
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 637–645

August 1–6, 2021. ©2021 Association for Computational Linguistics

637

Improving Compositional Generalization in Classification Tasks
via Structure Annotations

Juyong Kim Pradeep Ravikumar
Carnegie Mellon University

{juyongk,pradeepr}@cs.cmu.edu

Joshua Ainslie Santiago Ontañón
Google Research

{jainslie,santiontanon}@google.com

Abstract
Compositional generalization is the ability to
generalize systematically to a new data distri-
bution by combining known components. Al-
though humans seem to have a great ability
to generalize compositionally, state-of-the-art
neural models struggle to do so. In this work,
we study compositional generalization in clas-
sification tasks and present two main contribu-
tions. First, we study ways to convert a natu-
ral language sequence-to-sequence dataset to a
classification dataset that also requires compo-
sitional generalization. Second, we show that
providing structural hints (specifically, provid-
ing parse trees and entity links as attention
masks for a Transformer model) helps compo-
sitional generalization.

1 Introduction

Compositional generalization is the ability of a
system to systematically generalize to a new data
distribution by combining known components or
primitives. For example, assume a system has
learned the meaning of “jump” and that “jump
twice” means that the action “jump” has to be re-
peated two times. Upon learning the meaning of
the action “jax”, it should be able to infer what
“jax twice” means. Although modern neural archi-
tectures are pushing the state of the art in many
complex natural language tasks, these models still
struggle with compositional generalization (Hup-
kes et al., 2020).

In order to advance research in this important
direction, in this paper we present two main con-
tributions 1. First, we present a binary classifica-
tion dataset which is hard in a compositional way.
This allows for studying the compositional gener-
alization ability of a larger range of models than
sequence generation tasks, since the task only re-
quires an encoder, and not a decoder. Specifically,
1 http://goo.gle/compositional-classification

we present a methodology to convert an existing se-
mantic parsing dataset, CFQ (Keysers et al., 2019),
into a binary classification dataset that is also com-
positionally hard.

Our second and main contribution is showing
that a transformer-based model can better gener-
alize compositionally if we provide hints on the
structure of the input. Specifically, we do so by
modifying the attention mask used by the model.
This is an interesting result, as (except for two addi-
tions, which we elaborate on in Section 4) attention
masks do not “add” any attention capabilities to
the model. Instead, it seems that it is the removal
of certain attention pairs that makes the difference.
This suggests that vanilla Transformer is having a
hard time suppressing non-compositional attention.

2 Background

This section overviews existing work on composi-
tional generalization and then some background on
the Transformer models used in this paper. Please
see Section B in the appendix for detailed review.

Compositional Generalization. Composi-
tional generalization can manifest in different
ways (Hupkes et al., 2020) such as systematicity
(recombination of known parts and rules) or produc-
tivity (extrapolation to longer sequences than those
seen during training), among others. Early work
focused on showing how different deep learning
models do not generalize compositionally (Liška
et al., 2018), and datasets such as SCAN (Lake and
Baroni, 2018) or CFQ (Keysers et al., 2019) were
proposed to show these effects.

Work toward improving compositional gener-
alization has proposed ideas such as Syntactic
attention (Russin et al., 2019), increased pre-
training (Furrer et al., 2020), data augmenta-
tion (Andreas, 2019), or general purpose sequential
models such as Neural Turing Machines or Differ-

http://goo.gle/compositional-classification


638

ential Neural Computers (Graves et al., 2016).
ETC. For our experimental evaluation we use

the ETC (Ainslie et al., 2020) Transformer model.
ETC extends the standard Transformer model in 3
key ways: (1) it uses a global-local attention mech-
anism to scale to long inputs, (2) it uses relative
attention (Shaw et al., 2018) and flexible masking
and (3) it uses a new pre-training loss based on
Contrastive Predictive Coding (CPC) (Oord et al.,
2018). The last two extensions allow it to handle
structured inputs containing, for example, hierar-
chical structure. In this work, we rely on (2) to
annotate the structure of the input.

3 The CFQ Classification Dataset

The Compositional Freebase Questions (CFQ)
dataset (Keysers et al., 2019) is an NLU dataset to
measure the compositional capability of a learner.
It is designed around the task of translating a natu-
ral language question into a SPARQL query. The
dataset has been automatically generated by a gram-
mar and contains 239,357 sentence/query pairs. An
example is shown in Figure 3a.

