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Abstract

Accurate terminology translation is crucial for
ensuring the practicality and reliability of neu-
ral machine translation (NMT) systems. To
address this, lexically constrained NMT ex-
plores various methods to ensure pre-specified
words and phrases appear in the translation
output. However, in many cases, those meth-
ods are studied on general domain corpora,
where the terms are mostly uni- and bi-grams
(>98%). In this paper, we instead tackle a
more challenging setup consisting of domain-
specific corpora with much longer n-gram and
highly specialized terms. Inspired by the re-
cent success of masked span prediction mod-
els, we propose a simple and effective train-
ing strategy that achieves consistent improve-
ments on both terminology and sentence-level
translation for three domain-specific corpora
in two language pairs.

1 Introduction

Despite its recent success in neural machine transla-
tion (NMT) (Wu et al., 2016; Johnson et al., 2017;
Barrault et al., 2020), delivering correct terms in
the translation output is still a vital component for
high-quality translation. This concern becomes
more salient in domain-specific scenarios, such as
in legal documents, where generating correct and
consistent terminology is key to ensuring the prac-
ticality and reliability of machine translation (MT)
systems (Chu and Wang, 2018; Exel et al., 2020).

To address this, lexically constrained NMT
works have proposed various methods to preserve
terminology in translations as lexical constraints
with or without the help of a term dictionary at test
time. In most lexically constrained NMT setups,
datasets and terms used for training and evaluating
the methods are extracted from WMT news cor-
pora (Dinu et al., 2019; Susanto et al., 2020; Chen

* equal contributions

Figure 1: The frequency of terms sorted by n-gram be-
tween Dinu et al. (2019)’s and our test splits. While the
terms in WMT De-En are mostly uni- or bi-grams, our
setup contains heavy-tailed n-gram distributions with
more quantity and diversity in terminology.

et al., 2020). Since the terms, regardless of their
source, can only be utilized as long as they exist
in the corpus, the term coverage solely depends
on the choice of the corpus. By analyzing the pre-
vious setups carefully, we discover that the terms
found in WMT are mostly uni- or bi-grams (see
Figure 1) and highly colloquial (see Table 1 for
the top 10 most frequent terms). These leave the
question of whether the previous methods are effec-
tive in domain-specific scenarios where accurate
terminology translation is truly vital.

In this paper, inspired by the recent masked span
prediction models, which have demonstrated im-
proved representation learning capability of con-
tiguous words (Song et al., 2019b; Joshi et al.,
2019; Lewis et al., 2020; Raffel et al., 2020), we
propose a simple yet effective training scheme to
improve terminology translation in highly special-
ized domains. We specifically select two highly
specialized domains (i.e., law and medicine) which
contain domain-specific terminologies to address
more challenging and realistic setups, in addition to
applying it to both typologically similar and dissim-
ilar pairs of languages (German-English (De→En)
and Korean-English (Ko→En)). Thanks to its sim-
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plicity, the proposed method is compatible with any
autoregressive Transformer-based model, including
ones capable of utilizing term dictionaries at train-
ing or test time. In domain-specific setups where
longer n-gram terms are pervasive, our method
demonstrates improved performance over the stan-
dard maximum likelihood estimation (MLE) ap-
proach in terms of terminology and sentence-level
translation quality. Our code and datasets are avail-
able at https://github.com/wns823/NMT_SSP.

2 Background

Lexically constrained NMT We could group
lexically constrained NMT methods into two
streams: hard and soft. The hard approaches aim
to force all terminology constraints to appear in
the generated output. The methods include replac-
ing constraints (Crego et al., 2016), constrained
decoding (Hokamp and Liu, 2017; Chatterjee et al.,
2017; Post and Vilar, 2018; Hasler et al., 2018), and
additional attention heads for external supervision
(Song et al., 2020). Although those approaches are
reliable and widely used in practice, they typically
require a pre-specified term dictionary and an extra
candidate selection module if there are multiple
matching candidates for a single term (see caption
in Table 2).

