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Abstract

The presence of zero-pronoun (ZP) greatly af-
fects the downstream tasks of NLP in pro-drop
languages such as Japanese and Chinese. To
tackle the problem, the previous works identi-
fied ZPs as sequence labeling on the word se-
quence or the linearlized tree nodes of the in-
put. We propose a novel approach to ZP iden-
tification by casting it as a query-based argu-
ment span prediction task. Given a predicate
as a query, our model predicts the omission
with ZP. In the experiments, our model sur-
passed the sequence labeling baseline.

1 Introduction

Pro-drop languages, such as Japanese, Chinese,
or Arabic, allow omissions of essential phrases
or arguments, e.g., nouns, which could be eas-
ily inferred by humans given contexts in a sen-
tence. The omitted argument is called zero-
pronoun (ZP), or (small) “pro”, which is an in-
stance of empty categories in linguistics.

JA このケーキは美味しい。私は (pro-OBJ)気に入った．
EN This cake is delicious. I like (it).

In the Japanese example above, the object argu-
ment (OBJ) is omitted from the second sentence
because Japanese speakers can predict from the
context that the OBJ is “it”, and the omission is
natural for the Japanese speakers.

Downstream tasks involving pro-drop lan-
guages could easily suffer from the existence of
ZPs. In the machine translation task, it has
been reported that supplementing the ZP infor-
mation when translating from pro-drop languages
to non-pro-drop languages improves the perfor-
mance (Wang et al., 2019).

When identifying a ZP from the sentence where
the argument is omitted, the predicate informa-
tion is the key. The ZP identification is solved in
many previous works as a labeling task for input
sentence tokens (Aloraini and Poesio, 2020; Song
et al., 2020) or nodes in a parse tree (Xiang et al.,
2013; Takeno et al., 2015).

In this study, we treat ZP identification as an in-
stance of span prediction tasks inspired by the QA
method proposed in Devlin et al. (2019). There
are two steps to solve the ZP identification in our
approach. 1) Given a predicate as a query, our
model extracts each argument, such as subject or
object, as the answer from the input sentence. 2) If
our model cannot extract any corresponding argu-
ment from the input sentence, the model predicts
whether or not it is a ZP. In the above example,
given a predicate 気に入った “like”, our model
should predict that the subject argument is 私は
“I” in the sentence and the object argument is a
ZP. By explicitly providing predicates as queries
in this way, our approach allows the model to cap-
ture information about the ZP cue from the input
sentence, thereby improving the ZP identification
performance.

Our contributions are as follows: 1)We pro-
posed a novel approach for ZP identification.
2)The improvement from the sequence labeling
baseline was confirmed on two different language
datasets.

2 Related work

Most of the researchers considered the ZP detec-
tion or ZP identification as a labeling task. Xiang
et al. (2013) and Takeno et al. (2015) used parse
trees as input and detected empty categories, in-
cluding ZPs, by labeling a node representing the
maximal projection of a predicate, namely IP or
VP. Song et al. (2020) proposed jointly learning
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ZP resolution and ZP identification by treating
it as sequence labeling on every word boundary.
Aloraini and Poesio (2020) considered word po-
sitions before or after each VP node as ZP loca-
tion candidates and predicted whether the candi-
date has ZP or not as a binary classification task.
To the best of our knowledge, our approach is the
first work that formalizes ZP identification as a QA
task.

In recent years, approaches for solving various
tasks as QA-based span prediction problems have
been proposed. Li et al. (2020) made questions
corresponding to NER entity tags. Then, their
model predicted the entity span giving the ques-
tion and a sentence as QA tasks to tackle the nested
NER problem. In the coreference resolution task,
Wu et al. (2020) generated queries based on each
mention and extracted the text spans of corefer-
ences as answers to given queries. Nagata et al.
(2020) improved the performance of word align-
ment task by giving a word in the source language
sentence as a question and predicting its corre-
sponding word span in the target language sen-
tence.

3 Span-based ZP identification

Treebanks have phrase structure tree information,
and in some treebanks, empty categories are also
annotated as null terminal nodes (Butler et al.,
2012; Xue et al., 2005). However, we focused only
on ZP identification, not dealing with other empty
categories, such as trace and PRO, in this paper.

We formally define the ZP identification as
span-based prediction as follows: Given a tok-
enized sentence x = x1, ..., x|x|, we denote a span
of the sentence as xqs:qe (1 ≤ qs ≤ qe ≤ |x|) that
corresponds to the head of predicate of the sen-
tence, i.e., verb or adjective. The task is to identify
the span of the sentence x corresponding to the ar-
gument required by the predicate xqs:qe. When no
span is detected, there are three possible cases: (i)
the argument is dropped as a kind of ZP; (ii) the
argument is not dropped as a ZP, but as another
empty category such as trace or PRO; (iii) it is
not required by the predicate at all. We grouped
the latter two cases into one class, the non-ZP
class. Therefore, our model predicts one of the
ZP classes or the non-ZP class for the required but
omitted argument. The prediction is applied for
each grammatical function of the argument, such
as SBJ, OBJ, etc.

