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Abstract

Text-based games (TBGs) have emerged as
useful benchmarks for evaluating progress at
the intersection of grounded language under-
standing and reinforcement learning (RL). Re-
cent work has proposed the use of external
knowledge to improve the efficiency of RL
agents for TBGs. In this paper, we posit that to
act efficiently in TBGs, an agent must be able
to track the state of the game while retrieving
and using relevant commonsense knowledge.
Thus, we propose an agent for TBGs that in-
duces a graph representation of the game state
and jointly grounds it with a graph of com-
monsense knowledge from ConceptNet. This
combination is achieved through bidirectional
knowledge graph attention between the two
symbolic representations. We show that agents
that incorporate commonsense into the game
state graph outperform baseline agents.

1 Introduction

Text-based games (TBGs) are simulation environ-
ments in which an agent interacts with the world
purely in the modality of text. TBGs have emerged
as key benchmarks for studying how reinforce-
ment learning agents can tackle the challenges of
language understanding, partial observability, and
action generation in combinatorially large action
spaces. One particular text-based gaming environ-
ment, TextWorld (Côté et al., 2018), has received
significant attention in recent years.

Recent work has shown the need for additional
knowledge to tackle the challenges in TBGs. Am-
manabrolu and Riedl (2019) proposed handcrafted
rules to represent the current state of the game us-
ing a state knowledge graph (much like a map of
the game). Our own prior work (Murugesan et al.,
2021) proposed an extension of TextWorld, called
TextWorld Commonsense (TWC), to test agents’
ability to use commonsense knowledge while inter-
acting with the world. The hypothesis behind TWC
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Figure 1: An illustration of a TBG that requires both
the state representation of the game as well as the exter-
nal commonsense knowledge for efficient exploration
and learning the best action trajectory. The observation
text feeds into the state and commonsense graphs; and
the best action trajectory is computed based on infor-
mation from both graphs.

is that commonsense knowledge allows the agent to
understand how current actions might affect future
world states; and enable look-ahead planning (Juba,
2016), thus leading to sample-efficient selection of
actions at each step and driving the agent closer to
optimal performance.

In this paper, we posit that to efficiently
act in such text-based gaming environments,
an agent must be able to effectively track the
state of the game, and use that to jointly re-
trieve and leverage the relevant commonsense
knowledge. For example, commonsense knowl-
edge such as apple should be placed in the

refrigerator would help the agent to act closer
to the optimal behavior; whereas state informa-
tion like apple is on the table would help the
agent plan more efficiently. Thus, we propose a
technique to: (a) track the state of the game in
the form of a symbolic graph that represents the
agent’s current belief of the state of the world (Am-
manabrolu and Hausknecht, 2020a; Adhikari et al.,
2020); (b) retrieve the relevant commonsense
knowledge from ConceptNet (Speer et al., 2017),
and (c) jointly leverage the state graph and the
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retrieved commonsense graph. This combined in-
formation is then used to select the optimal action.
Finally, we demonstrate the performance of our
agent against state of the art baseline agents on the
TWC Environment.

2 Related Work

Text-based reinforcement learning Text-based
games have recently emerged as a promising frame-
work to drive advances in RL research. Prior work
has explored text-based RL to learn strategies based
on an external text corpus (Branavan et al., 2012)
or from textual observations (Narasimhan et al.,
2015). In both cases, the text is analyzed and con-
trol strategies are learned jointly using feedback
from the gaming environment. Zahavy et al. (2018)
proposed the Action-Elimination Deep Q-Network
(AE-DQN), which learns to classify invalid actions
to reduce the action space. The use of the common-
sense and state graph in our work has the same
goal of down-weighting implausible actions by
jointly reasoning over the state of the game and
prior knowledge. Recently, Côté et al. (2018) intro-
duced TextWorld and Murugesan et al. (2021)
proposed TextWorld Commonsense (TWC), a text-
based gaming environment which requires agents
to leverage prior knowledge in order to solve the
games. In this work, we build on the agents of
Murugesan et al. (2021) and show that prior knowl-
edge and state information are complementary and
should be learned jointly.

KG-based state representations A recent line
of work in TBGs aims at enhancing generaliza-
tion performance by using symbolic representa-
tions of the agent’s belief. Notably, Ammanabrolu
and Riedl (2019) proposed KG-DQN and Am-
manabrolu and Hausknecht (2020b) proposed KG-
A2C. The idea behind both approaches is to rep-
resent the game state as a belief graph. Recently,
Adhikari et al. (2020) proposed the graph-aided
transformer agent (GATA), an approach to construct
and update a latent belief graph during planning.
Our work integrates these graph-based state rep-
resentations with a prior commonsense graph that
allows the agent to better model the state of the
game using prior knowledge.