Several soft methods address this problem with-
out the help of a term dictionary, one of which is
training on both constraint pseudo-labeled (with
statistical MT) and unlabeled data (Song et al.,
2019a). More recently, Susanto et al. (2020) and
Chen et al. (2020) proposed methods that do not
assume any word alignment or dictionary supervi-
sion at training time to handle unseen terms at test
time. For their flexibility, we choose them as our
baselines. As discussed in Section 1, most previ-
ous methods are trained and evaluated on general
domain corpora. In this work, we instead tackle
highly specialized domain-specific corpora such as
law and medicine, where the terms are much longer
and often rare.

Domain-specific NMT Another line of research
related to our problem is domain-specific NMT,
where difficulties arise from both a limited amount
of parallel data and specialized lexicons. Similar to
the hard approaches in lexically constrained NMT,
several works rely on domain-specific dictionaries
(Zhang and Zong, 2016a; Hu et al., 2019; Thomp-
son et al., 2019; Peng et al., 2020) when generating
translations, but they are also prone to the same is-

Dinu et al. (2019)’s dataset

Iate-414 gold(15), CDU(13), bridge(12), China(11), Syria(11), night(11),

campaign(11), generation(9), month(7), Iraq(7)

Iate-581 gold(26), doping(23), CDU(19), sport(17), US(15), bridge(14),

Syria(13), campaign(13), China(11), night(11)

Wikt-727 percent(61), police(50), Thursday(41), Putin(19), five(17),

September(14), Venus(13), later(12), Tuesday(11), less(11)

Wikt-975 percent(61), police(59), Thursday(44), Putin(24), old(21),

September(21), five(16), swimmer(14), later(13), Venus(13)

Our dataset

Law (De-En) Council(706), Regulation(521), Commission(481), Union(478),

Treaty(345), Official Journal(319), Member State(283), proposal(239),

on a proposal from the Commission(229), market(181)

Medical (De-En) injection(469), water(275), water for injection(270), patient(269),

infusion(258), solution for infusion(226), sodium(159),

distribution(127), volume of distribution(125), treatment(120)

Law (Ko-En) si(451), official(445), public official(436), member(436), term of

office(367), gu(265), education(209), period(180), term(180),

management(156)

Table 1: Top 10 most frequent terms in Dinu et al.
(2019)’s and our test splits. Numbers in parenthesis
indicate the frequency of terms in each data. As shown
in the two tables, all top 10 terms in the WMT cor-
pus are unigrams, while there are longer terms (up to
6-grams) in the domain-specific corpora. Furthermore,
compared to WMT, the terms in the domain-specific
corpora are more specialized for their corresponding
domains.

sues. Other domain-specific NMT methods include
unsupervised lexicon adaptation (Hu et al., 2019),
synthetic parallel data generation with monolingual
data (Sennrich et al., 2016a), and multi-task learn-
ing that combines language modeling and transla-
tion objectives (Gulcehre et al., 2015; Zhang and
Zong, 2016b; Domhan and Hieber, 2017). Our
method is a form of multi-task learning by utiliz-
ing both the source and target language text for an
additional task, while the previous works mostly
use only the target language text.

Span-based Masking Span-based masking is to
predict the spans of masked tokens, as opposed
to individual token predictions in BERT (Devlin
et al., 2019). With this training objective, the model
showed improved performance on span-level tasks
including question answering and coreference res-
olution (Joshi et al., 2019). Concurrently, autore-
gressive sequence-to-sequence pre-trained models
also utilized span-based masking as their objec-
tives and demonstrated its effectiveness in many
downstream tasks (Song et al., 2019b; Lewis et al.,
2020; Raffel et al., 2020). Similar to theirs, our
training scheme takes advantage of autoregressive

https://github.com/wns823/NMT_SSP
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span-based prediction but we condition on both
the source language and the previous non-masked
target language tokens.