Our argument span prediction is inspired by
BERT fine-tuning for the QA task (Devlin et al.,
2019). Inputs follow a BERT style formulated
as “[CLS] query [SEP] sentence [SEP]”, where
[CLS] is a special token to output the classification
result and [SEP] denotes the boundary of “query”
and “sentence.” The query in the input is defined
as follows:

{ xqs−C:qs−1, [Predicate1], xqs:qe, [Predi-
cate2], xqe+1:qe+C }

where C is the size of the context windows before
and after the span xqs:qe in the sentence. [Pred-
icate1] and [Predicate2] 1 are used as boundary
markers to specify the start and end of the pred-
icate in the query.

(1) (φ)
(pro)-SBJ

大学
university

へ
at
着き
VB

まし
AX

た
AXD

‘ (pro) arrived at the university. ’

In the example sentence (1) , there are five words
in the tokenized input sentence excluding a null
token φ 2. Given “着き” as a predicate with C =
1, the query is represented as follows:

{“へ”, [Predicate1], “着き”, [Predicate2], “まし” }

Given the inputs, our model is expected to pre-
dict that SBJ is a required argument belonging to
“pro” class and OBJ is a non-ZP argument because
the predicate is an intransitive verb.

3.1 Argument Span Prediction
Two independent linear layers are added to BERT
for predicting the start and end positions of an ar-
gument type for an input predicate. We dealt with
three arguments, which are subject, object, and in-
direct object, for a predicate and added six layers
in total.

Using hidden size H , ha ∈ RH is the em-
bedding of the final BERT encoder layer, corre-
sponding to a token a in the input, and farg

start(·)
and farg

end(·) are linear layers to calculate start and
end probabilities. Given xi, the ith word in a
sentenece x, let pargstart(xi) = farg

start(hxi) and
pargend(xi) = farg

end(hxi) denote the probabilities that
the ith word is the start and end of the span of arg,
argument e.g., SBJ, OBJ, etc.

1These words are implemented using unused words in the
BERT vocabulary, “[UnusedX]”.

2φ is a null token indicating “pro”, which does not appear
in the actual input sentence.
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The score that the span xi:j is the span of arg is
defined as the product of the ith word start proba-
bility and the jth word end probability of arg. We
define ı̂ and ̂ as the start and the end positions that
maximize scorearg(i, j).

scorearg(i, j) = pargstart(xi) · p
arg
end(xj) (1)

(̂ı, ̂) = arg max
1≤i≤j≤|x|

scorearg(i, j) (2)

When there is no arg span in the predicate, we
assume its start and end positions equal to that of
[CLS] and define the score as follows:

scorenull = pargstart([CLS]) · pargend([CLS]) (3)

There are two cases for scorenull and
scorearg (̂ı, ̂):

scorenull ≤ scorearg (̂ı, ̂) (4)
scorenull > scorearg (̂ı, ̂) (5)

When Equation 4 holds, our model predicts that
the span between the ı̂th and ̂th in x is the argu-
ment arg for the given predicate. Otherwise, the
argument for the given predicate does not exist in
x denoted by Equation 5, which implies ZP exists
in the argument or the argument is a non-ZP state.

The loss of a single example is calculated by the
cross-entropy loss of correct positions i′ and j′:

lossspan =
∑

arg

− log pargstart(xi′)− log pargend(xj′)

(6)

3.2 ZP classification
The difference between ZP detection and ZP iden-
tification is whether there are one or more classes
of ZPs for arguments. In the ZP detection task, ZP
classification is binary classification whether the
argument is either ZP class or non-ZP class. When
there are multiple ZP classes to solve the ZP iden-
tification task, the ZP classification is a multi-class
classification.

To classify, we add an independent layer for
each predicted argument type into BERT. The arg
class probabilities are as follows:

pargclass = softmax(h[CLS]Warg + barg) (7)

where Warg ∈ RH×numclass , and barg ∈
Rnumclass are parameters. numclass is the num-
ber of classes including the non-ZP class.

The loss losslabel is calculated by cross-entropy
function and the correct label probability.

losslabel = − log pargclass(indexcorrect) (8)

Datasets Category Train Dev Test

NPCMJ
docs(all) 261

sents 29,796 3,724 3,726
preds 76,892 9,595 9,450

OntoNotes
5.0

docs 1,391 172 166
sents 32,358 5,435 9,450
preds 135,241 19,538 16,556

Table 1: Statistics on NPCMJ and OntoNotes5.0. In the
“Category” column, “docs”, “sents”, and “preds” rep-
resent documents, senteneces, and predicates, respec-
tively. In NPCMJ, “all” means the total number of doc-
uments in train, dev, and test.

