLEVR5_99. L2 regularization, however, stim-
ulates the jump to happen earlier in HardEx-CL.
To investigate it further, we run HardEx-CL with
four training subsets of different sizes including
15%, 20%, 25% and 30% and report the accuracy
on CLEVR valin Figure 5. All settings are similar
to HardEx-CL with L2-norm in Table 2 except the
weights are uniformly initialized. From these exper-
iments, we observe the jump in the training set for
even s-CLEVR;5 other than larger subsets. This
shows the tipping point in the training can accrue
earlier depending on the algorithm and settings.

7 Conclusion

This paper studied VQA in low data settings and
shed light on the low performance of VQA models
under the data scarcity condition. To improve the
performance, we propose three curriculum learn-
ing approaches based on length, answer hierarchy,
and hard examples. We also stressed the prob-
lem of overfitting and poor generalization that be-
comes crucially important in the absence of suffi-
cient data. We explored the effect of using gener-
alization techniques on a models’ performance in
low data regimes. Our results show that the pro-
posed CL algorithms outperform the baseline in
many cases while fail in some others. However, the
algorithms when coupled with L2 regularization
lead to improvements.

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In /IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 39-48.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In IEEE international conference on com-
puter vision, pages 2425-2433.

Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. 2003. The Nonstochastic Mul-
tiarmed Bandit Problem. SIAM Journal on Comput-
ing, 32(1):48-77.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In International Conference on Machine Learning,
ICML °09, pages 41-48, Montreal, Quebec, Canada.
Association for Computing Machinery.

Arthur Bills. 1934. General experimental psychology.
Longmans Psychology. Longmans, Green and Co.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 248-255. ISSN: 1063-6919.

Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram
Nevatia, and Leonidas J. Guibas. 2020. Curriculum
DeepSDF. In Computer Vision — ECCV, Lecture
Notes in Computer Science, pages 51-67, Cham.
Springer International Publishing.

Hermann Ebbinghaus. 1913. Memory: A Contribu-
tion to Experimental Psychology. Annals of Neu-
rosciences, Teachers College, Columbia University.

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and
Pascal Vincent. 2010. Why Does Unsupervised Pre-
training Help Deep Learning? In International
Conference on Artificial Intelligence and Statistics,
pages 201-208. JMLR Workshop and Conference
Proceedings.

Guy Hacohen and Daphna Weinshall. 2019. On The
Power of Curriculum Learning in Training Deep
Networks. In International Conference on Machine
Learning, pages 2535-2544. PMLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 770—
778. ISSN: 1063-6919.

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate
Saenko. 2018. Explainable neural computation via
stack neural module networks. In European confer-
ence on computer vision (ECCV), pages 53-69.

Drew A. Hudson and Christopher D. Manning. 2018.
Compositional Attention Networks for Machine
Reasoning. In International Conference on Learn-
ing Representations.

Drew A Hudson and Christopher D Manning. 2019.
GQA: A New Dataset for Real-World Visual Rea-
soning and Compositional Question Answering. In
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 6700-6709.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017a. Clevr: A diagnostic dataset for
compositional language and elementary visual rea-
soning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2901-2910.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence Zit-
nick, and Ross Girshick. 2017b. Inferring and exe-
cuting programs for visual reasoning. In IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 2989-2998.

Diederik P. Kingma. 2015. Adam: A Method for
Stochastic Optimization. In International Con-
ference on Learning Representations (ICLR), San
Diego, CA, USA. Conference Track Proceedings.

Diederik P. Kingma, Danilo J. Rezende, Shakir Mo-
hamed, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Interna-
tional Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’ 14, pages 3581-3589,
Montreal, Canada. MIT Press.

M. Kumar, Benjamin Packer, and Daphne Koller. 2010.
Self-Paced Learning for Latent Variable Models. In
Advances in Neural Information Processing Systems
(NIPS), volume 23.

Junwei Liang, Lu Jiang, Deyu Meng, and Alexan-
der Hauptmann. 2016. Learning to detect con-
cepts from webly-labeled video data. In Interna-
tional Joint Conference on Artificial Intelligence, 1J-
CATI’16, pages 1746-1752, New York, New York,
USA. AAAI Press.

Cao Liu, Shizhu He, Kang Liu, and Jun Zhao. 2018.
Curriculum learning for natural answer generation.
In International Joint Conference on Artificial In-
telligence, IICAI’ 18, pages 4223-4229, Stockholm,
Sweden. AAAI Press.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Neural Information Processing Systems
(NeurlPS).

Ishan Misra, Ross Girshick, Rob Fergus, Martial
Hebert, Abhinav Gupta, and Laurens van der
Maaten. 2018. Learning by Asking Questions. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11-20. ISSN: 2575-7075.

https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-030-58598-3_4
https://doi.org/10.1007/978-3-030-58598-3_4
http://proceedings.mlr.press/v9/erhan10a.html
http://proceedings.mlr.press/v9/erhan10a.html
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=S1Euwz-Rb
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/2010/hash/e57c6b956a6521b28495f2886ca0977a-Abstract.html
https://doi.org/10.1109/CVPR.2018.00009

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabas Poczos, and Tom Mitchell.
2019. Competence-based Curriculum Learning for
Neural Machine Translation. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
1162-1172, Minneapolis, Minnesota. Association
for Computational Linguistics.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin
Packer, and Andrew Y. Ng. 2007. Self-taught learn-
ing: transfer learning from unlabeled data. In Inter-
national conference on Machine learning (ICML),
ICML 07, pages 759-766, New York, NY, USA.
Association for Computing Machinery.