As shown in the original work of Keysers et al.
(2019) in order to properly measure the composi-
tional generalization ability of a model, the train
and test sets should be split with similar distribu-
tions of tokens (atoms), but different distributions
of their compositions (the compounds). In the CFQ
dataset, to ensure this, two divergences, namely
atom divergence and compound divergence, be-
tween the train and dev/test set are measured while
constructing the splits. As a result, carefully se-
lected splits called maximum compound divergence
(MCD) splits are hard for standard neural networks
(they perform well in the train set, but poorly in the
test set), while the random splits are easier.

We convert the CFQ dataset into a dataset with
a binary classification task. In this new dataset, the
input is a question and a SPARQL query, and the
task is to determine whether these two sequences
have the same meaning or not. Two considera-
tions must be made to ensure the resulting dataset
requires compositional generalization:

Negative Example Strategies: Positive in-
stances of the binary classification task can be
obtained directly from the original dataset, but to
obtain negatives, we use either of two strategies:

• Random negatives: We pair each question
with a randomly chosen query.

• Model negatives: Using baseline models
(LSTM (Hochreiter and Schmidhuber, 1997),
Transformer (Vaswani et al., 2017), and Uni-
versal Transformer (Dehghani et al., 2018))
trained on the original CFQ dataset, we get
top-k query predictions for each question. Af-
ter filtering syntactically invalid queries and
duplicates, we can get hard examples for clas-
sification from their incorrect predictions.

Model negatives are important, as otherwise, the
task becomes too easy and would likely not require
compositional generalization. See Figure 1 for ex-
amples of random/model negative instances.

Compound Distribution of Negative Examples:
To prevent data leakage (e.g., compounds from the
test set of the original CFQ dataset leaking into
the training set of the classification CFQ dataset),
we carefully choose the sampling set for random
negatives and the train and inference set for model
negatives. We generate two splits of the original
CFQ dataset. Each split contains three sets with
50% data on train, 25% on dev and 25% on test.
The first is a random split of the data, and the sec-
ond (MCD split), maximizes the compound diver-
gence between train and dev/test using the same
method as in the original CFQ work. Then, we
process the examples in each of these sets gen-
erating positive and negative examples. For ran-
dom negatives, we sample negative queries for each
questions from the set which the original example
belongs to (train/dev/test). For model negatives, to
generate negatives for the training set, we divide
it into two halves, train models in one, and gener-
ate negatives with the other half. For dev/test, we
train on dev and generate negatives on test, and
vice versa. Figure 2 illustrates this procedure, de-
signed to ensure there is no leakage of compounds
between train and dev/test.

For both strategies, we make 1 positive and 3
negatives per original CFQ example. Also, we set
aside 5% of the train set as a hold-out set to check
i.i.d. generalization.

4 Compositional Generalization via
Structure Annotation

Our hypothesis is that part of the difficulty in com-
positional generalization is to parse the structure
of the input. To test this, we evaluate the perfor-
mance of models when we provide annotations
for two structural elements of the inputs: parse



639

Figure 1: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance. Note
the model negative resembles the positive, while the random negative query differs considerably.

Figure 2: Negative example strategies. Different colors
indicate different compound distributions.

trees of both the natural language sentences and
SPARQL queries, and entity cross links (linking en-
tity mentions from the natural language side to the
corresponding mentions in the SPARQL query).

The parse trees of the questions are already given
in the original CFQ dataset as constituency-based
parse trees. Since the trees include intermediate
nodes indicating syntactic structures, we append to-
kens representing them at the end of each question.
We created a simple parser to generate dependency-
based parse trees for the SPARQL queries. We join
the roots of the two trees to make a single global
tree with the <CLS> token as the root.

We represent the structure of the inputs by mask-
ing attention (“hard mask”) or with relative atten-
tion (Shaw et al., 2018) labels (“soft mask”).

• Hard mask: We customize the binary attention
mask of the original Transformer to only allow
attention between tokens connected by the
edges of the parse tree.

• Soft mask: For every pair of input tokens, we
assign relative attention labels based on which
of the following edge relationships applies:
parent-to-child, child-to-parent, itself, from-
or-to-root, or entity-cross-link.

