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Abstract

Conversation disentanglement, the task to
identify separate threads in conversations, is
an important pre-processing step in multi-
party conversational NLP applications such
as conversational question answering and con-
versation summarization. Framing it as a
utterance-to-utterance classification problem
— i.e. given an utterance of interest (UOI),
find which past utterance it replies to — we
explore a number of transformer-based mod-
els and found that BERT in combination with
handcrafted features remains a strong baseline.
We then build a multi-task learning model
that jointly learns utterance-to-utterance and
utterance-to-thread classification. Observing
that the ground truth label (past utterance) is
in the top candidates when our model makes
an error, we experiment with using bipartite
graphs as a post-processing step to learn how
to best match a set of UOIs to past utterances.
Experiments on the Ubuntu IRC dataset show
that this approach has the potential to out-
perform the conventional greedy approach of
simply selecting the highest probability candi-
date for each UOI independently, indicating a
promising future research direction.

1 Introduction

In public forums and chatrooms such as Reddit and
Internet Relay Chat (IRC), there are often multiple
conversations happening at the same time. Fig-
ure 1 shows two threads of conversation (blue and
green) running in parallel. Conversation disentan-
glement, a task to identify separate threads among
intertwined messages, is an essential preprocessing
step for analysing entangled conversations in multi-
party conversational applications such as question
answering (Li et al., 2020) and response selection
(Jia et al., 2020). It is also useful in constructing
datasets for dialogue system studies (Lowe et al.,
2015).

[12:05] <ydnar> for what reason would a dvd not play if i have 
libdvdcss2 installed?

[12:05] <Ng> ydnar: what are you using to play it?

[12:06] <holycow> because it couldn't crack the encoding for the 
particual portion of the dvde

[12:06] <ydnar> tried vlc. holycow, do you have any

[12:05] <gourdin> we will we be able to access an edgy repo ?

[12:06] <Anfangs> Edgy Eft is the next codename for Ubuntu dapper+1. 
See https://ubuntu.com/0064.html.

[12:06] <gourdin> I don’t think the link works

Figure 1: Ubuntu IRC chat log sample sorted by time.
Each arrow represents a directed reply-to relation. The
two conversation threads are shown in blue and green.

Previous studies address the conversation disen-
tanglement task with two steps: link prediction and
clustering. In link prediction, a confidence score is
computed to predict a reply-to relation from an ut-
terance of interest (UOI) to a past utterance (Elsner
and Charniak, 2008; Zhu et al., 2020). In cluster-
ing, conversation threads are recovered based on
the predicted confidence scores between utterance
pairs. The most popular clustering method uses a
greedy approach to group UOIs linked with their
best past utterances to create the threads (Kummer-
feld et al., 2019; Zhu et al., 2020).

In link prediction, the model that estimates the
relevance between a pair of utterances plays an
important role. To this end, we explore three
transformer-based pretrained models: BERT (De-
vlin et al., 2019), ALBERT (Lan et al., 2019) and
POLY-ENCODER (Humeau et al., 2019). These
variants are selected by considering performance,
memory consumption and speed. We found that
BERT in combination with handcrafted features re-
mains a strong baseline. Observing that utterances
may be too short to contain sufficient information
for disentanglement, we also build a multi-task
learning model that learns to jointly link a UOI to
a past utterance and a cluster of past utterances (i.e.



the conversation threads).
For clustering, we experiment with bipartite

graph matching algorithms that consider how to
best link a set of UOIs to their top candidates,
thereby producing globally more optimal clusters.
When the graph structure is known, we show that
this approach substantially outperforms conven-
tional greedy clustering method, although chal-
lenges remain on how to infer the graph structure.

To summarise:

• We study different transformer-based models
for conversation disentanglement.

• We explore a multi-task conversation dis-
entanglement framework that jointly learns
utterance-to-utterance and utterance-to-thread
classification.

• We experiment with bipartite graphs for clus-
tering utterances and found a promising future
direction.

2 Related Work

Conversation disentanglement methods can be clas-
sified into two categories: (1) two-step methods
and (2) end-to-end methods.

