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Abstract

In this paper, we investigate the utility of
modern pretrained language models for the
evidence grading system in the medical lit-
erature based on the ALTA 2021 shared
task. We benchmark 1) domain-specific mod-
els that are optimized for medical literature
and 2) domain-generic models with rich la-
tent discourse representation (i.e. ELECTRA,
RoBERTa). Our empirical experiments reveal
that these modern pretrained language models
suffer from high variance, and the ensemble
method can improve the model performance.
We found that ELECTRA performs best with
an accuracy of 53.6% on the test set, outper-
forming domain-specific models.1

1 Background

Evidence-Based Medicine (EBM) is an approach
by health practitioners to integrate individual clini-
cal expertise and external evidence from medical
literatures in making decisions about the care of
patients (Sackett et al., 1996). In practice, under-
standing the current best evidence from the liter-
ature minimizes the unexpected risk of outdated
treatments that can be detrimental to patients.

Strength of Recommendation Taxonomy
(SORT) (Ebell et al., 2004) is one of the standard
scale systems for grading evidence in medical
literature and it has been used to assist the EBM
approach. SORT groups a medical literature into
one of three classes: A (consistent and good-
quality patient-oriented evidence), B (inconsistent
or limited-quality patient-oriented evidence) and
C (other evidence, such as consensus guidelines,
usual practice and opinion). While obtaining these
grades on a wide-scale is expensive and requires

∗equal contribution
1Our best result with ELECTRA (large) and ELECTRA

(base) put us in the first and second rank on the leaderboard,
respectively.

in-depth medical expertise, previous works (Sarker
et al., 2015) have attempted to automate the
process by modelling the grading system with
n-gram language model via SVM (Molla and
Sarker, 2011) and ensemble method (Gyawali
et al., 2012).

In this work, we focus on investigating the util-
ity of various modern pretrained language models
for modelling the evidence grading system in the
medical literature. Although transformer (Vaswani
et al., 2017) and pretrained language models such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) have achieved impressive performance
across various NLP tasks (Wang et al., 2018; Wang
et al., 2019) and languages (Koto et al., 2020; Mar-
tin et al., 2020), we hypothesize that such evi-
dence grading task is still challenging because of
three reasons. First, in-depth medical expertise
and knowledge are not always present in the lan-
guage models. Second, it is very likely that ma-
chine learning models suffer from high variance
as disagreement in assessing scientific literature is
natural, even among the experts. Lastly, obtaining
high-quality training data for this task is difficult,
and the large transformer-based models potentially
suffer from overfitting if the available data is lim-
ited.

To address the aforementioned challenges, we
use three main strategies. First, we fine-tune
domain-specific pretrained models (Gu et al., 2020)
that are optimized for medical literature. Previous
works (Gururangan et al., 2020; Gu et al., 2020;
Alsentzer et al., 2019; Fang et al., 2021; Koto
et al., 2021) have shown that such models contain
domain-specific knowledge that can boost system
performance. Second, we argue that discourse is
prominent for this task because each of three SORT
classes might have different document structure.
For instance, patient-oriented literature and consen-
sus guidelines potentially are written differently in
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Figure 1: Sample training data from ALTA 2021 shared
task.

terms of flow and discourse. In this work, rather
than employing a complicated discourse parser (Yu
et al., 2018; Koto et al., 2019, 2021), we rely on
modern pretrained language models such as ELEC-
TRA (Clark et al., 2020) that contains a rich latent
discourse representation (Koto et al., 2021). Lastly,
similar to Gyawali et al. (2012), we also perform
ensemble learning to tackle the high variance issue
of models.

2 Dataset

We conduct our experiments based on the ALTA
2021 shared task2 which aims to automatically
grade evidence in the medical literature. The grad-
ing system follows the SORT framework (Ebell
et al., 2004) with three classes: A (Strong), B (Mod-
erate) and C (Weak).

As shown in Figure 1 each line in the train-
ing data is a single piece of evidence and con-
sists of an ID, a SORT grade, and a list of re-
source/publication ID(s) from PubMed.3 Each pub-
lication ID is mapped to an XML file containing
bibliographic information (e.g. title, author, affili-
ation, etc.), abstract, and some meta-data such as
type and status of the publication.

In Table 1, we present overall statistics of the
train, development and test sets. First, nearly 45%
of the train and development data are classified
as class B. We also found there is no significant
difference in terms of the number of resources and
words between each subset.

