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Abstract

Despite the recent advancements of attention-
based deep learning architectures across a ma-
jority of Natural Language Processing tasks,
their application remains limited in a low-
resource setting because of a lack of pre-
trained models for such languages. In this
study, we make the first attempt to investigate
the challenges of adapting these techniques to
an extremely low-resource language – Sume-
rian cuneiform – one of the world’s oldest writ-
ten language attested from at least the begin-
ning of the 3rd millennium BC. Specifically,
we introduce the first cross-lingual informa-
tion extraction pipeline for Sumerian, which
includes part-of-speech tagging, named entity
recognition, and machine translation. We in-
troduce InterpretLR, an interpretability toolkit
for low-resource NLP and use it alongside hu-
man evaluations to gauge the trained models.
Notably, all our techniques and most compo-
nents of our pipeline can be generalised to any
low-resource language. We publicly release
all our implementations including a novel data
set with domain-specific pre-processing to pro-
mote further research in this domain.

1 Introduction

Sumerian is one of the oldest written languages,
attested in the cuneiform texts from around 2900
BC and possibly the language of even older proto-
cuneiform texts from the second half of the 4th
millennium BC (Englund, 2009). Specialists in As-
syriology have recently worked to digitize Sume-
rian scripts, annotate, and translate a part of them
to modern-day languages like English and German.

In this work, we attempt to create the first in-
formation extraction and translation pipeline for

Data sets and training subroutines are available at
linktr.ee/rachitbansal

†Work was done prior to joining Amazon at Goethe Uni-
versity Frankfurt

1. a-na-ah-i3-li2
Anah-ili;

2. szu ba-an-ti
did receive.

3. iti ezem-an-na
Month: An-festival,

4. mu na-ru2-a-mah 
mu-ne-du3
Year: He erected the great stele 
for them.

1. 1(disz) kusz udu niga
1 hide, grain-fed sheep;

2. 1(disz) kusz masz2 niga
1 hide, grain-fed goat;

3. kusz udu sa2-du11
sheep hides, regular offerings,

4. ki {d}iszkur-illat-ta
from Adda-illat,

obverse.

reverse.

Figure 1: Tablets inscribed with Sumerian cuneiform
script, their corresponding digitized transliterations,
and human-translated English text for each line.

Sumerian. Specifically, we focus on machine trans-
lation from Sumerian to English, and sequence
labeling tasks of Named Entity Recognition (NER)
and Part of Speech (POS) Tagging.

Figure 1 shows a sample of our raw data where
the Sumerian text has been derived from the tablet-
inscribed cuneiform script along with its human-
interpreted English translations. Creating an an-
notated corpus for such a language is a tedious
task. We obtain our data from openly available
sources and corpora, painstakingly annotated and
translated by human experts. Yet, for languages
like Sumerian, which are not fully-understood by
humans themselves, transferring knowledge and
patterns to learning algorithms from this limited
data becomes extremely difficult. The consequent
challenge posed for NER and POS tagging is evi-
dent. Lack of annotated data and fuzzy character-
level text makes it hard for a model to generalise,
irrespective of its size.
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In case of machine translation, the labeled data is
composed of incomplete and short phrase-like sen-
tences, especially on the target side. This makes the
context largely ambiguous. Moreover, we find that
for a majority of medieval and ancient languages
the target-side translated text is highly incoherent
with modern-day English language text, making it
impossible to use the latter in semi-supervised and
unsupervised settings.

Throughout this study, we elaborate on such
challenges faced when working with low-resource
languages, and talk about what makes some of
these languages like Sumerian ‘extremely’ low-
resource. Through extensive experimentation, eval-
uation, and analysis we further introduce specific
algorithms and modifications to work around them.

In all, our contribution is three-fold:
1. Building and analyzing a variety of algorithms

on the unexplored human-annotated Sumerian
dataset for sequence labeling tasks of POS
Tagging and NER. (§3)

2. Introducing the problem of
Target-side Incoherence for low-resource
settings and its effect on semi-supervised
and unsupervised machine translation (§4.2).
Further investigating specific modifications
and methodologies to cope-up with these
constraints. (§4)

3. Introducing InterpretLR, a generalisable
toolkit to interpret low-resource NLP. We ap-
ply it to further study, compare, and evaluate
all of our proposed techniques for machine
translation and sequence labeling. (§7)

Throughout this work, we have conducted human
studies and evaluation for our models, in addition
to automated metrics. For gauging our models with
InterpretLR, we have made use of human annota-
tions.