In two-step methods, the first step is to measure
the relations between utterance pairs, e.g., reply-
to relations (Zhu et al., 2020; Kummerfeld et al.,
2019) or same thread relations (Elsner and Char-
niak, 2008, 2010). Either feature-based models
(Elsner and Charniak, 2008, 2010) or deep learn-
ing models (Kummerfeld et al., 2019; Zhu et al.,
2020) are used. Afterwards a clustering algorithm
is applied to recover separate threads using results
from the first step. Elsner and Charniak (2008,
2010, 2011) use a greedy graph partition algorithm
to assign an utterance u to the thread of u′ which
has the maximum relevance to u among candidates
if the score is larger than a threshold. Kummer-
feld et al. (2019); Zhu et al. (2020) use a greedy
algorithm to recover threads following all reply-to
relations independently identified for each utter-
ance. Jiang et al. (2018) propose a graph connected
component-based algorithm.

End-to-end methods construct threads incremen-
tally by scanning through a chat log and either
append the current utterance to an existing thread
or create a new thread. Tan et al. (2019) use a
hierarchical LSTM model to obtain utterance rep-
resentation and thread representation. Liu et al.

Symbol Meaning

U A chat log with N utterances
T A set of disjoint threads in U
T A thread in T
ui An utterance of interest
u An utterance in a chat log
Ci A candidate (parent) utterance pool for ui

ti The token sequence of ui with ni tokens

Table 1: A summary of symbols/notations.

(2020) build a transition-based model that uses
three LSTMs for utterance encoding, context en-
coding and thread state updating, respectively.

3 Notations and Task Definition

Given a chat log U with N utterances
{u1, u2, · · · , uN} in chronological order, the
goal of conversation disentanglement is to obtain
a set of disjoint threads T = {T 1, T 2, · · · , T m}.
Each thread T l contains a collection of topically-
coherent utterances. Utterance ui contains a list of
ni tokens wi1, w

i
2, · · · , wini

.
The task can be framed as a reply-to relation

identification problem, where we aim to find the
parent utterance for every ui ∈ U (Kummerfeld
et al., 2019; Zhu et al., 2020), i.e., if an utterance
ui replies to a (past) utterance uj , uj is called the
parent utterance of ui. When all reply-to utterance
pairs are identified, T can be recovered unambigu-
ously by following the reply-to relations.

Henceforth we call the target utterance ui an
utterance of interest (UOI). We use ui → uj to rep-
resent the reply-to relation from ui to uj , where uj
is the parent utterance of ui. The reply-to relation
is asymmetric, i.e., ui → uj and uj → ui do not
hold at the same time. We use a candidate pool
Ci to denote the set of candidate utterances from
which the parent utterance is selected from. Table 1
presents a summary of symbols/notations.

4 Dataset

We conduct experiments on the Ubuntu IRC
dataset (Kummerfeld et al., 2019), which contains
questions and answers about the Ubuntu system, as
well as chit-chats from multiple participants. Ta-
ble 2 shows the statistics in train, validation and
test sets. The four columns are the number of chat
logs, the number of annotated utterances, the num-
ber of threads and the average number of parents
for each utterance.



Split Chat Logs Ann. Utt Threads Avg. parent

Train 153 67463 17327 1.03
Valid 10 2500 495 1.04
Test 10 5000 964 1.04

Table 2: Statistics of training, validation and testing
split of the Ubuntu IRC dataset. “Ann. Utt” is the num-
ber of annotated utterances. “Avg. parent” is the aver-
age number of parents of an utterance.

5 Experiments

We start with studying pairwise models that take
as input a pair of utterances and decide whether
a reply-to relation exists (Section 5.1). Then, we
add dialogue history information into consideration
and study a multi-task learning model (Section 5.2)
built upon the pairwise models. In Section 5.3,
we further investigate a globally-optimal approach
based on bipartite graph matching, considering the
top parent candidates of multiple UOIs together to
help resolve conflicts in the utterance matches.

5.1 Pairwise Models

To establish a baseline, we first study the effec-
tiveness of pairwise models that measure the con-
fidence of a reply-to relation between an UOI and
each candidate utterance independently without
considering any past context (e.g., dialogue his-
tory). To find the parent utterance for ui, we com-
pute the relevance score rij between ui and each
uj ∈ Ci:

rij = f(ui, uj ,vij), ∀ uj ∈ Ci (1)

where f(·) is the pairwise model and vij represents
additional information describing the relationship
between ui and uj , such as manually defined fea-
tures like time, user (name) mentions and word
overlaps. We use transformer-based models to auto-
matically capture more complex semantic relation-
ships between utterances pairs, such as question-
answer relation and coreference resolution which
cannot be modeled by features very well.