Datasets argument SBJ OB1 OB2

NPCMJ ZP ratio(%) 20.58 3.67 0.24
ZP number 15,824 2,823 184

OntoNotes
5.0

ZP ratio(%) 21.59 0.05 0.00
ZP number 29,195 61 1

Table 2: The ratio and the number of ZPs to queries
in train datasets of NPCMJ and Chinese subsets
OntoNotes.

3.3 Training
The training objective is defined using lossspan
and losslabel in 3.1 and 3.2 as follows:

losstotal = αlossspan + (2− α)losslabel (9)

α is a hyperparameter that weights the loss func-
tion of each task by taking a value between 0 <
α < 2 3.

4 Experiments

4.1 Datasets
We take two Datasets: NPCMJ4 for Japanese ZP
identification and OntoNotes5.05 for Chinese ZP
detection. The dataset statistics are shown in Ta-
bles 1 and 2.

NPCMJ is an extension of the Keyaki Treebank
(Butler et al., 2012), which contains empty cat-
egory information including ZP, and has 40,831
sentences with trees in the March 2020 version.
ZPs are annotated at the first position of a pred-
icate head phrase (inflectional phrase, IP). In the
Japanese experiments, let xqs:qe in a query be a
word tagged either with the verb or the adjective
that constitutes a predicate.

The verb tags are “VB”, “VB0”, “VB2”, and
“AX”, and the adjective tags are “ADJN” and

3We first run our preliminary experiments by setting α =
1, and then, run further experiments using linear interpolation

4http://npcmj.ninjal.ac.jp
5https://catalog.ldc.upenn.edu/LDC2013T19
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“ADJI”. The phrase tagged with “-SBJ”, “-OB1”,
or “-OB2”, which is at the same depth of the
query, is selected as the argument. In training, we
used “pro” and its derived tags, i.e., “speaker” and
“hearer”, as ZP classes for ZP classification.

OntoNotes5.0 is used in the official CoNLL-
2012 shared task. The rate of phrase tags of “pro”
nodes in train datasets is composed of “-SBJ” with
more than 99%, “-OBJ” with less than 0.5%, and
others. The phrases tagged with “-SBJ”, “-OBJ”,
or “-IO” are treated as arguments. The head word
of the phrase with VP is considered as a predicate,
and let the head word be xqs:qe in a query.

In Japanese and Chinese, there are nominal
predicate phrases which do not have verbs and
copulas. Such phrases were tagged with “-PRD”
tags in both datasets, but we did not deal tagged
with “-PRD” in this paper.

4.2 Model and Setting
We used NICT BERT Japanese pre-trained
model without BPE6 for NPCMJ, and “bert-base-
chinese”7 models in HuggingFace’s Transformers
(Wolf et al., 2019) for OntoNotes5. Japanese texts
are tokenized by MeCab with Juman dic8, and
Chinese texts are tokenized by BERT Tokenizer,
i.e., WordPiece.

The following are the hyperparameters:
batch size = 16, learning rate = 3e-5, train-
ing epoch = 4, C = 2, α = 1 in training objective.

4.3 Baseline
The sequence labeling model with BERT is used
as a baseline model, referring to the method of
Devlin et al. (2019). The entire sentence is used
as input, and the predicate tokens with ZP argu-
ment in the sentence are labeled with a particular
ZP class using the BIOES format.

For each argument, we use a different model for
each argument type prediction.

4.4 Results
We evaluate the results in terms of precision, re-
call, and F-score. For example, in case the SBJ
argument has “pro”, one of the ZP classes, it is
defined as follows,

Precisionpro
SBJ = correct number of predicted “pro” SBJ

number of predicted “pro” SBJ

RecallproSBJ = correct number of predicted “pro” SBJ
number of gold “pro” SBJ

6https://alaginrc.nict.go.jp/nict-bert/index.html
7https://huggingface.co/bert-base-chinese/tree/main
8https://taku910.github.io/mecab/

Model argument Arg span
accuracy

ZP
F1

ZP
pre

ZP
recall

Baseline
SBJ - 61.5 62.3 60.8
OB1 - 58.0 62.3 54.2
ALL - 60.9 62.2 59.6

QAZP
SBJ 90.8 66.0 66.2 65.8
OB1 88.5 59.7 60.6 59.0
ALL 89.3 64.9 65.4 64.5

Table 3: Argument span accuracy and ZP identification
on NPCMJ for each argument. The row of ALL indici-
ataes the value for SBJ, OB1 and OB2.

label Model F1 pre recall

pro baseline 60.8 61.3 60.2
QAZP 65.1 64.2 66.0

speaker baseline 62.2 66.2 58.8
QAZP 65.4 68.7 62.5

hearer baseline 65.1 60.9 70.0
QAZP 68.7 65.3 72.7

Table 4: ZP identification on NPCMJ for each ZP class.
This values are the result for three arguments.