2 Background

2.1 Data

Sumerian is an ancient language from Iraq that
was written using the cuneiform script. While
Basque and Turkish display some similarities (split-
ergativity, agglutinativity), it is a language isolate
(Englund, 2009). We have found artifacts dating
to around 2900 BC with Sumerian texts inscribed
until the first century AD. Most of the Sumerian
texts found to this day are administrative in nature
as, during the third dynasty of the Ur III Period,
the state administration swell to an unprecedented

level of activity which was not seen again later in
the history of Mesopotamian culture. All through
this study, our evaluation sets are composed of Ur
III Admin text only and it acts as our in-domain
data.

Part of the datasets we used were assem-
bled from the Cuneiform Digital Library Ini-
tiative (CDLI)1, Machine Translation and Auto-
mated Analysis of Cuneiform languages (MTAAC)
project (Pagé-Perron et al., 2017)2 and The Elec-
tronic Text Corpus of Sumerian Literature (ETCSL)
dataset3. CDLI and MTAAC datasets contain the
Ur III Administrative (Admin) texts4 which are
preserved by the CDLI5. The MTAAC and ETCSL
corpora were both manually annotated for morphol-
ogy by cuneiform linguistics.
We divided the data between training and testing
sets, and then to reduce the data sparsity, we per-
formed text augmentation using a set of labeled
named entities for these sets separately. This in-
creased our combined number of phrases from
25,000 to 48,000, representing our final dataset
for sequence labeling. Figures 2 and 3 provide
the distribution of word tokens in our final pre-
annotated dataset. The corpus consists of phrases
with lengths ranging from 1 to 19 words. These
phrases are small since they are translated line by
line from the scripts. Around 2,500 phrases were
used for testing, while the 45,500 were employed
for training purposes.
For machine translation, the final dataset summa-
rizes as (i) 10,520 parallel phrases from the Ur III
administrative corpus; (ii) 88,460 parallel phrases,
all genres combined; and (iii) all monolingual
Sumerian data (1.43 million phrases). In all cases,
phrases are short, generally ranging from 1 to 5-
word tokens.

2.2 Related Work
Past work aimed at machine translation of
Sumerian-English (Pagé-Perron et al., 2017; Punia
et al., 2020a) have used the minimal bitext upon a
variety of general statistical and neural supervised
techniques. However, they do not handle the text-
level peculiarities any differently than one would

1https://cdli.ucla.edu
2https://cdli-gh.github.io/mtaac/
3http://http://etcsl.orinst.ox.ac.uk/
4The Third Dynasty of Ur is a cultural and temporal period

ranging in ∼2112− 2004 BC, in Mesopotamia
5https://github.com/cdli-gh/data,

https://github.com/cdli-gh/mtaac_gold_
corpus/tree/workflow/morph/to_dict
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do for a high-resource language, thus, often failing
to capture context, resulting in poor and inconsis-
tent translations. Techniques, learning algorithms,
and architectures that optimally use the vast mono-
lingual data and parallel sentences while keeping
in mind the several linguistic limitations are mo-
tivated in such a scenario. Thus, we experiment
on semi-supervised and unsupervised techniques
across the three categories of data augmentation
(Sennrich et al., 2016; He et al., 2016), knowledge
transfer (Zoph et al., 2016), and pre-training (Con-
neau and Lample, 2019; Song et al., 2019).

In the past, Pagé-Perron et al. (2017) applied
statistical models for morphological analysis and
information extraction for Sumerian. Although,
due to the unavailability of annotated data, these
models could not generalise well. Liu et al. (2015)
and Luo et al. (2015) used an unsupervised ap-
proach for NER with the help of domain experts
and used contextual and spelling rules to build the
model. They also post-processed their outputs au-
tomatically, which enhanced their results. In this
work, we thoroughly investigate a wide range of
algorithms for these sequence labeling tasks and
consequently take a first step towards effective in-
formation extraction for Sumerian.

Figure 2: Composition of the POS tagging dataset.
Here, “NE” stands for named entities, “O” stands for
unstructured words. Other tags are in accordance with
ORACC.

3 Part of Speech Tagging and Named
Entity Recognition

In this section, we talk about the various algorithms
that we investigated to carry out the sequence
labeling tasks of POS tagging and NER for
Sumerian. The subsequent experimental results are
described and discussed in Section 6.

Figure 3: Composition of our NER dataset. Tags are in
accordance with ORACC.

Conditional Random Fields CRF (Lafferty
et al., 2001) is a discriminative probabilistic
classifier, which optimises the weights or pa-
rameters in order to maximize the conditional
probability distribution P (y | x). They take set
of input features (language or domain specific)
into account, using the learned weights associated
with these features and previous labels to predict
the current label. Since CRFs use feature sets
(rules) which are language-specific, it makes the
model more robust specially for very low-resource
languages. In our case we developed domain
specific rules with the help of previous studies (Liu
et al., 2015; Luo et al., 2015) and language experts.
A set of these rules are mentioned in the Appendix.

