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Abstract

Weighted finite-state machines are a funda-
mental building block of NLP systems. They
have withstood the test of time—from their
early use in noisy channel models in the 1990s
up to modern-day neurally parameterized con-
ditional random fields. This work examines
the computation of higher-order derivatives
with respect to the normalization constant for
weighted finite-state machines. We provide
a general algorithm for evaluating derivatives
of all orders, which has not been previously
described in the literature. In the case of
second-order derivatives, our scheme runs in
the optimal O(A2N4) time where A is the
alphabet size and N is the number of states.
Our algorithm is significantly faster than
prior algorithms. Additionally, our approach
leads to a significantly faster algorithm for
computing second-order expectations, such
as covariance matrices and gradients of
first-order expectations.

1 Introduction

Weighted finite-state machines (WFSMs) have a
storied role in NLP. They are a useful formalism for
speech recognition (Mohri et al., 2002), machine
transliteration (Knight and Graehl, 1998), morphol-
ogy (Geyken and Hanneforth, 2005; Lindén et al.,
2009) and phonology (Cotterell et al., 2015) inter
alia. Indeed, WFSMs have been “neuralized” (Ras-
togi et al., 2016; Hannun et al., 2020; Schwartz
et al., 2018) and are still of practical use to the
NLP modeler. Moreover, many popular sequence
models, e.g., conditional random fields for part-of-
speech tagging (Lafferty et al., 2001), are naturally
viewed as special cases of WFSMs. For this reason,
we consider the study of algorithms for the WFSMs
of interest in se for the NLP community.

This paper considers inference algorithms for
WSFMs. When WFSMs are acyclic, there exist

simple linear-time dynamic programs, e.g., the
forward algorithm (Rabiner, 1989), for inference.
However, in general, WFSMs may contain cycles
and such approaches are not applicable. Our work
considers this general case and provides a method
for efficient computation of mth-order derivatives
over a cyclic WFSM. To the best of our knowl-
edge, no algorithm for higher-order derivatives has
been presented in the literature beyond a general-
purpose method from automatic differentiation. In
contrast to many presentations of WFSMs (Mohri,
1997), our work provides a purely linear-algebraic
take on them. And, indeed, it is this connection
that allows us to develop our general algorithm.

We provide a thorough analysis of the sound-
ness, runtime, and space complexity of our algo-
rithm. In the special case of second-order deriva-
tives, our algorithm runs optimally in O(A2N4)
time and space where A is the size of the alpha-
bet, and N is the number of states.1 In contrast,
the second-order expectation semiring of Li and
Eisner (2009) provides an O(A2N7) solution and
automatic differentiation (Griewank, 1989) yields a
slightly fasterO(AN5+A2N4) solution. Addition-
ally, we provide a speed-up for the general family
of second-order expectations. Indeed, we believe
our algorithm is the fastest known for computing
common quantities, e.g., a covariance matrix.2

2 Weighted Finite-State Machines

In this section we briefly provide important nota-
tion for WFSMs and a classic result that efficiently
finds the normalization constant for the probability
distribution of a WFSM.

1Our implementation is available at https://github.
com/rycolab/wfsm.

2Due to space constraints, we keep the discussion of our
paper theoretical, though applications of expectations that we
can compute are discussed in Li and Eisner (2009), Sánchez
and Romero (2020), and Zmigrod et al. (2021).

https://github.com/rycolab/wfsm
https://github.com/rycolab/wfsm
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Definition 1. A weighted finite-state machineM
is a tuple 〈α, {W(a)}a∈A,ω〉 where A is an al-

phabet of size A, A def
= A ∪ {ε}, each a ∈ A

has a symbol-specific transition matrix W(a) ∈
R≥0N×N where N is the number of states, and
α,ω ∈ R≥0N are column vectors of start and
end weights, respectively. We define the matrix
W

def
=
∑

a∈AW(a).