The same calculation applies to the other argu-
ments and the other labels. The accuracy for re-
quired arguments that appear in the sentence is
evaluated with the accuracy of whether the predic-
tion span matches exactly with the gold span.

Table 3 and Table 4 show the results of ZP iden-
tification on NPCMJ for each argument and each
ZP class. In Table 3 and Table 4, QAZP indicates
our proposal method, and the baseline is left blank
because the argument span is not predicted by the
baseline. Compared to the baseline, the proposed
method outperformed for each argument and each
ZP class. The lower F1 value of ZP identification
for OB1 in Table 3 can be attributed to the fact that
ZPs occur only about 18% as often in OB1 as in
SBJ.

Table 5 shows the result of the Chinese ZP de-
tection. Compared to the baseline, the proposed
method outperformed for both argument cases.
Although it is not directly comparable with (Alo-
raini and Poesio, 2020) in that their task defini-
tion is slightly different and their targets are only
anaphoric ZPs, our model achieves about 80% F1
values, which is higher than their F1 of 68.5%.

4.5 Examples
Figure 1 shows the three prediction examples of
the baseline and our proposal model, QAZP. Ex-
ample 1 is the case when the the QAZP’s predic-
tion is correct and the baseline’s prediction is in-
correct. In this example, the model needs to rec-
ognize that the SBJ arguments of the two predi-
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Figure 1: Prediction examples of the baseline and QAZP, our proposal model for three sentences in a Japanese ZP
identification task. Each line represents either the prediction of one of the both models, or the Gold data for the
argument of a predicate covered by the lines. The first and third examples are predictions for SBJ arguments, and
the second example is a prediction result for the OBJ arguments by the baseline and QAZP.

Model Arg Arg span
accuracy

ZP
F1

ZP
pre

ZP
recall

Baseline SBJ - 71.5 72.5 70.5
ALL - 71.4 72.6 70.3

QAZP SBJ 88.7 80.6 81.2 80.6
ALL 88.3 80.5 81.0 80.4

Table 5: Argument(Arg) span accuracy and ZP detec-
tion on OntoNotes5.0. for “pro” class. The row of ALL
indiciataes the value for SBJ, OBJ and IO2 arguments.

cates お 話し “speak” and 復習 “review” are dif-
ferent. While the proposed model predicted a dif-
ferent SBJ argument for each predicate, the base-
line predicted the same SBJ item for both predi-
cates. Therefore, we consider that the proposed
model is more context-aware than the baseline.

Example 2 is the case when the QAZP’s pre-
diction is incorrect and the baseline’s prediction
is correct. In this example, その ことを “it” is
the OBJ argument for the first predicate知ってい
“know”, but it is also the referent of the omitted
object argument, which is ZP, for the second pred-
icate隠して “hide”. Our model predicted the first
predicate知ってい hasそのことを as an OBJ ar-
gument. It also predicted the same span その ことを as the OBJ argument for the second predi-
cate隠して, which results in failing to detect that
the OBJ argument is dropped. The reason is that
our model predicts an OBJ argument span for each
predicate independently. To alleviate such errors,
we need to add a constraint to the model that no
span in the input sentence can be the argument for
more than one predicate at the same time, using

Integer Linear Programming as in the method of
(Iida and Poesio, 2011).

Example 3 is the case when the predictions
of both models are incorrect. In this example
sentence, the gold ZP class is the first person
“speaker”, but it is impossible to identify the ZP
without knowing the context before and after the
input sentence. We expect our model will capture
context information by extending the input unit to
multiple sentences instead of a single sentence.

5 Conclusion

We proposed a ZP identification method based on
span prediction and evaluate it on Japanese and
Chinese datasets. Our model is the first approach
to consider ZP detection as a QA task. In exper-
iments, the F1 values of our method were higher
than the baseline method using sequence labeling
for both Japanese and Chinese.

Future works include to analyze arguments that
appeared overtly in tasks such as semantic role la-
beling. As a setting closer to the real problem, we
will use a tagger to create queries instead of us-
ing Gold data. The other future work is compar-
ison with a baseline which predicts all arguments
at once by sharing the model parameters of BERT
as our proposal model. We also consider extend-
ing our proposed method to coreference resolution
tasks in pro-drop languages.
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