Sample-efficient reinforcement learning A
key challenge for current RL research is low
sample efficiency (Kaelbling et al., 1998). To
address this problem, there have been few attempts
on adding prior or external knowledge to RL

approaches. Notably, Murugesan et al. (2020)
proposed to use prior knowledge extracted from
ConceptNet. Garnelo et al. (2016) proposed Deep
Symbolic RL, which relies on techniques from
symbolic AI as a way to introduce commonsense
priors. There has also been work on policy
transfer (Bianchi et al., 2015) which aims at
reusing knowledge gained in different environ-
ments. Moreover, Experience replay (Wang et al.,
2016; Lin, 1992, 1993) provides a framework
for how previous experiences can be stored and
later reused. In this paper, following Murugesan
et al. (2020), we use external KGs as a source of
prior knowledge and we combine this knowledge
representation with graph-based state modeling in
order to allow the agents to act more efficiently.

3 Model & Architecture

TBGs can be framed as partially observable
Markov decision processes (POMDPs) (Spaan,
2012) denoted 〈S,A,O,T,E,r〉, where: S denotes
the set of states, A denotes the action space, O de-
notes the observation space, T denotes the state
transition probabilities, E denotes the conditional
observation emission probabilities, and r : S×A→
R is the reward function. The observation ot at time
step t depends on the current state. Both observa-
tions and actions are rendered in text. The agent
receives a reward at every time step t: rt = r(ot ,at),
and the agent’s goal is to maximize the expected
discounted sum of rewards: E[∑t γ trt ], where γ ∈
[0,1] is a discount factor.

The high-level architecture of our model con-
tains three major components: (a) the input en-
coder; (b) a graph-based knowledge extractor; and
(c) the action prediction module. The input encod-
ing layers are used to encode the observation ot
at time step t and the list of admissible actions us-
ing GRUs (Ammanabrolu and Hausknecht, 2020a).
The graph-based knowledge extractor collects rele-
vant knowledge from complementary knowledge
sources: the game state, and external common-
sense knowledge. We allow information from each
knowledge source to guide and direct better repre-
sentation learning for the other.

Recent efforts have demonstrated the use of pri-
marily two different types of knowledge sources for
TextWorld RL Agents. A State Graph (SG) cap-
tures state information (Ammanabrolu and Riedl,
2019) about the environment represented via a
language-based semantic graph. The example in
Figure 2 shows that information such as Apple→
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Figure 2: Visualization of our overall approach with BiKE

on → Table is extracted from the textual obser-
vations from the environment. Specifically, Am-
manabrolu and Riedl (2019) create such knowl-
edge graphs by extracting information using Ope-
nIE (Angeli et al., 2015) and some manual heuris-
tics. A Commonsense Graph (CG) captures ex-
ternal commonsense knowledge (Murugesan et al.,
2021) between entities (from commonsense knowl-
edge sources such as ConceptNet). We posit that
RL agents can make use of information from both
these graphs during different sub-tasks, enabling
efficient learning. The SG provides the agent with a
symbolic way of representing its current perception
of the game state, including its understanding of the
surroundings. On the other hand, the CG provides
the agent with complementary human-like knowl-
edge about what actions make sense in a given state,
thus enabling more efficient exploration of the very
large natural language based action space.

We combine the state information with common-
sense knowledge using a Bidirectional Knowledge-
graph attEntion (BiKE) mechanism, which re-
contextualizes the state and commonsense graphs
based on each other for optimal action trajectories.
Figure 2 provides a compact visualization.

4 Knowledge Integration using BiKE

The aforementioned graph-based knowledge ex-
tractor produces M entities (c1

t ,c
2
t , · · · ,cM

t ) for
the commonsense graph (CG); and N entities
(s1

t ,s
2
t , · · · ,sN

t ) for the state graph (SG). Note that
the entities extracted for the CG are based on the

vocabulary used in ConceptNet, and may not nec-
essarily have the same set of entities as the SG
(Figure 1). We embed the extracted entities in both
graphs using Numberbatch (Liu and Singh, 2004).
We then encode these graph representations us-
ing a Graph Attention Network (GAT) (Veličković
et al., 2018). GAT allows the node entities st and ct
within the graphs GS

t and GC
t respectively to share

information among each other by message passing.

We then integrate sub-graphs extracted from
the previous steps to improve the agent’s explo-
ration strategy. Inspired from bidirectional atten-
tion mechanism in QA (Seo et al., 2016), we use
BiKE attention mechanism between GS

t and GC
t to

fuse the knowledge from these two graphs. The in-
formation flow across the graphs allows the model
to learn commonsense-aware state graph represen-
tations, and state-aware commonsense knowledge
graph representations.