3 Proposed Methods

Figure 2 describes the best model that we submit to
ALTA 2021 shared task. We use filtered ensemble
method over 3 domain-specific pretrained language
models: 1) Biomed BERT (Gu et al., 2020), 2)
Biomed RoBERTa (Gururangan et al., 2020) and
3) Biomed RoBERTa that is further pretrained with
the training set for 400 epochs, denoted as Task

2https://www.alta.asn.au/events/
sharedtask2021/index.html

3https://pubmed.ncbi.nlm.nih.gov/

Train Dev Test

Evidences 677 178 183
in A 212 48 -
in B 311 80 -
in C 154 50 -

Ave. resources per evidence 2.4 2.5 2.3
Ave. words per abstract 269.9 262.6 274.1
Ave. words per evidence 655.9 653.7 643.9

Table 1: Overall statistics of the ALTA 2021 shared
task dataset. Evidence classes in test dataset are with-
held by the organizer. “Ave. resources per evidence”
means the average number of XML files the evidence
has. “Ave. words per abstract” means the average num-
ber of words per single abstract. “Ave. words per ev-
idence” means the average number of words per evi-
dence, including journal name, title and abstract.

Adaptive Pretraining (TAPT) model; and 3 domain-
generic pretrained language models: 1) RoBERTa
(Liu et al., 2019), 2) ELECTRA, and 3) ELEC-
TRA (large) (Clark et al., 2020). The selection of
RoBERTa and ELECTRA is based on their rich
latent discourse representation as reported by Koto
et al. (2021).

Given a list of resources or publications R =
{r1, r2, .., rn} for evidence x, we construct an in-
put sequence as follows. First, each resource ri
consists of journal name ji, title ti, and abstract ai.
We form an input sequence x as the concatenation
of all texts j1 ⊕ t1 ⊕ a1 ⊕ ...⊕ jn ⊕ tn ⊕ an. We
truncate a resource ri if the tokens are more than
250, and set the maximum length of the input x to
be 512.

To understand the variance of pretrained lan-
guage models in this task, we fine-tune each model
with 100 different random seeds. For ensemble
learning, we first select models with accuracy more
than hyper-parameter α (values range between 0
and 1) and apply two types of voting mechanism
to aggregate the prediction: 1) simple voting based
on majority classes, and 2) filtered voting. For the
second approach, if the selected n models have an
even class distribution, we set class B as the predic-
tion, otherwise normal majority voting is applied.
Mathematically, this even prediction is determined
based on a threshold β as follows:

1

3
(|yA − yB|+ |yA − yC |+ |yB − yC |) ≤ β

where yA, yB , yC are the occurrence of class A, B,
and C in n models prediction, respectively (mean-
ing yA+yB+yC = n), and |yA−yB| indicates the

https://www.alta.asn.au/events/sharedtask2021/index.html
https://www.alta.asn.au/events/sharedtask2021/index.html
https://pubmed.ncbi.nlm.nih.gov/
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Figure 2: Filtered ensemble model used in this task.

absolute difference of class A and B occurrence. β
is a hyper-parameter with values ranging between
0 and n, and β < 0 means normal majority voting
is applied. All parameters (including α and β) are
tuned based on the development set.

4 Experiments

4.1 Set-up

We use the huggingface Pytorch framework (Wolf
et al., 2020) for the experiments.4 In total, there
are 6 models: 1) Biomed BERT,5 2) Biomed
RoBERTa,6, 3) Biomed RoBERTa (TAPT), 4)
RoBERTa,7 5) ELECTRA,8 6) ELECTRA (large).9

Each model is fine-tuned for 20 epochs with a batch
size of 10, warm-up of 10% of the total steps, learn-
ing rate of 5e–5, Adam optimizer with epsilon of
1e–8, and early stopping with patience of 5.

In this work, accuracy is used as the primary
evaluation metric, following ALTA 2021 shared
task description.

4.2 Results over Development Set

In Table 2, we report the aggregate score (mean,
max, min, std) of 100 runs of each models. First,
we observe that Biomed RoBERTa has the highest
average performance of 59.5, but only 0.3 higher
than ELECTRA. In fact, Domain-generic mod-
els such as RoBERTa and ELECTRA outperform
Biomed BERT and Biomed RoBERTa (TAPT), de-
spite their domain/task-adaptive pretraning. We
also found that even with 100 different random

4https://huggingface.co/
5microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext
6allenai/biomed roberta base
7roberta-base
8google/electra-base-discriminator
9google/electra-large-discriminator

Model Accuracy

Mean Max Min Std

Biomed BERT 58.7 66.9 52.8 2.9
Biomed RoBERTa 59.5 67.4 55.1 2.5
Biomed RoBERTa (TAPT) 58.3 65.7 52.8 2.6

RoBERTa 59.1 64.6 53.9 2.2
ELECTRA 59.2 65.7 44.9 3.6
ELECTRA (large) 53.3 64.6 44.9 6.7

Table 2: Experiment results on development set over
100 different random seeds.

seeds, all models still have relatively high variance
(std) with more than 2 points. ELECTRA (large)
suffers worst from this issue, compared to the other
models.