Definition 2. A trajectory τi ` is an ordered se-
quence of transitions from state i to state `. Visually,
we can represent a trajectory by

τi `
def
= i

a−→ j · · · k a′−→ `

The weight of a trajectory is

w(τi `)
def
= αi

 ∏
(j

a−→k)∈τi `

W
(a)
jk

ω` (1)

We denote the (possibly infinite) set of trajectories
from i to ` by Ti` and the set of all trajectories by
T def

=
⋃
i,`∈[N ] Ti`.3 Consequently, when we say

τi ` ∈ T , we make i and ` implicit arguments to
which Ti` we are accessing.

We define the probability of a trajectory τi `∈T ,

p(τi `)
def
=

w(τi `)

Z
(2)

where

Z
def
= α>

∞∑
k=0

Wk ω (3)

Of course, p is only well-defined when 0< Z<
∞.4 Intuitively, α>Wk ω is the total weight of all
trajectories of length k. Thus, Z is the total weight
of all possible trajectories as it sums over the total
weight for each possible trajectory length.

Theorem 1 (Corollary 4.2, Lehmann (1977)).

W? def
=
∞∑
k=0

Wk = (I−W)−1 (4)

Thus, we can solve the infinite summation that
defines W? by matrix inversion in O(N3) time.5

3|T | is infinite if and only if M is cyclic.
3Another formulation for Z is

∑
τi `∈T

w(τi `).
4This requirement is equivalent to W having a spectral

radius < 1.
5This solution technique may be extended to closed semir-

ings (Kleene, 1956; Lehmann, 1977).

Corollary 1.

Z = α>W?ω (5)

Proof. Follows from (4) in Theorem 1. �

By Corollary 1, we can find Z in O(N3 +AN2).6

Strings versus Trajectories. Importantly, WF-
SMs can be regarded as weighted finite-state ac-
ceptors (WFSAs) which accept strings as their in-
put. Each trajectory τi ` ∈ T has a yield γ(τi `)
which is the concatenation of the alphabet symbols
of the trajectory. The yield of a trajectory ignores
any ε symbols, a discussion regarding the seman-
tics of ε is given in Hopcroft et al. (2001). As
we focus on distributions over trajectories, we do
not need special considerations for ε transitions.
We do not consider distributions over yields in this
work as such a distribution requires constructing a
latent-variable model

p(σ) =
1

Z

∑
τi `∈T ,
γ(τi `)=σ

w(τi `) (6)

where σ ∈ A∗ and γ(τi `) is the yield of the tra-
jectory. While marginal likelihood can be found
efficiently,7 many quantities, such as the entropy
of the distribution over yields, are intractable to
compute (Cortes et al., 2008).

3 Computing the Hessian (and Beyond)

In this section, we explore algorithms for efficiently
computing the Hessian matrix∇2Z. We briefly de-
scribe two inefficient algorithms, which are derived
by forward-mode and reverse-mode automatic dif-
ferentiation. Next, we propose an efficient algo-
rithm which is based on a key differential identity.

3.1 An O(A2N7) Algorithm with
Forward-Mode Automatic Differentiation

One proposal for computing the Hessian comes
from Li and Eisner (2009) who introduce a method
based on semirings for computing a general family
of quantities known as second-order expectations

6Throughout this paper, we assume a dense weight matrix
and that matrix inversion is O(N3) time. We note, however,
that when the weight matrix is sparse and structured, faster
matrix-inversion algorithms exist that exploit the strongly con-
nected components decomposition of the graph (Mohri et al.,
2000). We are agnostic to the specific inversion algorithm, but
for simplicity we assume the aforementioned running time.

7This is done by intersecting the WFSA with another
WFSA that only accepts σ.
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(defined formally in §4). When applied to the com-
putation of the Hessian their method reduces pre-
cisely to forward-mode automatic differentiation
(AD; Griewank and Walther, 2008, Chap 3.1). This
approach requires that we “lift” the computation of
Z to operate over a richer numeric representation
known as dual numbers (Clifford, 1871; Pearlmut-
ter and Siskind, 2007). Unfortunately, the second-
order dual numbers that we require to compute the
Hessian introduce an overhead of O(A2N4) per
numeric operation of the O(N3) algorithm that
computes Z, which results in O(A2N7) time.