To implement this, we compute a graph similar-
ity matrix S ∈ RN×M across the graph entities to
learn a state-to-commonsense graph attention func-
tion and a commonsense-to-state graph attention
function. Si j = f (si

t ,c
j
t ) captures how each node si

t

in the graph GS
t is linked to a node c j

t in the other
graph GC

t , and vice versa. Here f is a learnable
function that maps si

t and c j
t to a similarity score.

This allows us to measure the similarity between
(for instance) Apple observed in the state graph
and Apple observed in the commonsense graph.
We compute the state-to-commonsense graph atten-
tion values A by taking a softmax along the rows
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Figure 3: Performance evaluation (showing mean and standard deviation averaged over 3 runs) for the three diffi-
culty levels: Easy (left), Medium (middle), Hard (right) using normalized score and the number of steps taken.

of S: this signifies the attention bestowed by each
state graph node on the nodes of the commonsense
graph. Similarly, we compute the commonsense-to-
state graph attention values Ā by taking a softmax
along the columns of S. We capture the relevant
knowledge in the commonsense graph Gt

C by up-
dating the state representations s̄i

t . We compute the
updated state representation as: si

t+1 = g(si
t , s̃

i
t , s̄

i
t);

where s̃i
t = ∑ j Ai jc j

t , s̄i
t = ∑ j Ai j

∑i′ Ā ji′si′
t , and g is

a learnable function that maps the concatenated si
t ,

s̃i
t , and s̄i

t to an updated state representation. Fi-
nally, we use the general attention between the ot
and the state graph entities st+1 to get the state
graph representation gS

t+1 (Luong et al., 2015). We
perform a similar process for the commonsense-to-
state graph attention and obtain the commonsense
graph representation: gC

t+1. We select the relevant
action by computing an attention over the actions:
h(ot ,ai

t ,gS
t+1,g

C
t+1); where h is a learnable function

that projects the concatenation 〈 ot ,ai
t ,gS

t+1,g
C
t+1 〉

to the attention score for the ith action.

5 Experiments

We generate a set of games with 3 difficulty levels
using the TWC (Murugesan et al., 2021) frame-
work: (i) easy level, which has 1 room containing
1 to 3 objects; (ii) medium level, which has 1 or 2
rooms with 4 or 5 objects; and (iii) hard level, a
mix of games with a high number of objects (6 or
7 objects in 1 or 2 rooms) or high number of rooms
(3 or 4 rooms containing 4 or 5 objects).

We compare 5 text-based RL agents: (a) a text-
only agent (Text), which selects the best action

based only on the encoding of the history of obser-
vations; (b) DRRN (He et al., 2016; Narasimhan
et al., 2015), which relies on the relevance between
the observation and action spaces; (c) an agent en-
hanced with access to an external commonsense
knowledge graph (+Commonsense) (Murugesan
et al., 2021); (d) an agent that, following Am-
manabrolu and Hausknecht (2020a), models the
state of the world as a symbolic graph (+State);
and (e) the agent (BiKE) described in Section 3,
which relies on both state and commonsense graph
representations. The agents are trained over 100
episodes with a 50-step maximum. All policies are
learned using Actor-Critic (Mnih et al., 2016).

5.1 Improving Performance with State and
Commonsense Knowledge

Figure 3 shows the learning curves for the text-only
agent and the agents equipped with state and/or
commonsense graph representations at training
time. For reference, we also report the performance
of an agent that selects a random action at each time
step (Random). We notice that, overall, agents
equipped with either state or commonsense graph
representations perform better than their text-only
counterparts, both in terms of the number of steps
taken and the normalized score. In particular, the
BiKE agent outperforms all other agents in all diffi-
culty levels, showing that symbolic state represen-
tations and prior commonsense knowledge can be
jointly used for better sample efficiency and results.
Table 1 shows the performance of the agents on
the test set. Following Murugesan et al. (2021), we
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Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83 ± 2.16 0.88 ± 0.04 45.90 ± 0.22 0.60 ± 0.02 49.84 ± 0.38 0.30 ± 0.02
DRRN 22.08 ± 4.17 0.82 ± 0.06 45.18 ± 1.19 0.59 ± 0.02 49.82 ± 0.61 0.29 ± 0.01
+Commonsense (TWC) 20.59 ± 5.01 0.89 ± 0.06 44.89 ± 1.52 0.62 ± 0.03 48.45 ± 1.13 0.32 ± 0.04
+State (KG-A2C) 22.10 ± 2.91 0.86 ± 0.06 43.05 ± 2.52 0.62 ± 0.03 48.00 ± 0.61 0.32 ± 0.00
+State + Commonsense (BiGAF) 18.27 ± 1.13 0.94 ± 0.02 41.01 ± 1.61 0.64 ± 0.02 47.19 ± 0.64 0.34 ± 0.02