Following Kummerfeld et al. (2019), we assume
the parent utterance of a UOI to be within kc history
utterances in the chat log, and we solve a kc-way
multi-class classification problem where Ci con-
tains exactly kc utterances [ui−kc+1, · · · , ui−1, ui].
UOI ui is included in Ci for detecting self-links,
i.e., an utterance that starts a new thread. The train-

ing loss is:

Lr = −
N∑
i=1

kc∑
j=1

1[yi = j] log pij (2)

where 1[yi = j] = 1 if ui → uj holds, and 0
otherwise; pij is the normalized probability after
applying softmax over {rij}uj∈Ci .

5.1.1 Models
We study the empirical performance of the follow-
ing pairwise models. See more details of the mod-
els in Appendix 8.
LASTMENTION: A baseline model that links a
UOI ui to the last utterance of the user directly
mentioned by ui. If ui does not contain a user
mention, we link it to the immediately preceding
utterance, i.e., ui−1.
GLOVE+MF: Following Kummerfeld et al.
(2019), this is a feedforward neural network (FFN)
that uses the max and mean Glove (Pennington
et al., 2014) embeddings of a pair of utterances and
some handcrafted features1 including time differ-
ence between two utterances, direct user mention,
word overlaps, etc.
MF: An FFN model that uses only the handcrafted
features in GLOVE+MF. This model is designed to
test the effectiveness of the handcrafted features.2

BERT (Devlin et al., 2019): A pretrained model
based on transformer (Vaswani et al., 2017) fine-
tuned on our task. We follow the standard setup for
sentence pair scoring in BERT by concatenating
UOI ui and a candidate uj delimited by [SEP].
BERT+MF: A BERT-based model that also incor-
porates the handcrafted features in GLOVE+MF.
BERT+TD: A BERT-based model that uses the
time difference between two utterances as the only
manual feature, as preliminary experiments found
that this is the most important feature.
ALBERT (Lan et al., 2019): A parameter-
efficient BERT variant fine-tuned on our task.
POLY-ENCODER (Humeau et al., 2019): A
transformer-based model designed for fast train-
ing and inference by encoding query (UOI) and
candidate separately.3 We use POLY-ENCODER

1See a full feature list in Kummerfeld et al. (2019).
2Note that MF is different from the manual features model

in Kummerfeld et al. (2019) which uses a linear model.
3It is worthwhile to note that POLY-ENCODER showed

strong performance on a related task, next utterance selection,
which aims to choose the correct future utterance, but with two
key differences: (1) their UOI incorporates the dialogue his-
tory which provides more context; (2) they randomly sample



in two settings: POLY-BATCH where the labels of
UOIs in a batch is used as the shared candidate
pool to reduce computation overhead, and POLY-
INLINE where each query has its own candidate
pool similar to the other models.

5.1.2 Results
Evaluation Metrics We measure the model per-
formance in three aspects: (1) the link prediction
metrics measure the precision, recall and F1 scores
of the predicted reply-to relations; (2) the clus-
tering metrics include variation information (VI,
(Meilă, 2007)), one-to-one Overlap (1-1, (Elsner
and Charniak, 2008)) and exact match F1; these
evaluate the quality of the recovered threads;4 and
(3) the ranking metrics Recall@k (k = {1, 5, 10})
assess whether the ground truth parent utterance uj
is among the top-k candidates.5

Dataset construction In training and validation,
we set Ci to contain exactly one parent utterance of
an UOI ui. We observe that 98.5% of the UOIs in
the training data reply to a parent utterance within
the 50 latest utterances and so we set kc = 50 (i.e.,
|Ci| = 50). We discard training samples that do
no contain the parent utterance of an UOI under
this setting (1.5% in the training data). If there
are more than one parent utterances in Ci (2.5% in
training data), we take the latest parent utterance
of ui as the target “label”. We do not impose these
requirements in testing and so do not manipulate
the test data.

Model configuration We clip both UOI ui and
a candidate uj to at most 60 tokens. |vij | (man-
ual feature dimension) = 77 in BERT+MF. In
BERT+TD, |vij | = 6. The dimensionality of
word embeddings in MF is 50. All BERT-based
models use the “bert-base-uncased” pretrained
model. The batch size for POLY-INLINE, BERT,
BERT+TD and BERT+MF is 64.6 The batch
sizes of POLY-BATCH and ALBERT are 96 and
256 respectively. We tune the batch size, the num-
ber of layers, and the hidden size in BERT+MF
and BERT+TD according to recall@1 on the vali-
dation set.

negative examples to create the candidates, while we use kc
past utterances as candidates, which makes the next utterance
selection task arguably an easier task.

4Exact Match F1 is calculated based on the number of
recovered threads that perfectly match the ground truth ones
(ignoring the ground truth threads with only one utterance).