In Table 3, we describe the main experiment re-
sults. For baselines, we run unigram and bigram
representation with Naive Bayes and Logistic Re-
gression, and found the results are less optimal.
For the ensemble method, we perform grid search
over α ∈ {0.60, 0.61, 0.62, 0.63, 0.64, 0.65} and
β ∈ {−1, 0, .., n}. n is number of models after fil-
tered by parameter α. Ensemble results presented
in Table 3 use the best combinations of α and β.

First, we perform ensemble method with all
500 “base” models from Table 2, and obtain accu-
racy of 69.7, 2 points higher than the best Biomed
RoBERTa model (max in Table 2). 8 selected mod-
els after filtering with α are 2 Biomed RoBERTa, 2
Biomed RoBERTA (TAPT), 2 Biomed BERT, and
2 ELECTRA. In the next results, we also perform
a grid search for each 6 pretrained language mod-
els (each initially has 100 models), and found that
ELECTRA performs best with an accuracy of 70.2,
outperforming all domain-specific models.

Another thing to note is that parameter β or fil-

https://huggingface.co/


Model Hyper-parameters Filtered models (n) Acc.
α β

Baseline

Naive Bayes (unigram+bigram) – – – 46.1
Logistic Regression (unigram+bigram) – – – 51.1

Ensemble method

All 500 “base” models 0.65 {−1, 0, 1} 8 69.7
Biomed BERT 0.62 {−1, 0, 1, 2, 3} 11 68.5
Biomed RoBERTa 0.63 2 7 67.4
Biomed RoBERTa (TAPT) 0.62 4 11 66.3
RoBERTa 0.64 {−1, 0, 1} 3 67.9
ELECTRA 0.63 {−1, 0, 1} 6 70.2
ELECTRA (large) 0.61 {−1, 0, 1, 2, 3, 4, 5} 18 67.4

Table 3: Results of baseline vs. ensemble methods on the development set. Parameter α and β are selected based
on the grid search.

Model Accuracy

Dev Test

All 500 “base” models 69.7 49.7
ELECTRA 70.2 50.2
ELECTRA (large) 67.4 53.6

Table 4: Results of selected model (for shared task sub-
mission) on the development and test set.

tered voting mechanism is not significant except
for Biomed RoBERTa. From Table 3 we can see
that the optimal combinations of α and β for 5 en-
semble models have β = −1, which indicates that
the standard majority voting solely can yield the
optimal result.

4.3 Results over Test Set

We pick the three best models for ALTA 2021
shared task submission as shown in Table 4. These
models are the ensemble methods from Table 3:
1) All 500 “base” models, 2) ELECTRA, and 3)
ELECTRA (large). We observe that the gap be-
tween development and test set is high, roughly 20
points, which can be due to overfitting problems
and small training sets. The best models on the test
set are ELECTRA and ELECTRA (large) with the
accuracies of 50.2 and 53.6, respectively. Our best
result with ELECTRA (large) put us in the first
rank on the leaderboard.10

10The committee limits three submissions for each team.
At the end of the competition, ELECTRA result with accuracy
50.2 is picked and put us in the second rank.
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Figure 3: Label distributions on development and test
set using ELECTRA (large).

5 Discussions and Conclusion

Figure 3 describes label distributions on develop-
ment and test sets using our best model, ELECTRA
(large). First, we found that the model tends to pre-
dict class B on the development, with a disparity of
+23 instances with the gold label B. In contrast, the
model only classifies 31 instances as class C, de-
spite being there 50 gold labels C. Lastly, our final
prediction in the test sets has a ratio of 40:109:34 of
class A:B:C, respectively, and the graph in Figure 3
describes a similar shape with the development set
prediction.

In conclusion, we have shown in this experiment
that grading evidence in the medical literature is a
challenging task, and modern pretrained language
models suffer from high-variance issues. Inter-
estingly, we found that ELECTRA, the domain-
general models outperform domain-specific models
through ensemble methods. We argue that this is



because discourse is one of the relevant features for
this task. This is in line with Koto et al. (2021) that
has shown that the last layer of ELECTRA contains
the richest latent discourse representation, com-
pared to BERT, RoBERTa, ALBERT (Lan et al.,
2019), GPT2 (Radford et al., 2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2019).
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