O
U

T

Text 29.90 ± 2.92 0.78 ± 0.02 44.08 ± 0.93 0.55 ± 0.01 50.00 ± 0.00 0.20 ± 0.02
DRRN 29.71 ± 1.81 0.76 ± 0.05 44.04 ± 1.64 0.56 ± 0.02 50.00 ± 0.00 0.21 ± 0.02
+Commonsense (TWC) 27.74 ± 4.46 0.78 ± 0.07 42.61 ± 0.65 0.58 ± 0.01 50.00 ± 0.00 0.19 ± 0.03
+State (KG-A2C) 28.34 ± 3.63 0.80 ± 0.07 41.61 ± 0.37 0.59 ± 0.01 50.00 ± 0.00 0.21 ± 0.00
+State + Commonsense (BiGAF) 25.59 ± 1.92 0.83 ± 0.01 39.34 ± 0.72 0.61 ± 0.01 50.00 ± 0.00 0.23 ± 0.02

Table 1: Test-set performance results for within distribution (IN) and out-of-distribution (OUT) games.

(a) Average relevance of the main action templates to the
state and commonsense graphs across the hard games

Timestep t t +1 t +2

Room Living Room Living Room Bedroom

Action Taken take checkered
jumper go west

insert checkered
jumper into wardrobe

Most relevant graph State graph State graph Commonsense graph

Most relevant nodes checkered jumper checkered jumper,
exit to west wardrobe

(b) Example of most relevant graphs and nodes by action taken in an
excerpt of a game in the hard difficulty level

Figure 4: Analysis of the relevance given to the state and commonsense graphs (a) and to their nodes (b) by action taken

4.1 Improving RL Performance with State
and Commonsense Knowledge

Figure 3 shows the learning curves for the text-only
agent and the agents equipped with state and/or
commonsense graph representations at training
time. For reference, we also report the performance
of an agent that selects a random action at each time
step (Random). We notice that, overall, agents
equipped with either state or commonsense graph
representations perform better than their text-only
counterparts, both in terms of the number of steps
taken and the normalized score. In particular, the
BiGAF agent (defined in Section 2) outperforms
all other agents in all difficulty levels, showing
that symbolic state representations and prior com-
monsense knowledge can be jointly used for better
sample efficiency and results.

4.2 Qualitative Analysis
Table 1 shows the performance of the agents on
the test set. Following Murugesan et al. (2021), we
compared our agents on two test sets: (IN) uses
the same entities as the training set, and (OUT)
uses entities that were not included in the training
set. From Figure 3 and Table 1, we notice that
the +Commonsense agent performs better on the
easy level, whereas the +State agent performs bet-
ter on the medium and hard levels. This suggests
that the state representation can be leveraged to
drive exploration and interaction with objects in
environments with multiple rooms; whereas prior
commonsense knowledge allows the agent to act
more efficiently by selecting the appropriate com-
monsensical locations of different objects. In order
to investigate this hypothesis, we computed the av-

erage importance given by the agent to the state
graph and the commonsense graph when selecting
the different action templates shown in Figure 4a.
For each action template, the figure shows the nor-
malized attention weight given to the two graphs,
averaged across 5 runs of all games in the hard
difficulty level. We notice that actions requiring in-
formation about the goal of the game, like the put
and insert actions, benefit more from attending
to the commonsense graph; whereas actions aimed
at exploring the environment and collecting objects,
like the go and take actions, benefit more from
the state representation.

As a further qualitative analysis, we report in
Figure 4b an example of the most attended nodes
and graphs in an excerpt of a game belonging to
the medium difficulty level. As noted above, the
take and go actions rely more on the state graph,
whereas the insert action relies on the common-
sense graph. Among the nodes in these graphs, the
entities mentioned in the action receive the highest
attention score.

5 Conclusion

We hypothesize that in order to be sample-efficient
in text-based games, agents must be able to jointly
track the state of the game and retrieve the rel-
evant commonsense knowledge. We proposed a
technique that models both forms of knowledge as
graphs and combines them using a novel graph co-
attention mechanism. We show that the resulting
agent is more sample-efficient than approaches that
consider neither or only one of these graphs.