Bi-directional LSTM We also experiment
across Recurrent Neural Networks (RNNs) to
deal with the sequential text input. We employ
Bi-LSTM (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) in particular. As
in Huang et al. (2015), an additional CRF layer
is used for efficient usage of sentence level tag
information and past input features by LSTM cells.

FLAIR Akbik et al. (2018) introduced a
Contextual String Embedding for Sequence
Labeling, FLAIR, which has shown great promise
for NER across various languages (Akbik et al.,
2019b). We make use of the two distinct properties
of its embeddings: (i) training without any explicit
notion of words and fundamentally modeling the
words as a sequence of characters, and (ii) deriving
and using the context from surrounding tokens.
We train the bi-directional character language
model using the Sumerian monolingual phrases
and retrieve the contextual embedding for each
word which we then pass into the vanilla Bi-LSTM
CRF model.
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RoBERTa We also investigate the transformer-
based language model, RoBERTa (Liu et al., 2019).
The encoder is first pre-trained on our Sumerian
monolingual data, and then fine-tuned on our
downstream sequence labeling tasks using the
labeled data.

4 Machine Translation

In this section, we present our experiments for
machine translation, primarily focusing on spe-
cific data and algorithmic modeling techniques
which may be generalised for any extremely low-
resource language that may or may not suffer from
Target-side Incoherence, a phenomenon which we
also introduce herein. All results are summarised
in Table 1.

4.1 Supervised NMT

In order to create a benchmark for the semi-
supervised and unsupervised approaches, we per-
form supervised machine translation using the lim-
ited bitext available (∼10,000 phrases). We per-
form experiments on a variety of data configura-
tions which are given by:

1. UrIIISeg: Follows the format as present
in the original texts provided by Assyriol-
ogists and used in the past attempts for
Sumerian-English machine translation (Pagé-
Perron et al., 2017; Punia et al., 2020b). It
contains only in-domain Ur III Admin text
with line-by-line translated segments, each of
1-5 words. Amounts to total 10528 segments.

2. UrIIIComp: Also contains the in-domain
data only, but multiple segments are concate-
nated together to form complete sentences.
The ‘completeness’ of a sentence is ensured
through punctuation marks. Since multiple
segments are combined, it amounts to only
4792 sentences.

3. AllSeg: Contains all of out-of-domain
Sumerian text segments in addition to in-
domain Ur III Admin text alone. The addi-
tional text varies across a wide range of genres
such as literary, lexical, ritual, and legal, re-
sulting into a corpus size of 88466 segments.

4. AllComp: Combines the additional features
of 2. and 3., thus comprising of a total of
32694 complete text sentences from all out-
of-domain as well as in-domain genres.

We make use of the vanilla transformer encoder
and decoder architecture (Vaswani et al., 2017) for

all our supervised machine translation experiments
over these three different bitext configurations.
Noting the supervised MT results from Table 1, the
AllComp text configuration is used for all further
experiments. The computational configurations are
mentioned in Section 5.

4.2 Semi-Supervised and Unsupervised NMT

We observed that one of the primary reasons for
the lack of success of semi-supervised and unsu-
pervised algorithms for low-resource settings, spe-
cially for ancient languages, is the lack of coher-
ence between monolingual texts for the target-side
language in the modern-day corpora and the target-
side text in the available bitext. We refer to this as
the Target-side Incoherence (TSIC) problem for
such languages.
Specifically, as can be seen from Figure 1, the
transliterated English text in our parallel corpora is
vastly different from general modern-day English
texts. In Sumerian, this is because the text has been
human-translated to English on the level of words
and small segments due to insufficient knowledge
of the language. This results into a contextually dis-
torted English language text, as compared what we
see in general corpora. This leads to multiple pit-
falls. Most significantly, the colossal monolingual
data available for a data-rich target-side language
(i.e., English in this case) can no longer be used.
This Target-side Incoherence holds true for most
ancient language texts like Sumerian, which makes
them ‘extremely’ low-resource.

In this section, we elaborate on the problems
caused due to TSIC and further present findings
on adapting various semi-supervised and unsuper-
vised NMT techniques to deal with them.

Forward Translation Back-translation (BT)
(Sennrich et al., 2016) has been widely used and
analysed for NMT across a large set of language
pairs. BT uses a reverse model, Sumerian ←
English trained on the existing parallel corpora,
when the task is to translate from Sumerian→ En-
glish, and applies it on the target-side monolingual
corpus. The synthetic samples thus generated are
added to the source-side corpus and a new reverse
model is trained on the augmented dataset. It has
been shown to outperform its forward counterpart,
Forward Translation (FT) (Zhang and Zong, 2016;
Burlot and Yvon, 2018), which instead uses a
forward (Sumerian→ English) model to augment
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the target-side of the bitext.
However, due to TSIC, the target-side monolingual
data falls into a completely different distribution
than what a Sumerian← English model is trained
on. Using back-translation in such a scenario
results into a poor source-side augmentation, doing
more harm than good. Keeping this in mind, we
rely on forward-translation (FT), thus using the
Sumerian monolingual text.