5E.g., if uj is in the top-5 candidates, recall@5 = 1.
6Actual batch size is 4 with a gradient accumulation of 16.

Results and discussions Table 3 shows that
LASTMENTION is worse than all other models,
indicating that direct user mentions are not suffi-
cient for disentanglement. The manual features
model (MF) has very strong results, outperforming
transformer-based models (BERT, ALBERT and
POLY-ENCODER) by a large margin, suggesting
that the manual features are very effective.

The overall best model across all metrics is
BERT+MF. Comparing BERT+MF to BERT,
we see a large improvement when we incorporate
the manual features. Interestingly though, most of
the improvement appears to come from the time
difference feature (BERT+MF vs. BERT+TD).

Looking at BERT and POLY-INLINE, we see
that the attention between words in BERT is help-
ful to capture the semantics between utterance pairs
better, because the only difference between them
is that POLY-INLINE encodes two utterances sep-
arately first and uses additional attention layers to
compute the final relevance score.

The performance gap between POLY-BATCH and
POLY-INLINE shows that the batch mode (Humeau
et al., 2019) strategy has a negative impact on the
prediction accuracy. This is attributed to the dif-
ference in terms of training and testing behaviour,
as at test time we predict links similar to the inline
mode (using past kc utterances as candidates).

The GPU memory consumption and speed of
transformer-based models are shown in Table 4.
POLY-BATCH is the most memory efficient and
fastest model, suggesting that it is a competitive
model in real-world applications where speed and
efficiency is paramount.

5.2 Context Expansion by Thread
Classification

The inherent limitation of the pairwise models is
that they ignore the dialogue history of a candidate
utterance. Intuitively, if the prior utterances from
the same thread of candidate utterance uj is known,
it will provide more context when computing the
relevance scores. However, the threads of candidate
utterances have to be inferred, which could be noisy.
Furthermore, the high GPU memory consumption
of transformer-based models renders using a long
dialogue history impractical.

To address the issues above, we propose a multi-
task learning framework that (1) considers the dia-
logue history in a memory efficient manner and (2)
does not introduce noise at test time.



Link Prediction Ranking Clustering
Model Precision Recall F1 R@1 R@5 R@10 1-1 VI F

Last Mention 37.1 35.7 36.4 - - - 21.4 60.5 4.0
GLOVE+MF 71.5 68.9 70.1 70.2 95.8 98.6 76.1 91.5 34.0
MF 71.1 68.5 69.8 70.2 94.0 97.3 75.0 91.3 31.5
POLY-BATCH 39.3 37.9 38.6 40.8 69.8 80.8 52.3 80.8 9.8
POLY-INLINE 42.2 40.7 41.4 42.8 70.8 81.3 62.0 84.4 13.6
ALBERT 46.1 44.4 45.3 46.8 77.3 88.4 68.6 87.9 22.4
BERT 48.2 46.4 47.3 48.8 75.4 84.7 74.3 89.3 26.3
BERT+TD 67.9 65.4 66.6 66.9 90.6 95.3 76.0 91.1 34.9
BERT+MF 73.9 71.3 72.6 73.9 95.8 98.6 77.0 92.0 40.9

Table 3: Results of pairwise models. Ranking metrics are not applicable to Last Mention. Best scores are bold.

Model GPU Mem (GB) Speed (ins/s)

BERT 18.7 9.4
ALBERT 14.6 9.4

POLY-INLINE 9.9 16.8
POLY-BATCH 5.1 36.4

Table 4: GPU memory consumption and speed of
transformer-based models. GPU Mem (GB) shows the
peak GPU memory consumption in GB during training.
Speed (ins/s) is the number of instances processed per
second during training. All experiments are conducted
on a single NVIDIA V100 GPU (32G) with automatic
mixed precision turned on and a batch size of 4.

Specifically, we maintain a candidate thread pool
with kt threads. A thread that contains multiple
candidates would only be included once. This alle-
viates some of the memory burden, not to mention
that kt is much smaller than |Ci|. For the second is-
sue, we train a shared BERT model that does reply-
to relation identification and thread classification
jointly, and during training we use the ground truth
threads but at test time we only perform reply-to re-
lation identification, avoiding the use of potentially
noisy (predicted) threads.