3 Approach

3.1 Source-Conditioned Masked Span
Prediction

We posit that adopting auxiliary span-level supervi-
sion in generation can benefit both short and long
terminology and sentence-level translation. We,
therefore, propose an extra span-level prediction
task in translation—namely, source-conditioned
masked span prediction (SSP). Different from the
recent sequence-to-sequence pre-trained models
(Song et al., 2019b; Lewis et al., 2020; Raffel et al.,
2020), our approach applies span masking only
on the target side. By conditioning on the full
context of the source language and the previous
non-masked target language tokens (due to autore-
gressive decoding), the model is forced to predict
the spans of missing tokens given fully referenced
information in the encoder and partially in the de-
coder.

Span masking We follow the masking procedure
proposed in SpanBERT (Joshi et al., 2019), where
we first sample the length of spans from a clamped
geometric distribution (p=0.2, max=10) and then
corrupt 80% of masked tokens with [MASK], 10%
with random tokens, and 10% unchanged. We set
the corruption ratio to 50%.

Multi-task Learning As our training scheme
consists of two objectives (i.e. translation and
masked span prediction), we define the total train-
ing objective as follows. Let θ be the model pa-
rameter and C be the term-matched corpus where
each sentence contains at least one or more terms.
The first objective, translation, is to maximize the
likelihood of the conditional probability of y:

pθ(y|x) =

T+1∏
t=1

pθ(yt|y0:t−1, x), (1)

where y = (y1, . . . , yT ) is the target ground-truth
(GT) sentence with length T and x = (x1, . . . , xS)
is the source sentence with length S. For the SSP
objective, we first corrupt random spans of y until
the corruption ratio, resulting in ỹ. Then we au-
toregressively predict the masked tokens ȳ while

# Sent. Avg. words
per sent. # Terms Avg. terms

per sent.
# Unique

terms

Law
(De→En)

SRC 447,410
(441K/3K/3K)

27.46
1,677,852 2.33

25,460

TRG 30.77 27,755

Medical
(De→En)

SRC 494,316
(488K/3K/3K)

19.01
1,494,269 1.34

8,633

TRG 20.25 8,990

Law
(Ko→En)

SRC 93,240
(87K/3K/3K)

16.52
353,894 3.52

2,354

TRG 34.56 2,733

Table 2: Statistics of the filtered corpus and matched
terms. Note that # unique terms in the source (SRC)
and target (TRG) languages are not the same. For
instance, “Arzneimittel” can translate into multiple
forms—“pharmaceutical products”, “drug”, “medici-
nal product”, etc.— depending on the context.

conditioned on both ỹ and x:

pθ(ȳ|ỹ, x) =
T+1∏
t=1

mtpθ(yt|ỹ0:t−1, x), (2)

where mt = 1 means yt is masked.
Finally, we simultaneously optimize the joint

loss:

Ltotal = − 1

|C|
∑

(x,y)∼C,
ỹ∼C(y)

log pθ(y|x)

+γ log pθ(ȳ|ỹ, x),

(3)

where C is a span-level corrupter and γ is a task
coefficient that weights the relative contribution of
SSP.

4 Experiments

4.1 Setup
Data We use De-En legal and medical domain cor-
pora from OPUS1 (Tiedemann, 2012) and the De-
En bilingual term dictionary from IATE2. Terms in
different languages are aligned via term IDs. For
the typologically distant pair of languages, we use
the Ko-En legal domain corpus available on AI
Hub3, and the manually processed bilingual term
dictionary downloaded from the Korea Legislation
Research Institute (KLRI) website4. In cases where

1http://opus.nlpl.eu/
2https://iate.europa.eu
3https://www.aihub.or.kr/aidata/87
4https://www.moleg.go.kr/board.es?

mid=a10504000000&bid=0010&act=view&list_
no=43927&nPage=2

http://opus.nlpl.eu/
https://iate.europa.eu
https://www.aihub.or.kr/aidata/87
https://www.moleg.go.kr/board.es?mid=a10504000000&bid=0010&act=view&list_no=43927&nPage=2
https://www.moleg.go.kr/board.es?mid=a10504000000&bid=0010&act=view&list_no=43927&nPage=2
https://www.moleg.go.kr/board.es?mid=a10504000000&bid=0010&act=view&list_no=43927&nPage=2
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Model