We divide the Sumerian monolingual data into
8 shards, each containing ∼100,000 monolingual
AllComp sentences each. The FT process takes
place for each shard and the Transformer model is
trained after each shard is forward-translated.

Large scale studies (Edunov et al., 2018; Wu
et al., 2019) have shown the heavy dependency
of BT and FT on aspects like sampling methods
and the amount of parallel data. The performance
with non-MAP (where, MAP stands for maximum
a posteriori) estimation methods like nuclear
sampling (Holtzman et al., 2018) and beam search
with noise improves almost-linearly with the
amount of bitext, and thus, for low-resource
settings (∼80,000 sentence pairs), MAP methods
have been shown to give better results. This was
also observed in our experiments and the reported
results are obtained using beam search (§5).

Cross-Lingual Language Model Pre-training
We further make use of XLM (Conneau and
Lample, 2019) to carry out a wide range of experi-
ments for both unsupervised and semi-supervised
fine-tuning techniques. Considering the lack of
original target-side monolingual text due to TSIC,
the following target data configurations were used
for pre-training the XLM:

1. WMT: This configuration ignores TSIC and
composes the entire text with the WMT ’18
English corpora. This amounts to a large set of
20M sentences, which are however incoherent
with our parallel training + evaluation set.

2. Orig: Composed of all the English side
texts in UrIIISeg, UrIIIComp, AllSeg
and AllComp bitext configurations com-
bined. Contains only ∼60,000 sentences.

3. Mixed: This combines all of Orig with a
set of WMT, such that the net size of the corpus
equalizes the Sumerian monolingual corpus,
i.e., 1.5M sentences.

In the pre-training phase, we perform various
experiments over different combinations of MLM

and TLM objectives. The XLM is, then, fine-tuned
on a denoising auto-encoding objective for unsu-
pervised while cross-reference machine translation
objective over the parallel data for semi-supervised
training. BT steps are also performed in both cases.

Data Augmentation In order to further re-
duce the effect of TSIC on the model performance
and to allow the model to attend to a larger
and more diverse volume of target text during
pre-training, we make use of the following data
augmentation techniques:

1. BERT: Replacing words by the spatially clos-
est words measured using cosine similarity
over BERT (Devlin et al., 2019) embeddings.
A threshold of 0.8 is used.

2. WordNet: Replacing words with WordNet
(Miller et al., 1990) synonyms.

3. CharSwap: Introduces certain character-
level perturbations in the text by substituting,
deleting, inserting, or swapping adjacent char-
acter tokens.

Different combinations of these techniques have
been used to augment the Orig type target mono-
lingual data. The resultant target-side corpora sizes
are summarised in Figure 4.

Figure 4: Effective size of the target monolingual cor-
pora with different combinations of augmentation.

5 Experimental Setup

All our experiments have been implemented in Py-
Torch, except for the Bi-LSTM and CRF which
were done in Tensorflow. In addition to this, we
used FairSeq (Ott et al., 2019), FLAIR (Akbik et al.,
2019a), HuggingFace Transformers (Wolf et al.,
2019), and Open-NMT (Klein et al., 2017) frame-
works in Python. Nvidia Apex was used for mem-
ory optimisation using fp-16 training. Experiments
related to Bi-LSTM, CRF, vanilla transformers,
and FT were performed on a single 8GB Nvidia



49

Technique S US SS HE
Vanilla Transformer

UrIIISeg 36.32 2.202
UrIIIComp 33.45 2.242
AllSeg 37.01 2.360
AllComp 42.23 2.431
+3×FT? 41.98 2.358
+5×FT 44.14 2.504
+7×FT 42.95 2.367

XLM
MLM, Orig 4.49 15.04

MLM + TLM, WMT 0.94 –
Mixed 13.08 21.23 1.104, –
Orig 12.73 24.64 1.294, –

XLM + Data Augmentation
BERT 13.06 29.50 1.320, 1.704

WordNet 13.08 28.57 1.269, 1.690
CharSwap 12.92 29.04

BERT+WordNet 13.34 26.57 1.460, 1.666
BERT+CharSwap

+WordNet
13.23 30.10 – , 1.757

Table 1: Sumerian-English Machine Translation. Here, S: Supervised,
US: Unsupervised, SS: Semi-Supervised and HE: Human Evaluation.
Each of the available values for the first three columns (BLEU) is com-
pared with a value under HE (out of 3). ?Number of shards used for FT.