5.2.1 Model Architecture
The model consists of a shared BERT module and
separate linear layers for reply-to relation identifi-
cation and thread classification. As shown in Fig-
ure 2, given ui, we compute its relevance score srij
to every candidate utterances in utterance candidate
pool Ci and relevance score stil to every thread in
thread candidate pool T ci . We aim to minimize the
following loss function during model training:

L = −
( N∑
i=1

kc∑
j=1

1(yr = j) log srij

+α
N∑
i=1

kt∑
l=1

1(yt = l) log stil

) (3)

where 1(yr = j) is 1 if uj is the parent utterance
of ui, and 0 otherwise. Similarly, 1(yt = l) tests
whether ui belongs to thread T ci . Hyper-parameter
α is used to balance the importance of the two loss
components.

Relevance score computation We compute the
utterance relevance score srij between UOI ui and
each candidate utterance uj ∈ Ci in the same way
as the BERT model shown in Section 5.1 does.

For thread classification, we consider a pool con-
taining kt threads before ui, including a special
thread {ui} for the case where ui starts a new
thread. The score stil between ui and thread Tl
is computed using the shared BERT, following the
format used by Ghosal et al. (2020):[

[CLS], w1
1, · · ·w1

n1
, w2

1, · · ·w2
n2
, wk1 · · ·wknk

,

[SEP], wi1, · · ·wini
[SEP]

]
where wpq is the q-th token of the p-th utterance in
Tl, and wim is the m-th token of ui. We take the
embedding of [CLS] and use another linear layer
to compute the final score.

5.2.2 Results and Discussion
For reply-to relation identification, we use the same
configuration described in Section 5.1.2. For thread
classification, we consider kt = 10 thread candi-
dates. Each thread is represented by (at most) five
latest utterances. The maximum number of tokens
in Tl and ti are 360 and 60, respectively. We train
the model using Adamax optimizer with learning
rate 5× 10−5 and batch size 64. As before we use
“bert-base-uncased” as the pretrained model.

As Table 5 shows, incorporating an additional
thread classification loss (“MULTI (α = k)” mod-
els) improves link prediction substantially com-
pared to BERT, showing that the thread classifica-
tion objective provides complementary information
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Figure 2: The architecture of the multi-task learning framework. On the left side, we use a BERT model with
additional dense layers to calculate the relevance score between a UOI and each candidate utterance for reply-to
relation identification. On the right side, we use the same BERT model but different dense layers on the top to
calculate the relevance scores between the UOI and each candidate thread for thread classification.

Link Prediction Ranking Clustering
Model Precision Recall F1 R@1 R@5 R@10 1-1 VI F

BERT 48.2 46.4 47.3 48.8 75.4 84.7 74.3 89.3 26.3
BERT+MF 73.9 71.3 72.6 73.9 95.8 98.6 77.0 92.0 40.9

MULTI (α = 1) 65.6 63.2 64.4 66.7 91.8 95.6 64.6 87.7 24.3
MULTI (α = 5) 66.9 64.5 65.7 65.4 91.8 95.6 68.7 88.8 27.4
MULTI (α = 10) 65.2 62.9 64.0 64.4 91.4 95.6 70.3 89.5 28.1
MULTI (α = 20) 64.7 62.4 63.5 63.9 91.0 95.0 68.3 88.8 26.7

MULTI+MF (α = 1) 72.8 70.2 71.5 71.9 94.0 96.4 76.3 91.8 36.1
MULTI+MF (α = 5) 73.3 70.7 72.0 72.4 94.0 96.5 72.8 90.8 33.1
MULTI+MF (α = 10) 72.2 69.6 70.8 70.4 93.4 96.4 71.8 90.2 29.9
MULTI+MF (α = 20) 70.8 68.2 69.5 69.4 93.4 97.3 73.2 90.6 28.6

Table 5: Results of multi-task learning model.

to the reply-to relation identification task. Interest-
ingly, when α increases from 5 to 10, both the link
prediction and ranking metrics drop, suggesting
that it is important not to over-emphasize thread
classification, since it is not used at test time.

Adding thread classification when we have man-
ual features (MULTI+MF vs. BERT+MF), how-
ever, does not seem to help, further reinforcing
the effectiveness of these features in the dataset.
That said, in situations/datasets where these man-
ual features are not available, e.g. Movie Dialogue
Dataset (Liu et al., 2020), our multi-task learning
framework could be useful.

5.3 Bipartite Graph Matching for
Conversation Disentanglement

After we have obtained the pairwise utterance rel-
evance scores for every UOI, we need to link the
candidate utterances with the UOIs to recover the
threads. A greedy approach would use all reply-to
relations that have been identified independently
for each UOI to create the threads. As shown in Fig-
ure 3, the reply-to relations for u67 and u59 using
greedy approach are {u67 → u58, u59 → u58}.