Law (De→En) Law (Ko→En)

BLEU
Term% (↑) LSM-3 (↑)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro 1-gram 2-gram 2>mirco 2>marco 2>micro 2>macro

GU19 70.64 94.36 92.33 73.31 45.25 86.22 74.92 51.31 81.47 76.51 58.15 38.51 69.41 62.52

VASWANI17 75.24 95.80 93.87 80.29 55.31 89.71 79.77 53.01 84.97 81.29 65.79 54.55 74.29 70.56

+SSP 75.44 96.01 94.08 81.52 58.79 90.81 82.50 53.80 85.84 83.94 66.84 58.15 75.71 69.82

CHEN20 74.19 95.55 94.08 80.63 54.73 89.80 80.89 53.08 85.49 83.25 65.51 52.49 74.53 67.81

+SSP 75.24 95.92 94.50 81.31 56.33 90.40 81.91 53.32 85.63 82.10 66.19 56.50 76.02 72.27

Table 3: (Without dictionary) Results on legal domain corpora (De→En and Ko→En) without terminology guid-
ance at test time. VASWANI17 combined with our training objective (Eq.(3)) outperforms other methods in most
cases. Note that GU19 is a non-autoregressive model, therefore not applicable to our proposed method. Higher
Term% and LSM-3 mean better performance.

Model

Law (De→En) Law (Ko→En)

BLEU
Term% (↑) LSM-3 (↑)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro 1-gram 2-gram 2>mirco 2>marco 2>micro 2>macro

SUSANTO20 62.20 94.38 92.95 82.06 64.06 94.93 92.14 50.56 81.67 76.74 58.47 38.66 69.63 62.60

CHEN20 73.05 96.64 93.29 78.73 51.47 90.00 80.29 52.60 84.74 83.94 67.33 59.53 75.59 74.54

+SSP 74.72 97.15 95.95 84.67 57.48 93.94 83.62 53.38 95.86 94.92 88.58 79.34 94.17 91.48

Table 4: (With dictionary) Results on legal domain corpora when the GT terms are provided at test time. +SSP
consistently shows improvements over its MLE counterparts. Contrary to the previous findings (Susanto et al.,
2020; Chen et al., 2020), the models do not show improved BLEU scores compared to those in Table 3. We argue
that providing terms at test time is indeed helpful for terminology generation, but it can often hinder the generation
of fluent text. This becomes more apparent in our non-autoregressive setup.

one term translates into multiple terms, we consider
all possible pairs to maximize the number of sen-
tence and term matches.

To avoid trivial matches between the parallel
sentences and terms, we filtered out terms that are
less than four characters long and longer than 20
grams. Sentences that do not contain any term
are also removed. The statistics of the datasets
are reported in Table 2. More details about the
preprocessing steps are in Appendix A.1.

For data splitting, we developed a new data split-
ting algorithm that considers the same distribution
of n-grams across each data split. We use 3,000 sen-
tences for valid and test sets in case of high redun-
dancy in certain corpora, while previous works that
utilize OPUS use only 2,000 (Koehn and Knowles,
2017; Müller et al., 2020). It is important to note
that all the sentences in our data splits are matched
with domain-specific terms (i.e. at least one or
more terms exist in each sentence) following the
style of Dinu et al. (2019). The pseudo-code for
the terminology-aware data split algorithm is in
Appendix B.

Baselines We compare our method on two re-
cent lexically constrained NMT models of differ-
ent natures: autoregressive (Chen et al., 2020) and

non-autoregressive (Susanto et al., 2020), but both
can operate with or without a term dictionary at
test time. We refer to them as CHEN20 and SU-
SANTO20, respectively. +SSP indicates models
trained with our proposed training scheme, while
no indication is the standard MLE method. A base
Transformer (Vaswani et al., 2017), denoted as
VASWANI17, and a Levenshtein Transformer (Gu
et al., 2019), denoted as GU19, are also reported to
compare the relative performance between models.
SUSANTO20 without a dictionary is equivalent to
GU19.