F1-Score
HMM 0.815

Rules +
CRF 0.991

Bi-LSTM +
CRF

0.763

FLAIR 0.499
RoBERTa 0.949

Table 2: POS Tagging for Sumerian.
CRF with rules outperform large mod-
els like FLAIR and RoBERTa.

F1-Score
HMM 0.656

Rules +
CRF

0.913

Bi-LSTM +
CRF

0.775

FLAIR 0.187
RoBERTa 0.953

Table 3: NER for Sumerian.
RoBERTa performs best among
others. Due to high character-level
noise, FLAIR fails to generalise well.

GeForce RTX 2070 GPU, while the pre-training
and fine-tuning of FLAIR, RoBERTa, and XLM on
various data configurations were performed on 2
16 GB Nvidia V100 GPUs. We used development
sets to tune the hyper-parameters for all our models,
especially those for POS and NER. For RoBERTa
and vanilla transformer,N = 6 encoder layers with
h = 16 attention heads were used, while N = 4
and h = 12 was used for XLM. A beam-size of 5
was used for our FT experiments. Adam (Kingma
and Ba, 2015) optimiser with a learning rate of
0.001, β1 = 0.90, β2 = 0.98 and a decay factor of
0.5 was used. Additional regularisation was done
via Dropout and Attention Dropout (wherever ap-
plicable) layers with pdrop = 0.1. We used a batch
size of 32 or 64 and an early stopping criteria based
on the validation loss.

6 Results and Analysis

Sequence Labeling Tables 2 and 3 represent the
metric scores of our different models for POS and
NER tasks, respectively. CRF with domain-specific

rules gives the best F1-score for the POS tagging
task, even better than the complex RoBERTa and
FLAIR language models which are the current
state-of-the-art techniques for most languages. The
prevalence of distorted words and short phrases
in the corpora makes context learning difficult, al-
though the domain-specific rules help learn short-
term dependencies by learning feature weights.

RoBERTa performs well for both of the tasks,
while being the best among others for NER
(95.37 F1 score). To make the most out of
the limited vocabulary and noisy text, we used
Byte-Level BPE (Radford et al., 2019) to train
the language model and further fine-tuned it on
our POS and NER dataset with a batch size of
128. We also tried FLAIR language model across
various word embeddings (character, Word2vec,
FastText, GloVe) along with an additional CRF
layer for both of the tasks. Although a high
precision is observed using this approach, the
F1 scores is seen to be significantly low due to
low recall. In addition to the F1 metric we also
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conducted human evaluation by language expert
for the best performing models, out of randomly
selected 76 (496 words) phrases, only 8 and 6
words were misclassified by NER and POS mod-
els, giving an error of 1.20 and 1.61%, respectively.

Machine Translation Table 1 summarises
our results for all supervised, semi-supervised,
and unsupervised techniques. Forward translation
on vanilla transformer outperforms all other
techniques by at least 2 BLEU. The variation of
its performance with more monolingual source
text is shown. The superior performance of
AllComp over the other configurations in vanilla
transformer signifies the value of both context
and out-of-domain data together. Even though the
XLM-based models show lower performance, it
could be attributed to the lesser number of encoder
layers and attention heads used for them. What
is interesting to note, though, is the variation of
its performance across various training strategies.
We experiment across MLM and TLM (+ MLM)
initialization for XLM, where the latter comfort-
ably outperforms the former. We do not test with
random initialization and CLM, following up
from the conclusions made for NMT in Conneau
and Lample (2019). Pre-training the XLM on
augmented target-side text works surprisingly
well. We note that using pre-training on BERT
and WordNet augmentations results in better
Unsupervised performance while introducing
CharSwap improves the semi-supervised models.
The human evaluation presented in the table was
made by three Assyriologists, who rated 100
output examples for each model, on a scale of 3.
A pairwise inter-annotator agreement of 0.673
(Cohen’s Kappa) was observed.6

7 Interpretability Analysis

Oftentimes in case of Deep Learning Architectures,
metric scores like Accuracy, F1 and BLEU are un-
able to portray the true behavior of the models. For
languages like Sumerian, the human-understanding
itself is scarce. Visualizing the representations and
correlations made by the model could provide in-
sights into which elements of the context can give
additional information to support semantic analysis
of the terms. Thus, we herein introduce a gen-
eralisable interpretability toolkit, InterpretLR, to
interpret algorithms for Low-Resource NLP and

6Elaborate evaluation criteria mentioned in the Appendix.

further apply it for the aforementioned tasks and
models.

InterpretLR is primarily aimed at fabricating at-
tribution saliency maps, i.e., tracing back the model
output so as to assign an importance score to each
input token, based on its ‘influence’ on that out-
put. We do this using two kinds of interpretability
techniques– gradient-based (Sundararajan et al.,
2017; Simonyan et al., 2014; Shrikumar et al.,
2017), and perturbation-based (Zeiler and Fergus,
2014; Castro et al., 2009).