With such an approach, we observe that: (1)
some candidates receive more responses than they
should (based on ground truth labels); and (2) many
UOIs choose the same candidate. Given the fact
that over 95% of the UOIs’ parents are within
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Future Directions

U67 [20:32] <Bashing-om> groob: There can be only one boot control 
authority per hard drive . What I do is disable 30_os-prober in the 
seconday system,' sudo update-grub' amd in the primary also 'sudo apt-
update-grub' to propogate the changes to the system(s) .

U60 [20:30] <groob> corba: Oh, cool. Good to know! Thanks! 

U59 [20:29] <corba> groob, you could change that with grub-customizer 
easily 

U58 [20:29] <groob> corba: Err, I mean the order of the operating 
systems. OS1 appears first currently, but if OS2 ran update-grub, it would 
cause OS2 to be listed first. 

U54 [20:28] <groob> corba: Thanks for the help! I'll try using a dedicated 
boot partition instead. The biggest downside that I can think of is that the 
partition order in the menu will change depending on which OS ran 
update-grub last. If that could be solved, then it would be perfect. 

4.2

4.0 15.9

11.6

3.6

...

U51 [20:24] <groob> corba: I tried virtualization but the performance just 
isn't that great on my hardware sadly.

...

...

10.2

Figure 3: An example showing the difference between
the greedy approach and the global decoding. Consider
identifying the parent utterances of u59 and u67. Each
utterance contains ID (e.g., u51), timestamp, user name
and content. Both u59 and u67 have three candidates.
The pairwise scores are labelled to the links, indicating
the confidence of potential reply-to relations. The red
link denotes the identified reply-to relation for u67 us-
ing the greedy approach, and the green link is the result
of a global decoding algorithm.

the top-5 candidates in BERT+MF (R@5 in Ta-
ble 3), we explore whether it is possible to get better
matches if we constrain the maximum number of
reply links each candidate receives and perform the
linking of UOIs to their parent utterances together.
In situations where a UOI ui’s top-1 candidate utter-
ance uj has a relevant score that is just marginally
higher than other candidates but uj is a strong can-
didate utterance for other UOIs, we may want to
link uj with the other UOIs instead of ui. Using
Figure 3 as example, if u58 can only receive one
response, then u67 should link to the second best
candidate u54 as its parent instead of u58.

Based on this intuition, we explore using bipar-
tite algorithms that treat the identification of all
reply-to relations within a chat log as a maximum-
weight matching (Gerards, 1995) problem on a
bipartite graph. Note that this step is a post-
processing step that can be applied to technically
any pairwise utterance scoring models.

5.3.1 Graph Construction
Given a chat log U , we build a bipartite graph G =
〈V,E,W 〉 where V is the set of nodes, E is the set
of edges, and W is the set of edge weights. Set V
consists of two subsets Vl and Vr representing two
disjoint subsets of nodes of a bipartite. Subset Vl =
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Figure 4: The left figure is an example bipartite graph
built from a chat log with 5 UOIs. Each UOI ui
has kc = 3 candidates {ui−2, ui−1, ui}, except the
first kc − 1 UOIs (u1 and u2). Utterances u1 and
u3 are duplicated twice because they receive 2 replies.
The corresponding disentangled chat log is shown on
the right figure with the following reply-to relations:
{u1 → u1, u2 → u1, u3 → u2, u4 → u3, u5 → u3}.

{vli}Ni=1 represents the set of UOIs, i.e., each node
vli corresponds to a UOI ui. Subset Vr represents
the set of candidate utterances. Note that some
UOIs may be candidate utterances of other UOIs.
Such an utterance will have both a node in Vl and
a node in Vr.

Some utterances may receive more than one re-
ply, i.e., multiple nodes in Vl may link to the same
node in Vr. This violates the standard assumption
of a bipartite matching problem, where every node
in Vr will only be matched with at most one node
in Vl. To address this issue, we duplicate nodes
in Vr. Let δ(uj) denotes the number of replies uj
receives, then uj is represented by δ(uj) nodes in
Vr. Now Vr =

⋃N
j=1 S(uj), where S(uj) is a set

of duplicated nodes {vrj,1, vrj,2, · · · vrj,δ(uj)} for uj .
Sets E and W are constructed based on the pair-

wise relevance scores obtained from the link predic-
tion phase. Specifically, E =

⋃N
i=1R(ui) where

R(ui) is the set of edges between ui and all its kc
candidates:

⋃kc
m=1{〈vli, vm〉}vm∈S(um). For each

UOI-candidate pair (ui, uj), if δ(uj) > 0, a set of
edges {〈vli, vrj,k〉}

δ(uj)
k=1 are constructed, each with

weight w(i, j), which is the relevance score be-
tween ui and uj . An example bipartite graph is
shown on the left side of Figure 4.