Evaluation We use SacreBLEU5 (Post, 2018)
for measuring translation quality. For terminology
translation, we use term usage rate for both short
(≤2-grams) and long (>2-grams) terms. Term us-
age rate (Term%) is the number of generated terms
divided by the total number of terms (Dinu et al.,
2019; Susanto et al., 2020). Specifically for eval-
uating long terms, we report both the macro and
micro averages due to the heavy-tailed nature of n-
grams. In addition, although exact term translation
is the primary objective for terminology transla-
tion, due to its harshness, evaluating models only
with Term% may not fully describe the models’

5https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu
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Model

Medical (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 70.85 93.83 91.24 77.46 53.66 86.15 75.21

VASWANI17 76.31 94.22 90.80 79.82 61.03 87.11 80.48

+SSP 76.87 94.36 91.31 80.63 53.68 88.01 74.76

CHEN20 74.84 94.29 90.61 79.42 68.37 87.13 84.64

+SSP 76.72 94.61 90.42 80.41 68.03 88.08 83.04

With dictionary

SUSANTO20 62.20 91.01 92.64 88.09 67.22 95.46 94.27

CHEN20 72.84 94.40 93.58 83.77 67.98 89.95 86.70

+SSP 75.50 95.86 94.92 88.58 79.34 94.17 91.48

Table 5: Results on the medical domain dataset
(De→En).

behavior. Therefore, we also evaluate each model
in terms of partial n-gram matches, which is ex-
plained in the next paragraph. All evaluations are
conducted with a beam size of 5.

Partial N-gram Match Inspired by the longest
common substring problem (Gusfield, 1997), we
devised a partial n-gram match score for evaluat-
ing long terminology—longest sub n-gram match
(LSM) score. Formally, let the generated target sen-
tence be ŷ = (ŷ1, ..., ŷT ) and the matched terms
for the target ground truth (GT) sentence y be
y′ =

⋃N
i=1(y

′
i1, ..., y

′
il), where N is the number

of GT terms in y and l is an arbitrary n-gram length
for i-th term. Then, LSM is defined as the ratio of
the longest n-gram overlap divided by l. As too
many overlaps can occur at the uni and bi-gram lev-
els, we only calculate LSM for long terminology,
which means the least overlap has to be greater than
or equal to 3 grams, all else being zero, therefore
denoted as LSM-3.

4.2 Results and Analysis

For the legal domain, where many terms are excep-
tionally long compared to most other domains, our
training scheme shows consistent improvements
over the standard MLE counterparts, as shown in
Table 3 and Table 4. Even with the extreme setting
of law Ko→En, low-resourced and typologically di-
vergent, our method is still effective in most metrics
we use. Compared to the autoregressive models,
GU19 and SUSANTO20 did not achieve competi-
tive BLEU scores in our domain-specific setup. We
suspect that this is due to both its complex decod-
ing nature and the small amount of training data
(originally WMT). Sampled translation results are
reported in Table 9.

For the medical domain, the behaviors of two

baselines, VASWANI17 and CHEN20, are not
clearly shown compared to the legal domain. How-
ever, our training scheme shows consistent im-
provements in BLEU and Term% at 2>micro
which reflects the global performance of long ter-
minology generation. Similar to the legal De→En
results, SUSANTO20 shows better performance on
several metrics on long terminology translation,
but the BLEU score is decreased by about 8 points,
compared to no dictionary use.