Due to the inherently discrete nature of natu-
ral language text, the starting point for all our ap-
proaches is the embedding of the input sentence
across the model to interpret. Most of our analysis
is done for the encoder of the network architecture,
thus analyzing the effect of different pre-training
and fine-tuning techniques on how the model even-
tually represents the language attributes. We use
the word ‘Attribution’ as a better-defined substitute
for the ‘Influence’ measure of an input span of text
on the output.
A part of our visual analysis is shown and elabo-
rated here, while a complete analysis with all our
models and layer-wise heat-maps is presented in
the Appendix.

In Table 4a, we apply InterpretLR on 3 different
configurations of XLM for a randomly chosen sen-
tence from NMT’s evaluation set. A human expert
was asked to annotate the source sentence in accor-
dance with the expected reference for each output
token in the actual English translation, as shown
in the first column. The highlighted visualizations
for each of the 3 models were obtained using Inte-
grated Gradients (Sundararajan et al., 2017) across
the three input embeddings- token, position, and
language. A lot of interesting observations could
be made from these attributions.
Firstly, the named entity in the sentence ur-
{d}asznan (UrAnan) has been wrongly translated
by all the three models. Although this behavior is
expected (learning the context of a named entity is
extremely difficult without excessive supervision
around the same, which is largely absent our train-
ing text) the models even largely fail to attend to
the right words in the input.
Secondly, words like rations, weavers and seal
which appear frequently in the parallel Ur III Ad-
min corpora and have a contextual meaning at-
tached to them, are translated perfectly by the mod-
els, this property is observed among these models
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Actual Human Expert Model-1 Semi-Supervised DataAug XLM Model-2 Unsupervised DataAug XLM Model-3 Unsupervised ​Orig​ TLM XLM 

Output Word Annotations Output Word Visualisations Output Word Visualisations Output Word Visualisations 

barley #s ​sze​-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

barley #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

Monthy #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

Basketoftablets #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula #e 

rations #s ​sze​-ba​ geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

rations #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

rations #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

rations #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

weavers #s sze-ba ​geme2 ​usz-bar​ kiszib3 
ur-{d}asznan ugula #e 

weavers #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

weavers #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

weavers #s ​sze-ba ​geme2 usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

under #s sze-ba geme2 usz-bar ​kiszib3 
ur-{d}asznan ugula #e 

under #s sze-ba ​geme2 usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

from #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

255 #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

seal #s sze-ba geme2 usz-bar ​kiszib3 
ur-{d}asznan ugula #e 

seal #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

seal #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

seal #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

of #s sze-ba geme2 usz-bar ​kiszib3 
ur-{d}asznan ugula​ #e 

of #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

of #s ​sze-ba geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

of #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

UrAnan #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan​ ugula #e 

Lugalniglagare #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

Ninlil #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

weavers #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

foreman #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ​ugula​ #e 

foreman #s ​sze-ba geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

foreman #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

female #s ​sze-ba ​geme2 ​usz-bar ​kiszib3 
ur-{d}asznan ​ugula ​#e 

 

(a) MT- Selected output tokens for Sumerian Input text of “sze-ba geme2 usz-bar kiszib3 ur-dasznan ugula”, which translates to
“barley rations of the female weavers under seal of UrAnan the foreman”.7 

Actual Human Expert Model RoBERTa 

N   ​5(disz) ​gin2​ ​ku3​-babbar N 5 ( disz ) ​gin​ 2 ​ku-​ 3 ​ - ​ babbar 

 

Actual Human Expert Model RoBERTa 

GN mu ​ur-bi2​-​lum{ki}​ ba-​hul GN mu ​ur​ ​ - ​ bi ​ 2- lum​ { ​ki​ } ba ​ - ​ ​hul  

 

 

 

(b) POS- With tagged word “ku3-babbar”

 

Actual Human Expert Model RoBERTa 

N   ​5(disz) gin2 ​ku3​-babbar N 5 ( disz ) ​gin​ 2 ​ku-​ 3 ​ - ​ babbar 

 

Actual Human Expert Model RoBERTa 

GN mu ​ur-bi2​-​lum{ki}​ ba-​hul GN mu ​ur​ ​ - ​ bi ​ 2- lum​ { ​ki​ } ba ​ - ​ ​hul  

 

 

 

(c) NER- With tagged word “ur-bi2-lumki”

Table 4: Highlighted attributions for randomly selected examples. Green and Red represent correct and wrong
predictions, respectively, while Green and Red highlights represent positive and negative attributions, respectively.

in general. Even the unsupervised models that do
not have access to the one-to-one mapping of the
translation during training manage to infer these
words from the appropriate context. It can be as-
sumed that they learn the right representations of
such tokens. But at the same time, there are in-
stances like sze-ba (barley), which the two unsu-
pervised models rightly refer to but do not give the
right translations, which thus is a direct result of
the absence of supervision.
Lastly, English words like under, of and from do
not have any direct translations in Sumerian and
are mostly inferred from the context, even by the
human annotators. At such places, again, supervi-
sion might play a critical role as in the 4th row of
Table 4a. There are also instances like the 6th row
where the supervised model fails to attend to the
right words, and the correct output word could very
well be out of memorisation.