Additionally, we allow attention pairs in the

masks connecting the entities appearing both in
the question and the queries. We call these links en-
tity cross links, and they are found by simple string
match (e.g. “M0”). Notice that while relative atten-
tion labels and the additional tokens to represent the
constituency parse tree of the natural language add
capabilities to the model, the “hard mask” structure
annotations described above (which result in the
larger performance gains) do not add any atten-
tion capabilities to the model. Instead, they simply
remove non-structure attention edges. Figure 3b
shows the parse trees, and Figure 3c and 3d show
the masks for an example.

5 Results and Discussion

We used the ETC (Ainslie et al., 2020) Transformer
model implementation as it allows us to provide
the hard and soft masks described above in an easy
way. In all experiments, we report AUC in the dev
set as the evaluation metric (we did not evaluate on
the test set). Please see Section A in the appendix
for training details.

5.1 The CFQ Classification Dataset
We generate two classification datasets: “random
split & random negatives” and “MCD split &
model negatives”, and evaluate LSTM and Trans-
former models. For both datasets, we evaluate AUC
on the hold-out set (taken out of the training set as
described above) to test i.i.d. generalization, and
on the dev set to test compositional generalization.

As shown in Table 1, models easily generalize on
the hold-out set (AUC≥ 0.99). All baseline models
also achieve almost 1.0 AUC in the dev set of the
“random split & random negatives”. However, in
the “MCD split & model negatives” models cannot
generalize well on the dev set, showing composi-
tional generalization is required. Note that random
guessing achieves 0.5 AUC score.



640

(a) A CFQ example

(b) Parse trees of the CFQ example (c) Hard mask (d) Soft mask

Figure 3: Structure annotations for a CFQ example. We extract the hierarchical structure of the question and
query of CFQ examples and use them to mask attention (hard mask) and/or provide relative attention labels (soft).
Different colors indicate different relative attention labels.

Model Random Split & Random Neg MCD Split & Model Neg
Train Hold-out Dev Train Hold-out Dev

LSTM 1.0000 0.9998 0.9998 1.0000 0.9972 0.8310
Transformer (2 layers) 0.9998 0.9997 0.9998 0.9988 0.9931 0.8789
Transformer (6 layers) 0.9999 1.0000 0.9999 0.9995 0.9931 0.8738

Table 1: AUC on the CFQ classification dataset generated with different methods

Model Mask
Type

Cross
link

MCD Split & Model Neg
Train Hold-out Dev

LSTM - 1.0000 0.9972 0.8310
Transformer - 0.9995 0.9931 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9994 0.9934 0.8868

Hard
N 0.9999 0.9978 0.9061

Y
1.0000 0.9992 0.9656

Soft 0.9995 0.9936 0.8819
Both 1.0000 0.9991 0.9721

Table 2: AUC on the CFQ classification dataset (MCD
Split & Model Neg) with various structure annotations

5.2 Structure Annotation

Table 2 compares different ablations of our struc-
ture annotation approach compared to the baseline
models. The first (no masks and no cross links)
just shows that adding tokens to the input to repre-
sent the constituency parsing and moving to ETC
only provide small gains (from 0.8738 to 0.8868
AUC). Adding a hard mask already helps the model
(0.9061 AUC), and adding cross links on top of that
achieves very significant gains (0.9656 AUC). Fi-
nally, soft masks by themselves do not seem to help,
but a combination of soft and hard masks achieves
our best result of 0.9721 AUC.

The interesting result here is that adding the hard

mask with entity cross links only removes potential
attention pairs, so it does not increase model ca-
pacity in any way. In other words, the underlying
transformer model is in principle able to generalize
compositionally to some extent but seems to strug-
gle in suppressing non-compositional attention.

6 Conclusions

The main contribution of this paper is to show that
providing structure annotations in the form of at-
tention masks significantly helps Transformer mod-
els generalize compositionally. This is interesting
for two main reasons: first, it shows that neural
network models do have the innate ability to gen-
eralize compositionally to some extent, but need
some guidance to do so (e.g., by providing attention
masks as in our work). This reinforces previous
work showing that LSTMs also can, in principle,
generalize compositionally, but they just do so with
very low probability (Liška et al., 2018). The sec-
ond reason is that structure annotations, which we
provided manually, could be generated by another
model in future work. We also presented a pro-
cedure for generating classification datasets that
require some degree of compositional generaliza-
tion starting from sequence generation datasets.