5.3.2 Integer Programming Formulation

Given the bipartite formulation above, we solve
the conversation disentanglement problem as
a maximum-weight bipartite matching problem,
which is formulated as the following constrained



optimization problem:

max
∑

〈vi,vj〉∈E

x(i, j) · w(i, j)

s.t. ∑
vl∈neighbors(vi)

x(i, l) = 1, ∀vi ∈ Vl∑
vp∈neighbors(vj)

x(p, j) ≤ 1, ∀vj ∈ Vr

x(i, j) ∈ {0, 1}
(4)

Here, neighbors(vx) is the set of adjacent nodes
of vx (i.e., nodes directly connected to vx) inG. For
each edge in G, we have a variable x(i, j), which
takes value 1 if we include the edge 〈vi, vj〉 in the
final matched bipartite, and 0 otherwise. Intuitively,
we are choosing a subsect of E to maximize the
total weight of the chosen edges, given the con-
straints that (1) each node in set Vl is connected to
exactly one edge (each UOI has exactly one par-
ent); and (2) each node in Vr is connected to at
most one edge.

5.3.3 Node Frequency Estimation in Vr
Since the number of replies received by an utter-
ance uj , i.e., δ(uj), is unknown at test time, we
estimate δ(uj) for each candidate utterance uj . We
experiment with two different estimation strategies:
heuristics method and regression model.

In the heuristics method, we estimate δ(uj)
based on the total relevance scores accumulated
by uj from all UOIs, using the following equation:

rij
′ =

exp(rij)∑
uk∈Ci

exp(rik)

Sj =
∑
i

rij
′

δ̂(uj) = RND(αSj + β)

where δ̂(uj) is the estimation, RND is the round(·)
function, and α and β are scaling parameters.

In the regression model, we train an FFN to pre-
dict δ(uj) using mean squared error as the training
loss. The features are normalized scores of uj from
all UOIs, as well as the sum of those scores. We
also include textual features using BERT (based on
the [CLS] vector), denoted as BERT+FFN. We use
the same RND function to obtain an integer from
the prediction of the regression models.

Precision Recall F1

Oracle 88.4 85.2 86.8
Rule-Based 73.7 70.9 72.3
FFN 73.8 71.0 72.3
BERT+FFN 72.9 70.3 71.5

Table 6: Link prediction results using bipartite match-
ing. Oracle is a model that uses ground truth node fre-
quencies for Vr.

5.3.4 Experiments and Discussion

We obtain the performance upper bound by solv-
ing the maximum weight bipartite matching prob-
lem using the ground truth node frequencies for all
nodes in Vr. This approach is denoted as “Oracle”
in Table 6. We found that when node frequencies
are known, bipartite matching significantly outper-
forms the best greedy methods (F1 score 86.8 vs.
72.6 of BERT+MF in Table 3).

When using estimated node frequencies, the
heuristics method and FFN achieve very similar re-
sults, and BERT+FFN is worse than both. Unfortu-
nately, these results are all far from Oracle, and they
are ultimately marginally worse than BERT+MF
(72.6; Table 3). Overall, our results suggest that
there is much potential of using bipartite matching
for creating the threads, but that there is still work
to be done to design a more effective method for
estimating the node frequencies.

6 Conclusion

In this paper, we frame conversation disentangle-
ment as a task to identify the past utterance(s) that
each utterance of interest (UOI) replies to, and con-
duct various experiments to explore the task. We
first experiment with transformer-based models,
and found that BERT combined with manual fea-
tures is still a strong baseline. Next we propose a
multi-task learning model to incorporate dialogue
history into BERT, and show that the method is
effective especially when manual features are not
available. Based on the observation that most ut-
terances’ parents are in the top-ranked candidates
when there are errors, we experiment with bipar-
tite graph matching that matches a set of UOIs and
candidates together to produce globally more op-
timal clusters. The algorithm has the potential to
outperform standard greedy approach, indicating a
promising future research direction.
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8 Appendix

8.1 Models
BERT : The pairwise score is computed as fol-
lows:

[e1, e2, · · · , em] = BERT(concat(ti, tj))
e = agg([e1, e2, · · · , em])
rij = We+ b