5 Conclusion

We propose a simple and effective training scheme
for improving lexically constrained NMT by in-
troducing the masked span prediction task on the
decoder side. Our method shows its effectiveness
in terms of terminology and sentence-level trans-
lation over the standard MLE training in highly
specialized domains in two language pairs. As we
publicly release our code and datasets, we hope that
more people can join this area of research without
much burden. In the future, we plan to further inves-
tigate applying our method to non-autoregressive
methods.
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A Preprocessing and Training

A.1 Preprocessing
For De→En, we applied Moses tokenization
(Koehn et al., 2007) and joint source-target byte
pair encoding (BPE) (Sennrich et al., 2016b) with
20,000 split operations. For En→Ko, English
was tokenized using spaCy6 and Korean using
KoNLPy’s MeCab-ko7 (Park and Cho, 2014), fol-
lowed by BPE with 20,000 operations. We apply
sentence filtering up to 80 tokens.

A.2 Training
Model We follow the base Transformer architec-
ture and fix the same hyperparameter configura-
tions for all baselines. For the exact implementa-
tion of each baseline, we followed the authors’ offi-
cial code on github (CHEN208 and SUSANTO209).
We implemented our code using FAIRSEQ10 (Ott
et al., 2019), trained on Nvidia GeForce RTX 3090
and RTX 2080 Ti GPUs.

Hyperparameter Detailed hyperparameter set-
tings of baselines are reported below. Span mask-
ing and task coefficient only apply to our proposed
training scheme.

Transformer
Embedding dim. 512

Transformer FFN dim. 2048
Enc/Decoder layers 6

Attention heads 8
Share all embedding True

Dropout 0.3
Label smoothing 0.1

Optimizer Adam
Learning rate 0.0005

Warmup updates 4000
Maximum token per batch 4096
Maximum token lengths 80

Span Masking
Span length Geometric (p=0.2)

Maximum span length 10
Minimum span length 1

Corruption ratio 0.5
Task Coefficient

Task coefficient (γ) 0.5

Table 6: Hyperparameter settings

6https://spacy.io/
7https://konlpy.org/en/latest/
8https://github.com/ghchen18/leca
9https://github.com/raymondhs/

constrained-levt
10https://github.com/pytorch/fairseq

B Terminology-Aware Data Split
Algorithm

Algorithm 1: Terminology-Aware Data
Split Algorithm

Data: Dictionary D, Corpus C, Held-out Size R
Result: Sent=(Senttrain, Sentvalid, Senttest)

Term=(Termtrain, Termvalid, Termtest)
1: Sort D in a descending order
2: N = dict()
3: T’ = dict()
4: S = ( |C| − 2 * R, R, R )
5: Senttrain = [], Sentvalid = [], Senttest = []
6: Termtrain = [], Termvalid = [], Termtest = []
7: for i in {1,2, ..., |C|} do
8: x, y = C[i]
9: ngramlist = []

10: T” = []
11: for (x’, y’) in D do
12: if y’ in y and x’ in x then
13: ngramlist.append(ngram(y’))
14: y = y.replace(y’, “”, 1)
15: x = x.replace(x’, “”, 1)
16: T”.append((x’, y’))
17: end if
18: end for
19: n = Max(ngramlist)
20: if n is not in N.keys() then
21: N[n] = []
22: end if
23: N[n].append(i)
24: T’[i] = T”
25: end for
26: K = Sort the keys in N in a descending order.
27: for k in K do
28: idk , iuk = DuplicateCheck(N [k])
29: (Sent, Term) += Distributor Dup(idk, N [k], T ′, S)
30: (Sent, Term) += Distributor Uni(iuk, N [k], T ′, S)
31: end for

Line 1 : Sort D w.r.t. target language terms.

Line 2 : Initialize a dictionary for storing paired sentences.

The keys are the longest n-gram lengths for each sentence

w.r.t. the target language.

Line 3 : Initialize a dictionary for storing matched terms. The

keys are the indices of a corresponding sentence.

Line 13 : ngram() returns the token length of a term. In our

case, it is used for calculating the length of a target language

token y’.

Line 14 : Replace y’ with “” in y to avoid unwanted substring

duplication (e.g., In case of having “public officer” and

“officer” in a sentence, we would like to first match “public

officer” instead of “office” when we have “public officer” in

the dictionary. See Line 1).