Tables 4b and 4c represent visualizations for
two randomly selected phrases for our sequence
labeling tasks, indicating the attributions for each
sub-word for tagging the corresponding target word
with their predicted labels. It can be observed from
Table 4b that word gin (unit) and sub-word ku, are
contributing to the attribution score positively, de-
picting positive model attribution to tag ku3-babbar

7The left-out tokens were rightly predicted by all the three
models, with almost the same attributions.

as a Noun (N), whereas in Table 4c the sub-words
ur, hul and ki are contributing ur-bi2-lum{ki} to
be tagged as the label GN (Geographical Name).
As observed from the corresponding human anno-
tation, ur and ki are the most associated for Geo-
graphical names and GNs are mostly followed by
a verb part, which is hul (destroy) in this case. It
can thus be inferred that RoBERTa identifies this
correspondence well and makes the decision ac-
cordingly.

8 Conclusion

In this work, we introduced the first information
extraction and translation pipeline for Sumerian
cuneiform. We first undertook the tasks of POS
Tagging and NER, where we observed that deeper
is not necessarily better. A simple CRF model with
well-defined rules outperformed the large language
model RoBERTa for POS Tagging. Further, for
machine translation we overcame unprecedented
challenges pertaining to lack of in-domain text,
sparse sentence formation, and incoherence. We
found that using out-of-domain text along with spe-
cific data-augmentation can have huge impacts in a
low-resource setting. All components of this work
are generalisable to other low-resource languages,
including InterpretLR, and we open way to future
research in this direction.
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A Detailed Evaluation and Analysis
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Forward Translation with Vanilla Transformer
gave the best results for Sumerian-English Neural
Machine Translation. Figure 5 shows the varia-
tion of the BLEU score with the amount of source
monolingual data used. Here, the X-Axis repre-
sents the number of shards used, with each shard
consisting of 80K sentences. It can be observed
that the translation accuracy is not linear with the
amount of text used.

Figure 6 shows the variation of several perfor-
mance metrics during the Unsupervised fine-tuning
of various XLM configurations. The comparison
is made between XLM pre-training without any
data augmentation (MLM TLM), with one aug-
mentation (Aug) and with all three augmentations
(Aug 12x). It can be seen from Figure 6a that an
XLM pre-trained on the Aug 12x configuration
converges the fastest among the others, in terms
of the main Denoising Auto-encoding Loss. It can
also be observed that the curve corresponding to
this configuration is much smoother than the oth-
ers, which shows a positive regularizing effect of
a better weight initialisation (through appropriate
pre-training). A similar pattern is observed for the
validation accuracy across the epochs as shown
in Figure 6c, although, the trend of Back Transla-
tion loss remains mostly inseparable for the three
configurations.

Table 5 depicts the net percentage error found by
an human expert on the POS and NER results for
the entire evaluation set across the best performing
model. Table 6 and 7 represents the detailed results
of POS and NER models. It can be observed from
the tables, that although CRF and RoBERTa mod-
els gave the best results, FLAIR language model
along with character embeddings also gave high
precision for both of the tasks.

(a) Denoising Auto-encoder Loss (AE Loss) variation across
the 1st Epoch

(b) Back Translation Loss variation in XLM across the 1st
Epoch

(c) MT accuracy across a number of training epochs

Figure 6: Quantitative comparison of various models
during Unsupervised MT fine-tuning

POS error
(in %)

NER error
(in %)

Human Evaluation 1.61 1.20

Table 5: Human Evaluation for POS and NER

B Extended Interpretations

Here we present the interpretability analysis across
a larger set of models and visualisations. We use
and compare the different algorithms across layer-
level, gradient-based, and perturbation-based tech-
niques to obtain the attributions.