Mrinmaya Sachan and Eric Xing. 2016. Easy Ques-
tions First? A Case Study on Curriculum Learning
for Question Answering. In 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 453—463, Berlin, Ger-
many. Association for Computational Linguistics.

Ramprasaath R. Selvaraju, Purva Tendulkar, Devi
Parikh, Eric Horvitz, Marco Tulio Ribeiro, Be-
smira Nushi, and Ece Kamar. 2020. SQuINTing
at VQA Models: Introspecting VQA Models With
Sub-Questions. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10003—
10011.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From Baby Steps to Leapfrog: How
“Less is More” in Unsupervised Dependency Pars-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 751-759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learn-
ing Cross-Modality Encoder Representations from
Transformers. In Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 5100-5111, Hong
Kong, China. Association for Computational Lin-
guistics.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Tor-
ralba, Pushmeet Kohli, and Josh Tenenbaum. 2018.
Neural-Symbolic VQA: Disentangling Reasoning
from Vision and Language Understanding. Ad-
vances in Neural Information Processing Systems,
31.

Yong Jae Lee and K. Grauman. 2011. Learning the
easy things first: Self-paced visual category discov-
ery. In IEEE Conference on Computer Vision and
Fattern Recognition, CVPR ’11, pages 1721-1728,
USA. IEEE Computer Society.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin
Lu, Mohit Bansal, and Tamara L Berg. 2018. Mat-

tnet: Modular attention network for referring expres-
sion comprehension. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1307-
1315.

Xiaofeng Zhang, Zhangyang Wang, Dong Liu, and
Qing Ling. 2019. DADA: Deep Adversarial Data
Augmentation for Extremely Low Data Regime
Classification. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 2807-2811. ISSN: 2379-190X.

Tianyi Zhou and Jeff Bilmes. 2018. Minimax Cur-
riculum Learning: Machine Teaching with Desir-
able Difficulties and Scheduled Diversity. In Inter-
national Conference on Learning Representations,
(ICLR), Vancouver, BC, Canada.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. 2021.
Curriculum Learning by Optimizing Learning Dy-
namics. In International Conference on Artificial
Intelligence and Statistics, pages 433—441. PMLR.

Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. 2020.
Curriculum Learning by Dynamic Instance Hard-
ness. In Advances in Neural Information Process-
ing Systems, volume 33, pages 8602—-8613. Curran
Associates, Inc.

Supplementary Material

We describe more key implementation details of
our work in the ensuing sections.

Appendix A: Curriculum by answer
hierarchy

As mentioned in §4.2, the answer hierarchy, shown
in Figure 6, classifies the answers at different hierar-
chical levels. Specifically, we defined intermediate
levels between answer types and their values. The
intermediate levels are employed as the higher level
pseudo answers to the questions. According to the
curriculum, the algorithm maps the true answer to
the higher levels pseudo answers in order to grad-
ually guide the predicted answers from a coarse
level to a more specific one. When the scheduler
decides to update the curriculum, several nodes are
expanded to the next level, i.e., the model is ex-
posed to the finer level of an answer type. We do
not force the curriculum to simultaneously expand
all of the nodes that are at a similar level of the
hierarchy. Instead, we assign a number to every
node that determines the expansion time in terms
of curriculum update round. Specifically, a node is
expanded when the count of the curriculum update
is matched with its assigned number. For instance,
the node ‘size’ is expanded to its children ‘small’

https://doi.org/10.18653/v1/N19-1119
https://doi.org/10.18653/v1/N19-1119
https://doi.org/10.1145/1273496.1273592
https://doi.org/10.1145/1273496.1273592
https://doi.org/10.18653/v1/P16-1043
https://doi.org/10.18653/v1/P16-1043
https://doi.org/10.18653/v1/P16-1043
https://openaccess.thecvf.com/content_CVPR_2020/html/Selvaraju_SQuINTing_at_VQA_Models_Introspecting_VQA_Models_With_Sub-Questions_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Selvaraju_SQuINTing_at_VQA_Models_Introspecting_VQA_Models_With_Sub-Questions_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Selvaraju_SQuINTing_at_VQA_Models_Introspecting_VQA_Models_With_Sub-Questions_CVPR_2020_paper.html
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/N10-1116
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://proceedings.neurips.cc/paper/2018/hash/5e388103a391daabe3de1d76a6739ccd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5e388103a391daabe3de1d76a6739ccd-Abstract.html
https://doi.org/10.1109/CVPR.2011.5995523
https://doi.org/10.1109/CVPR.2011.5995523
https://doi.org/10.1109/CVPR.2011.5995523
https://doi.org/10.1109/ICASSP.2019.8683197
https://doi.org/10.1109/ICASSP.2019.8683197
https://doi.org/10.1109/ICASSP.2019.8683197
http://proceedings.mlr.press/v130/zhou21a.html
http://proceedings.mlr.press/v130/zhou21a.html
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf

and ‘large’ in the second round of curriculum up-
date if number 2 is assigned to the node “size’. This
provides a degree of freedom for the algorithm to
gradually learn the answers. Although we statically
specify these numbers in our algorithm, they can
be implemented as learnable parameters, which we
leave to future work. Learning expansion times
helps the model move the curriculum further at its
pace.

0T'6'8'L'9'SF'E

[oon][= | [o]

uaalg feln
Y Y

uedn

_ a|ding _ pay
Iy r'y

anig umolg MOJIBA

r 1

a3qnd

JapulhD i

Em:ami 7 Auepy 7

—
(=]

1sgany

el _ 7 oM _ 7 SaA

| [[o] [o=] [

abre 7 7 rews 7

7 [Ty 7 7 ON/SaA 7

A

h

A

!

!

)

10100

JERET

Figure 6: A schematic view of the answer hierarchy used as the base of a curriculum.