Line 19 : Calculate the maximum length of n-grams in y.

Line 23 : Store the sentence index w.r.t. its longest length of

n-grams.

Line 24 : Store the list of terms w.r.t. its sentence index.

Line 28 : DuplicateCheck() checks for duplication in the

corpus and returns duplicate and non-duplicate indices. Note

https://spacy.io/
https://konlpy.org/en/latest/
https://github.com/ghchen18/leca
https://github.com/raymondhs/constrained-levt
https://github.com/raymondhs/constrained-levt
https://github.com/pytorch/fairseq
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that idk is a list of duplicate sentence indices, and Suk is a list

of unique sentence indices.

Line 29 : Distributor Dup() first calculates the number of

sentences and phrases to be distributed across train, valid,

and test sets following the ratio in S, and then distributes

sentences accordingly.

Line 30 : Distributor Uni() distributes unique sentences and

phrases alternatively between train, valid, and test sets.

C Removing duplicates

As the OPUS datasets contain duplicate sentences
(Aharoni and Goldberg, 2020), we further evaluate
each model with unseen, unique test samples only.
Similar to Tables 7 and 8, our training scheme
outperforms its MLE counterparts. The Ko-En law
corpus does not contain any duplicate sentence,
and therefore the results are equivalent to those in
Tables 3 and 4.

Model

Law (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 68.14 93.71 91.87 72.32 46.24 85.05 74.22

VASWANI17 72.86 95.30 93.36 78.68 54.99 88.40 78.69

+SSP 73.15 95.57 93.54 79.98 59.18 89.64 81.53

CHEN20 71.89 95.04 93.54 78.83 54.55 88.43 79.63

+SSP 72.93 95.46 94.14 79.74 56.63 89.19 80.88

With dictionary

SUSANTO20 59.23 94.10 92.89 82.86 68.22 95.28 93.36

CHEN20 70.90 96.36 94.01 77.26 51.97 89.12 80.06

+SSP 72.70 96.85 95.68 83.65 58.33 93.30 83.40

Table 7: Results on the law domain dataset with no
duplication in data (De→En).

Model

Medical (De→En)

BLEU
Term% (↑) LSM-3 (↑)

1-gram 2-gram 2>micro 2>macro 2>micro 2>macro

Without dictionary

GU19 54.27 89.93 84.35 67.83 50.44 78.18 70.33

VASWANI17 58.29 90.09 84.51 70.98 57.82 79.18 76.45

+SSP 59.19 90.43 85.50 71.51 49.20 80.38 70.10

CHEN20 58.27 90.30 84.02 70.38 64.02 79.28 80.14

+SSP 59.49 90.57 83.53 71.25 64.36 80.29 78.70

With dictionary

SUSANTO20 45.60 88.77 89.95 86.86 68.22 94.83 93.86

CHEN20 58.30 90.81 89.79 79.83 67.62 86.59 85.05

+SSP 60.30 93.10 91.10 85.19 79.26 91.34 90.51

Table 8: Results on the medical domain dataset with no
duplication in data (De→En).

D Examples

Table 9 shows translation results of the baselines
and our method.
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Source dieses Vorbringen wurde zurückgewiesen , da die einschlägigen Bestimmungen der Grundverordnung sehr wohl mit dem WTO-Übereinkommen zur Durchführung

des Artikels VI des Allgemeinen Zoll- und Handelsabkommens 1994 und dem Übereinkommen über Subventionen und Ausgleichsmaßnahmen vereinbar sind .

VASWANI17 this claim was rejected because the relevant provisions of the basic Regulation are very compatible with the 1994 WTO Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade and the 1994 Agreement on Subsidies and Countervailing Measures .

+SSP this claim was rejected as the relevant provisions of the basic Regulation are indeed consistent with the WTO Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

CHEN20 this claim was rejected as the relevant provisions of the basic Regulation are , however , in any event , compatible with the WTO Agreement on

the implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and with the Agreement on Subsidies and Countervailing Measures .