Figure 7 visualises the Multi-head Self Atten-
tion (MHSA) using Layer Conductance Dhamd-
here, Sundararajan, and Yan 2018) across the 4
encoder layers we employ in XLMs8. The first
two output tokens barley and female are known to
be one-on-one mapping between the input words
of sze-ba and geme2 respectively. While the third
output token barley is not a direct translation and

8The supervised version of the augmented pre-training is
used here.
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Part of Speech Tagging
Precision Recall F1-Score

HMM 0.857 0.794 0.815
Rules +

CRF
0.994 0.989 0.991

BBi-LSTM
+ CRF

0.852 0.710 0.7631

FLAIR 0.9323 0.4766 0.4999
RoBERTa 0.9500 0.9489 0.9495

Table 6: POS Tagging Models for Ur III Sumerian Text

Named Entity Recognition
Precision Recall F1-Score

HMM 0.810 0.599 0.656
Rules +

CRF
0.916 0.910 0.913

Bi-LSTM
+ CRF

0.864 0.704 0.775

FLAIR 0.9562 0.1817 0.1873
RoBERTa 0.9540 0.9534 0.9537

Table 7: NER Models for Ur III Sumerian Text

is needed to be inferred from context.
Figure 9a represents the attribution heat-map

when gradient-normalisation saliency (Simonyan,
Vedaldi, and Zisserman 2013) is used. Being one
of the most conventional techniques for finding at-
tribution, it is more prone to inconsistent interpreta-
tions. Whereas, the attribution heat-map in Figure
9b represents the Integrated Gradients (IG) (Sun-
dararajan, Taly, and Yan512017) approach. Being a
path-based technique, which measures the gradient
attribution relation using a straight-line path from
a baseline (usually all-zeros), to the given input, it
is much more robust and stable.

Even though the gradient-based methods are
much faster than perturbation-based methods, we
observe that the heavy dependency of IG on hyper-
parameters like the number of input steps to be con-
sidered when going from a baseline to the actual
input, n steps, to be a major setback. The final at-
tribution is generally found out after integrating (or
summing) over the attributions of these sub-steps.
We found that the attributions do not change when
going beyond n steps = 250, thus, we experiment
by varying it between 10 to 250. We observe that
there is no ideal value of n steps, IG’s faithfulness
to the model varies largely over this range. For
some inputs, the best value is n steps = 50 while

Figure 7: Layer Conductance across MHSA Layers

for others n steps = 250 is the most ideal. We
judge this by considering how much the attribution
is given to sos and eos tokens for each output token.
Thus, based on both plausibility and faithfulness.
We use n steps = 50 for obtaining the heat-maps
in Figure 9b.

Figure 10 represents the visualization for our
sequence labeling tasks. It indicates two major
things, 1) the effect of words, sub-words (depends
on tokenization) on tagging the target word and
2) the effect of 6 transformer encoder layers. We
created the hook on embeddings of RoBERTa with
layer IG and obtained the visualizations for how
each sub-word is contributing to tag the target word.
Similarly, to obtain the heat-map we created the
hook on RoBERTa embeddings and used the Layer
Conductance.

From Figure 10a it can be observed that ku and
du contribute the most to the attribution scores for
tagging ku3-babbar and ba-du3 as a Noun (N) and
Verb (V), respectively. From the heat-maps it is
also noted that ku shows the effect on all 6 layers
whereas in second example effects are majorly due
to the initial transformer layers. Similarly in the
Figure 10b ur and lugal are the most effective sub-
words to tag ur-bi2-lumki and lugal-tesz2-mu as
GN (Geographical Name) and PN (Personal Name)
respectively. It is also interesting to note that both
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Figure 8: Feature Ablation in InterpretLR

of these sub-words have a very positive impact in
the initial layers but are contributing oppositely in
the last layer.

B.1 Human Evaluation

The scoring by human experts was done indepen-
dently for each result according to the following
criterion:

• 3 (good): interpretable in the correct mean-
ing by a native speaker of English; (almost) no
incorrectly translated content word (e.g., tolerant
against some errors in word order, but not in incor-
rect words).

• 2 (helpful): partially distorted, but inter-
pretable with some context information (tolerant
against errors in word order and against incorrect
function words).

• 1 (incorrect): contains incorrectly translated
content words and/or is un-interpretable.

C Rules for POS Tagging and NER

We used certain language-specific rules to assist
CRF for the sequence labeling tasks. The rules
were identified by human experts and some of them
are as mentioned here:

• A word starting with “ur-”, “lu2-”, or “dumu”
is most likely to be a personal name.

• If a word is followed by “mu”, then the next
phrase denotes a year name.

• If a word is followed by “iti”, it denotes a
month name.

• Words containing “ki” are mostly associated
with geographical names (GN).

• Words ending with part “-hul” majorly denotes
verbs.

• Words containing “{d}” denotes either per-
sonal name (PN) or divine name (DN).

• A word followed by “gin” (unit) majorly repli-
cate a noun.
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(a) Grad-Norm Saliency

(b) Integrated Gradients

Figure 9: Comparing different gradient-based approaches used in InterpretLR
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(a) POS Tagging (b) NER

Figure 10: InterpretLR on RoBERTa for Sequence Labeling