3.2 An O(AN5+A2N4) Algorithm with
Reverse-Mode Automatic Differentiation

Another method for materializing the Hessian
∇2Z is through reverse-mode automatic differ-
entiation (AD). Recall that we can compute Z
in O(N3 + AN2), and can consequently find
∇Z in O(N3+AN2) using one pass of reverse-
mode AD (Griewank and Walther, 2008, Chap-
ter 3.3). We can repeat differentiation to materi-
alize∇2Z. Specifically, we run reverse-mode AD
once for each element i of ∇Z. Taking the gra-
dient of (∇Z)i gives a row of the Hessian matrix,
∇[(∇Z)i] = [∇2Z](i,:). Since each of these passes
takes timeO(N3+AN2) (i.e., the same as the cost
of Z), and ∇Z has size AN2, the overall time is
O(AN5+A2N4).

3.3 Our Optimal O(A2N4) Algorithm
In this section, we will provide an O(A2N4)-time
and space algorithm for computing the Hessian.
Since the Hessian has sizeO(A2N4), no algorithm
can run faster than this bound; thus, our algorithm’s
time and space complexities are optimal. Our algo-
rithm hinges on the following lemma, which shows
that the each of partial derivatives of W? can be
cheaply computed given W?.

Lemma 1. For i, j, k, `∈ [N ] and a∈A

∂W?
i`

∂W
(a)
jk

= W?
ij

.
W

(a)
jk W

?
k` (7)

where
.
W

(a)
jk is shorthand for ∂W(a)

jk .
Proof.

∂W?
i`

∂W
(a)
jk

=
∂

∂W
(a)
jk

[
(I−W)−1i`

]
= −W?

ij

∂

∂W
(a)
jk

[(I−W)]W?
k`

= W?
ij

.
W

(a)
jk W

?
k`

The second step uses Equation 40 of the Matrix
Cookbook (Petersen and Pedersen, 2008). �

We now extend Lemma 1 to express higher-
order derivatives in terms of W?. Note that as
in Lemma 1, we will use

.
W

(a)
ij as a shorthand for

the partial derivative ∂W(a)
ij .

Theorem 2. For m≥1 and m-tuple of transitions
~τ = 〈i1

a1−→ j1, . . . , im
am−−→ jm〉

∂mZ

∂W
(a1)
i1j1
· · · ∂W(am)

imjm

=
∑

〈
i′1

a′1−→j′1,··· ,i′m
a′m−−→j′m

〉
∈S~τ

(8)

si′1
.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)

i′2j
′
2
· · ·W?

j′m−1i
′
m

.
W

(a′m)
i′mj
′
m
ej′m

where s = α>W?, e = W?ω and S~τ is the multi-
set of permutations of ~τ .8

Proof. See App. A.1 �

Corollary 2. For i, j, k, l∈ [N ] and a, b∈A

∂2Z

∂W
(a)
ij ∂W

(b)
kl

= (9)

si
.
W

(a)
ij W?

jk

.
W

(b)
kl el + sk

.
W

(b)
kl W

?
li

.
W

(a)
ij ej

Proof. Application of Theorem 2 for them=2 case.
�

Theorem 2 shows that, if we have already com-
puted W?, each element of the mth derivative can
be found in O(mm!) time: We must sum over
O(m!) permutations, where each summand is the
product of O(m) items. Importantly, for the Hes-
sian (m = 2), we can find each element in O(1)
using Corollary 2. Algorithm Dm in Fig. 1 provides
pseudocode for materializing the tensor containing
the mth derivatives of Z.

Theorem 3. For m ≥ 1, algorithm Dm com-
putes ∇mZ in O(N3+mm!AmN2m) time and
O(AmN2m) space.
Proof. Correctness of algorithm Dm follows from
Theorem 2. The runtime and space bounds follow
by needing to compute and store each combina-
tion of transitions. Each line of the algorithm is
annotated with its running time. �

Corollary 3. The Hessian ∇2Z can be material-
ized in O(A2N4) time and O(A2N4) space. Note
that these bounds are optimal.

8As ~τ may have duplicates, S~τ can also have duplicates
and so must be a multi-set.
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1: def Dm(W,α,ω) :
2: . Compute the tensor of mth-order derivative of a

WFSM; requires O(N3+mm!AmN2m) time,
O(AmN2m) space.