(5)
Here, concat(ti, tj) means to concatenate
the two sub-word sequences ti and tj corre-
sponding to ui and uj into a single sequence[
[CLS], wi1, · · · , wini

, [SEP], wj1, · · · , w
j
nj , [SEP]

]
,

where [CLS] is a special beginning token and
[SEP] is a separation token. Denote the number of
tokens in this sequence bym. Then, ek ∈ RdBERT

is the encoded embedding of the k-th (k ≤ m)
token in tij . Following (Devlin et al., 2019),
we use the encoded embedding of [CLS] as the
aggregated representation of ui and uj . Another
linear layer is applied to obtain score rij ∈ R

using learnable parameters W ∈ R1×dBERT and
b ∈ R.

8.2 BERT+MF
We obtain the encoded embedding of [CLS] in the
same way as BERT, denoted as e. Then, we com-
pute the pairwise relevance score rij as follows:

h = We e+ be (6)

z = [h;vij ] (7)

o = softsign(Wzz + bz) (8)

x = softsign(Woo+ bo) (9)

rij = sum(x) (10)

where We ∈ Rdmid×dBERT and be ∈ Rdmid are
parameters of a linear layer to reduce the dimen-
sionality of the BERT output; [h;vij ] is the con-
catenation of h and the pairwise vector of hand-
crafted features vij ∈ R

df ; Wz ∈ R
do×dz ,

bz ∈ R
do , Wo ∈ R

dx×do and bo ∈ R
dx are

parameters of two dense layers with the softsign
activation function; sum(x) represents the sum of
values in vector x.

In BERT+TD. The time difference feature be-
tween ui and uj is a 6-d vector:

[n′, x1, x2, x3, x4, x5]

where n′ = (i − j)/100 representing the rela-
tive distance between two utterances in the can-
didate pool; x1, · · · , x5 are binary values in-
dicating whether the time difference in min-
utes between ui and uj lies in the ranges of
[−1, 0), [0, 1), [1, 5), [5, 60) and (60,∞) respec-
tively.

8.3 Pairwise Models Settings

Model architecture and training We choose
the best hyper-parameters according to the ranking
performance Recall@1 on validation set. All mod-
els are evaluated every 0.2 epoch. We stop training
if Recall@1 on validation set does not improve in
three evaluations consecutively.

The final settings are as follows. In MF, we
use a 2-layer FFN with softsign activation func-
tion. Both layers contain 512 hidden units. We
train it using Adam optimizer with learning rate
0.001. For all transformer-based models (BERT,
BERT+MF, ALBERT and POLY-ENCODER), we
use Adamax optimizer with learning rate 5× 10−5,
updating all parameters in training. We use auto-
matic mixed precision to reduce GPU memory con-
sumption provided by Pytorch7. All experiments
are implemented in Parlai8.

8.4 BGMCD Set Up

Setup Both node frequency estimation and graph
construction are based on the relevance scores
from BERT+MF. In the rule-based method, we
choose α in {0.9, 1, 1, 1.3, 1.5, 1.7, 1.9} and β in
{0.1, 0.2, 0.3, 0.4, 0.5}. The optimal values α =
1.3 and β = 0.2 yield the best link prediction F1
on the validation set. The regression mode is a
2-layer fully connected neural network. Both lay-
ers contain 128 hidden units, with the ReLU ac-
tivation function. We choose hidden layer size
from {64, 128, 256} and the number of layers from
{2, 3}. We train the model using Adam optimizer
with batch size 64. Hyper-parameters are chosen
to minimize mean squared error on the validation
set. The integer programming problem is solved
using pywraplp9. We observe that sometimes the
integer programming problem is infeasible due to
underestimation of the frequencies of some nodes.
We relax Equation 4 in experiments as follows to

7https://pytorch.org/
8https://parl.ai/
9https://google.github.io/or-tools/

python/ortools/linear_solver/pywraplp.
html

https://google.github.io/or-tools/python/ortools/linear_solver/pywraplp.html
https://google.github.io/or-tools/python/ortools/linear_solver/pywraplp.html
https://google.github.io/or-tools/python/ortools/linear_solver/pywraplp.html


avoid infeasibility:

max
∑

〈vi,vj〉∈E

x(i, j) · w(i, j)

s.t. ∑
vl∈neighbors(vi)

x(i, l) ≤ 1, ∀vi ∈ Vl∑
vp∈neighbors(vj)

x(p, j) ≤ 1, ∀vj ∈ Vr

x(i, j) ∈ {0, 1}
(11)