641

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium
on operating systems design and implementation
({OSDI} 16), pages 265–283.

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284.

Jacob Andreas. 2019. Good-enough composi-
tional data augmentation. arXiv preprint
arXiv:1904.09545.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer-
sal transformers. arXiv preprint arXiv:1807.03819.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature,
538(7626):471–476.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? Journal of Ar-
tificial Intelligence Research, 67:757–795.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. In International Conference on
Learning Representations.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Adam Liška, Germán Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint
arXiv:1802.06467.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.



642

A Full Experimental Results

In this section, we report the full results on the CFQ
classification dataset and the structure annotation
experiments. In all configurations, multiple eval-
uation metrics (accuracy, F1 score, and AUC) are
computed by averaging the results of two randomly
initialized experiments. We test each network us-
ing only the val set, not the test set, since the main
purpose of the experiment is to compare the com-
positional generalization ability, not to select best
hyper-parameter. Accuracy and F1 score are com-
puted with the threshold 0.5 of the softmax output
of label 1.

All the experiments of the CFQ classification
datasets were run using the TensorFlow (Abadi
et al., 2016) framework. As we explain in the Sec-
tion 5, we use the ETC Transformer (Ainslie et al.,
2020) code for relative position embeddings. For
the Transformer implementation, we use the code
provided in a Tensorflow tutorial. The training
is run on the n1-highmem-8 instance (52GB
RAM, 8 virtual cpus) of Google Cloud Platform,
extended with NVIDIA Tesla V100 GPUs.

Hyper-parameters used in the training of neural
networks are listed in Table 3. One thing that we
want to clarify is that training steps are required
number of steps to converge and the training did
not last longer than needed. Nevertheless, the ex-
periments with structure annotations required more
training steps than LSTM/Transformer, especially
when the network is using hard mask. We conjec-
ture that training with the hard mask of parse trees
is slow since only a small part of the attention is
not masked and hence propagating the gradient via
supervision at the <CLS> position is slow.

A.1 The CFQ classification Dataset

Table 4 shows the classification results of various
methods of generating classification datasets, in-
cluding one additional configuration (MCD Split &
Random Negatives). The dataset generated by this
new configuration has the train and the dev/test set
that have different compound distributions, because
it is based on the MCD split. However, because of
the method used in generating negative instances
(random negatives), the binary classification of cor-
respondence can be easily generalizable to the dev
set.

Figure 4: Block attention mask for the CFQ classifi-
cation example of Figure 3. The dots at top-right and
bottom-left are from entity cross links.

A.2 Structure Annotation

One possible annotation of the input structure is a
mask to allow tokens of the question and SPARQL
queries to only attend within their segment. We
call this mask as block attention and test it as an
alternative to the hierarchical attention structures
(parse trees). This mask is denser than the attention
mask from parse trees and sparser than “no mask”.
Figure 4 shows the block attention for the examples
shown in the Figure 3.

Table 5 reports the full results of experiments on
structure annotations. In all cases, entity cross links
improve compositional generalization on the dev
set, but provide a significant gain only when com-
bined with the parse tree attention and the attention
is guided by the “hard mask”. As we can see in
the “hard mask” experiments, block attention does
not improve compositional generalization, which
suggests a need for more detailed attention mask
of input structure.

B Related Works on Compositional
Generalization

In this section, we review prior works on improving
compositional generalization in more detail.

Russin et al. (2019) proposed to split the atten-
tion mechanism into two separate parts, syntax and
semantics. The semantic part encodes each token
independent of the context (this is a pure embed-
ding look-up table), and the syntactic part encodes
each token by looking only at its context (without
looking at the token itself). In this way, the syntac-
tic part tries to capture the syntactic role a token



643

LSTM Transformer ETC
Hidden layers 2 {2,6} 6
Last dense layers 2 1 1
Hidden Size 512 128 128
Filter size - 2048 512
Number of heads - 16 16
Dropout 0.4 0.1 0.1
Batch size 1024 512 112
Training steps