3: W? ← (I−W)−1 . O(N3)

4: s← α>W?; e←W?ω . O(N2)

5: D← 0
6: for ~τ ∈([N ]×[N ]×A)m : . O(mm!AmN2m)

7: for
〈
i1

a1−→ j1, . . . , im
am−−→ jm

〉
∈ S~τ :

8: D~τ += si1
.
W

(a1)
i1j1

W?
j1i2

.
W

(a2)
i2j2

W?
j2i3

· · ·W?
jm−1im

.
W

(am)
imjm

ejm

9: return D

10: def E2(W,α,ω, r, t) :
11: . Compute the second-order expectation of a

WFSM; requires O(N3 +N2(RT +AR′T ′))
time, O(N2 +RT +N(R + T )) space where

R
def
= min(NR′, R) and T def

= min(NT ′, T ).
12: Compute W?, s, and e as in Dm . O(N3)

13: Z← α>W?ω
14: r̂s ← 0; r̂e ← 0; t̂s ← 0; t̂e ← 0
15: for i, j ∈ [N ], a ∈ A : . O(AN2)

16: r̂si += sj
.
W

(a)
ji W

(a)
ji r

(a)
ji . O(R′)

17: r̂ei +=
.
W

(a)
ij ej

.
W

(a)
ji W

(a)
ij r

(a)
ij . O(R′)

18: t̂si += sj
.
W

(i)
ajW

(a)
ji t

(a)
ji . O(T ′)

19: t̂ei +=
.
W

(a)
ij ejW

(a)
ij t

(a)
ij . O(T ′)

20: return 1
Z

[∑N
i,j=0 r̂

s
iW

?
ij t̂

e
j

>
+
[
t̂siW

?
ij r̂

e
j

>]>
+
∑

a∈A si
.
W

(a)
ij ejW

(a)
ij r

(a)
ij t

(a)
ij

>
]

. O(N2(R T+AR′T ′))

Figure 1: Algorithms

Proof. Application of Theorem 3 for them=2 case.
�

4 Second-Order Expectations

In this section, we leverage the algorithms of the
previous section to efficiently compute a family ex-
pectations, known as a second-order expectations.
To begin, we define an additively decomposable
function r: T 7→ RR as any function expressed as

r(τi `) =
∑

(j
a−→k)∈τi `

r
(a)
jk (10)

where each r(a)jk is an R-dimensional vector. Since
many r of interest are sparse, we analyze our al-
gorithms in terms of R and its maximum den-
sity R′ def

= max
j
a−→k
‖r(a)jk ‖0. Previous work has

considered expectations of such functions (Eisner,

2001) and the product of two such functions (Li
and Eisner, 2009), better known as second-order ex-
pectations. Formally, given two additively decom-
posable functions r: T 7→ RR and t: T 7→ RT , a
second-order expectation is

Eτi `
[
r(τi `)t(τi `)

>
]

def
= (11)∑

τi `∈T
p(τi `)r(τi `)t(τi `)

>

Examples of second-order expectations include the
Fisher information matrix and the gradients of first-
order expectations (e.g., expected cost, entropy, and
the Kullback–Leibler divergence).

Our algorithm is based on two fundamental con-
cepts. Firstly, expectations for probability distri-
butions as described in (1), can be decomposed as
expectations over transitions (Zmigrod et al., 2021).
Secondly, the marginal probabilities of transitions
are connected to derivatives of Z.9

Lemma 2. For m ≥ 1 and m-tuple of transitions
~τ = 〈i1

a1−→ j1, . . . , im
am−−→ jm〉

p(~τ) =
1

Z

m∑
n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏
k=1

W
(ak)
ikjk

(12)

Proof. See App. A.2. �

We formalize our algorithm as E2 in Fig. 1. Note
that we achieve an additional speed-up by exploit-
ing associativity (see App. A.3).