+SSP this claim was rejected because it is true that the relevant provisions of the basic Regulation are consistent with the Agreement on

Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

Reference this claim was rejected on the grounds that the anti-circumvention provisions of the basic Regulation are not incompatible with the Agreement

on Implementation of Article VI of the General Agreement on Tariffs and Trade 1994 and the Agreement on Subsidies and Countervailing Measures .

Terminology
{Übereinkommen zur Durchführung des Artikels VI des Allgemeinen Zoll- und Handelsabkommens 1994→Agreement on Implementation of Article VI of the General
Agreement on Tariffs and Trade 1994, Übereinkommen über Subventionen und Ausgleichsmaßnahmen→Agreement on Subsidies and Countervailing Measures}

Source
( 3 ) Das Angebot zur vorzugsweisen Zeichnung sowie die Frist , innerhalb deren dieses Recht ausgeuebt werden muß, sind Gegenstand einer Bekanntmachung
in dem gemäß der Richtlinie 68 / 151 / EWG bestimmten einzelstaatlichen Amtsblatt .

VASWANI17
3 . the tender for subscription and the time limit within which that right must be exercised shall be published in the national gazette determined in accordance
with Directive 68 / 151 / EEC .

+SSP
3 . the tender for a preference call and the time limit within which that right must be exercised shall be the subject of a notice in the national gazette designated
in accordance with Directive 68 / 151 / EEC .

CHEN20
3 . the tender for preferred subscription and the time limit within which it must be exercised shall be the subject of a notice published in the national publication
designated pursuant to Directive 68 / 151 / EEC .

+SSP
3 . tenders for preference drawing together with the time limit within which that right must be exercised shall be the subject of a notice in the national gazette
designated in accordance with Directive 68 / 151 / EEC .

Reference
any offer of subscription on a pre-emptive basis and the period within which this right must be exercised shall be published in the national gazette appointed
in accordance with Directive 68 / 151 / EEC .

Terminology {Angebot zur vorzugsweisen Zeichnung→offer of subscription on a pre-emptive basis, Amtsblatt→national gazette}

Source
( 19 ) Nach der Rechtsprechung des Gerichtshofs sind einzelstaatliche Vorschriften betreffend die Fristen für die Rechtsverfolgung zulässig , sofern sie für
derartige Klagen nicht ungünstiger sind als für gleichartige Klagen , die das innerstaatliche Recht betreffen , und sofern sie die Ausübung der durch
das Gemeinschaftsrecht gewährten Rechte nicht praktisch unmöglich machen .

VASWANI17
( 19 ) According to the case law of the Court of Justice , national rules concerning time limits for bringing actions may be allowed ,
provided that such actions are not less favourable than those relating to the like actions under national law and
do not make it impossible in practice to exercise the rights conferred by Community law .

+SSP
( 19 ) According to the case law of the Court of Justice , national rules concerning the time limits for prosecution are admissible ,
provided that they are not less favourable to such actions than those for similar actions under national law if they do not make it impossible
to exercise the rights conferred by Community law in practice .

CHEN20
( 19 ) According to the case law of the Court of Justice , national rules on the time limits for the exercise of jurisdiction may be allowed ,
provided that they are not less favourable for such actions than for the same actions covered by national law and
do not make it impossible in practice to exercise the rights conferred by Community law .

+SSP
( 19 ) The Court of Justice has case-law that national provisions relating to time limits for bringing actions may be accepted ,
provided that they are no less favourable in such actions than those relating to similar actions brought under national law ,
provided that they do not practically make it impossible for the exercise of rights conferred by Community law .

Reference
( 19 ) According to the case-law of the Court of Justice , national rules relating to time limits for bringing actions are admissible provided that they are not less
favourable than time limits for similar actions of a domestic nature and that they do not render the exercise of rights conferred by the Community law impossible in practice .

Terminology {Gerichtshof→Court of Justice, Gemeinschaftsrecht→Community law, zulässig→admissible, Rechtsprechung→case-law}

Table 9: Translation outputs of the models trained with or without our method.