Random & Random 20k 10k -
MCD & Random 20k 10k -
MCD & Model 30k 20k 200k

Optimizer Adam (0.85, 0.997) Adam (0.9, 0.997) Adam (0.9, 0.997)
Learning rate schedule Constant Inverse sqrt Inverse sqrt
Base learning rate 0.001 0.001 0.001
Warmup steps - 1000 1000
Weight decay 0.0 0.0 0.0

Table 3: Hyper-parameters used in training deep neural networks on the CFQ classification datasets

might play in a sequence. They show improved
compositional generalization on the SCAN dataset
using LSTMs, with respect to using standard atten-
tion. Compared to Russin et al. (2019) that uses
LSTMs for the syntactic part, we use Transformer
architecture to handle the hierarchical structure of
the input.

In their follow up work on the CFQ dataset, Fur-
rer et al. (2020) showed that an increased amount
of pre-training helped Transformer models better
generalize compositionally.

Another idea that has been proposed is to aug-
ment the training data, adding synthetic training
examples to give the model a compositional learn-
ing bias (Andreas, 2019) .

Finally, work also exists on using general-
purpose models like Neural Turing Machines or
Differential Neural Computers (Graves et al., 2016)
that are often trained via reinforcement learning to
solve compositional generalization tasks. These
models learn an “algorithm” that can solve the
task at hand, rather than trying to learn a direct
input/output mapping as the Transformer models
used in most other works do.

C Examples of the CFQ classification
dataset

In Figure 5, we present more examples of the CFQ
classification datasets. In all cases, the random neg-
ative queries substantially differ from the positive
queries, implying that a learner can easily perform

the task. On the other hand, the model negative
queries only differ by a token or a phrase, which
demands a learner’s higher ability.



644

Dataset 1: Random Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9984 0.9967 0.9998 0.9982 0.9964 0.9998
Transformer (2 layers) 0.9988 0.9976 0.9998 0.9982 0.9964 0.9997 0.9988 0.9975 0.9998
Transformer (6 layers) 0.9992 0.9988 0.9999 0.9989 0.9978 0.9999 0.9990 0.9979 0.9999

Dataset 2: MCD Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9982 0.9965 0.9999 0.9546 0.9025 0.9923
Transformer (2 layers) 0.9982 0.9965 1.0000 0.9974 0.9948 0.9999 0.9942 0.9883 0.9996
Transformer (6 layers) 0.9986 0.9972 0.9999 0.9979 0.9958 0.9997 0.9889 0.9775 0.9991

Dataset 3: MCD Split & Model Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer (2 layers) 0.9817 0.9639 0.9988 0.9592 0.9202 0.9931 0.8359 0.5835 0.8789
Transformer (6 layers) 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Table 4: Results of the CFQ classification dataset generated with different CFQ splits and negative example strate-
gies

Model Mask
Type

Parse
Tree

Block
Attn

Cross
link

Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM - 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer - 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9874 0.9751 0.9994 0.9591 0.9199 0.9934 0.8434 0.6202 0.8868

Hard

Y N N 0.9955 0.9911 0.9999 0.9766 0.9543 0.9978 0.8628 0.6744 0.9061
Y N Y 0.9978 0.9956 1.0000 0.9866 0.9738 0.9992 0.9170 0.8269 0.9656
N Y N 0.9828 0.9659 0.9989 0.9567 0.9152 0.9928 0.8324 0.5874 0.8771
N Y Y 0.9871 0.9746 0.9993 0.9573 0.9171 0.9930 0.8386 0.6048 0.8881

Soft
Y N N 0.9863 0.9728 0.9993 0.9588 0.9197 0.9933 0.8426 0.6017 0.8729
Y N Y 0.9891 0.9784 0.9995 0.9603 0.9226 0.9936 0.8482 0.6385 0.8819

Hard Y N N 0.9940 0.9882 0.9999 0.9743 0.9500 0.9973 0.8615 0.6697 0.9056
+Soft Y N Y 0.9975 0.9949 1.0000 0.9867 0.9739 0.9991 0.9249 0.8473 0.9721

Table 5: Results of the CFQ classification dataset (MCD split & model negatives) with different types of structure
annotations



645

(a)

(b)

(c)

(d)

Figure 5: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance. Note
the model negative resembles the positive, while the random negative query differs considerably. In the model
negative queries, the differences from the positive query are marked in bold.