(b) Example of most relevant graphs and nodes (by action taken) for
one example game excerpted from the hard difficulty level.

Figure 4: Relevance given to the: (a) state and commonsense graphs; and to (b) their nodes (by action taken).

Easy Medium Hard
#Steps Norm. Score #Steps Norm. Score #Steps Norm. Score

IN

Text 23.83 ± 2.16 0.88 ± 0.04 44.08 ± 0.93 0.60 ± 0.02 49.84 ± 0.38 0.30 ± 0.02
DRRN 22.08 ± 4.17 0.82 ± 0.06 44.04 ± 1.64 0.59 ± 0.02 49.82 ± 0.61 0.29 ± 0.01
+Commonsense (TWC) 20.59 ± 5.01 0.89 ± 0.06 42.61 ± 0.65 0.62 ± 0.03 48.45 ± 1.13 0.32 ± 0.04
+State (KG-A2C) 22.10 ± 2.91 0.86 ± 0.06 41.61 ± 0.37 0.62 ± 0.03 48.00 ± 0.61 0.32 ± 0.00
+State + Commonsense (BiKE) 18.27 ± 1.13 0.94 ± 0.02 39.34 ± 0.72 0.64 ± 0.02 47.19 ± 0.64 0.34 ± 0.02

O
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T

Text 29.90 ± 2.92 0.78 ± 0.02 45.90 ± 0.22 0.55 ± 0.01 50.00 ± 0.00 0.20 ± 0.02
DRRN 29.71 ± 1.81 0.76 ± 0.05 45.18 ± 1.19 0.56 ± 0.02 50.00 ± 0.00 0.21 ± 0.02
+Commonsense (TWC) 27.74 ± 4.46 0.78 ± 0.07 44.89 ± 1.52 0.58 ± 0.01 50.00 ± 0.00 0.19 ± 0.03
+State (KG-A2C) 28.34 ± 3.63 0.80 ± 0.07 43.05 ± 2.52 0.59 ± 0.01 50.00 ± 0.00 0.21 ± 0.00
+State + Commonsense (BiKE) 25.59 ± 1.92 0.83 ± 0.01 41.01 ± 1.61 0.61 ± 0.01 50.00 ± 0.00 0.23 ± 0.02

Table 1: Test-set performance results for within distribution (IN) and out-of-distribution (OUT) games.

compared our agents on two test sets: (IN) uses the
same entities as the training set, and (OUT) uses
entities that were not included in the training set.
The experimental results show that the BiKE agent
generalizes better than all the baselines across the
3 difficulty levels.

5.2 Qualitative Analysis

From Figure 3 and Table 1, we notice that the
+Commonsense agent performs better on the easy
level, whereas the +State agent performs better on
the medium and hard levels. This suggests that the
state representation can be leveraged to drive explo-
ration and interaction with objects in environments
with multiple rooms; whereas prior commonsense
knowledge allows the agent to act more efficiently
by selecting the appropriate commonsensical loca-
tions of different objects. In order to investigate
this hypothesis, we computed the average impor-
tance given by the agent to the state graph and the
commonsense graph when selecting the different
action templates shown in Figure 4a. For each
action template, the figure shows the normalized
attention weight given to the two graphs, averaged
across 5 runs of all games in the hard difficulty
level. Actions requiring information about the goal
of the game, like put and insert, benefit more
from attending to the commonsense graph; whereas
actions aimed at exploring the environment and

collecting objects, like go and take, benefit more
from the state representation.

As further qualitative analysis, we report an ex-
ample of the most attended nodes and graphs from
an excerpt of a game belonging to the hard dif-
ficulty level in Figure 4b. As noted above, the
take and go actions rely more on the state graph,
whereas the insert action relies on the common-
sense graph. Among the nodes in these graphs,
the entities that are finally mentioned in the action
receive the highest attention score. This shows
how our agent is able to transfer the bidirectional
attention over graphs into specific game instances.

6 Conclusion

In this paper, we showed that in order to be sample-
efficient in TBGs, agents must be able to jointly
track the state of the game and relevant common-
sense knowledge. We proposed a technique that
models both forms of knowledge as graphs, and
combines them using Bidirectional Knowledge-
graph attEntion (BiKE). The resulting agent was
found to be more sample-efficient than approaches
that considered neither or only one of these graphs.
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Broader Impact and Discussion of Ethics

While our model is not tuned for any specific real-
world application, our method could be used in sen-
sitive contexts such as legal or health-care settings;
and it is essential that any work that builds on our
approach undertake extensive quality-assurance
and robustness testing before using it in their set-
ting. The dataset used in our work does not contain
sensitive information to the best of our knowledge.
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