Theorem 4. Algorithm E2 computes the second-
order expectation of additively decomposable func-
tions r: T 7→ RR and t: T 7→ RT in:

O(N3+N2(RT+AR′T ′)) time

O(N2+RT+N(R+ T )) space

where R=min(NR′, R) and T=min(NT ′, T ).
Proof. Correctness of algorithm E2 is given in
App. A.3. The runtime bounds are annotated on
each line of the algorithm. We note that each r̂ and
t̂ is R and T sparse. O(N2) space is required to
store W?, O(RT ) is required to store the expecta-
tion, and O(N(R+ T )) space is required to store
the various r̂ and t̂ quantities. �

Previous approaches for computing second-
order expectations are significantly slower than E2.
Specifically, using Li and Eisner (2009)’s second-
order expectation semiring requires augmenting the

9This is commonly used in the case of single transition
marginals, which can be found by ∇ log Z
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arc weights to be R × T matrices and so runs in
O(N3RT+AN2RT ). Alternatively, we can use
AD, as in §3.2, to materialize the Hessian and com-
pute the pairwise transition marginals. This would
result in a total runtime of O(AN5+A2N4R′T ′).

5 Conclusion

We have presented efficient methods that exploit
properties of the derivative of a matrix inverse to
find m-order derivatives for WFSMs. Addition-
ally, we provided an explicit, novel, algorithm for
materializing the Hessian in its optimal complex-
ity, O(A2N4). We also showed how this could
be utilized to efficiently compute second-order ex-
pectations of distributions under WFSMs, such as
covariance matrices and the gradient of entropy.
We hope that our paper encourages future research
to use the Hessian and second-order expectations
of WFSM systems, which have previously been
disadvantaged by inefficient algorithms.
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A Proofs

A.1
Theorem 2. For m≥1 and m-tuple of transitions ~τ = 〈i1

a1−→ j1, . . . , im
am−−→ jm〉

∂mZ

∂W
(a1)
i1j1

. . . ∂W
(am)
imjm

=
∑

〈
i′1

a′1−→j′1,...,i
′
m

a′m−−→j′m

〉
∈S~τ

si′1
.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)

i′2j
′
2
· · ·W?

j′m−1i
′
m

.
W

(a′m)
i′mj
′
m
ej′m

where s = α>W?, e = W?ω and S~τ is the multi-set of permutations of ~τ .
Proof. We prove this by induction on m.
Base Case: m = 1 and ~τ = 〈i a−→ j〉:

∂Z

∂W
(a)
ij

=
∂

∂W
(a)
ij

 N∑
k,l=0

αkW
?
klωl

 =
N∑

k,l=0

αkW
?
ki

.
W

(a)
ij W?

jlωl = si
.
W

(a)
ij ej

Inductive Step: Assume that the expression holds form. Let ~τ = 〈i1
a1−→ j1, . . . , im

am−−→ jm〉 and consider
the tuple ~τ ′, the concatenation of (i a−→ j) and ~τ .

∂m+1Z

W
(a)
ij ∂W

(a1)
i1j1

. . . ∂W
(am)
imjm

=
∂

∂W
(a)
ij

∑
〈
i′1

a′1−→j′1,...,i
′
m

a′m−−→j′m

〉
∈S~τ

si′1

.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj
′
m
ej′m

Consider the derivative of each summand with respect to W
(a)
ij . By the product rule, we have

∂

∂W
(a)
ij

[
si′1

.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj
′
m
ej′m

]
= si

.
W

(a)
ij W?

ji′1

.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj
′
m
ej′m+

· · ·+ si′1 · · ·W
?
jki

.
W

(a)
ij W?

jik+1
· · · ej′m+

· · ·+ si′1

.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2
· · ·

.
W

(a′m)
i′mj
′
m
W?

j′mi

.
W

(a)
ij ej

The above expression is equal to inserting i a−→ j in every spot of the induction hypothesis’s permutation,
thereby creating a permutation over ~τ ′. Reassembling with the expression for the derivative,

∂m+1Z

∂W
(a)
ij ∂W

(a1)
i1j1

. . . ∂W
(am)
imjm

=
∑

〈
i′1

a′1−→j′1,...,i
′
m+1

a′m+1−−−→j′m+1

〉
)∈S~τ ′

si′1

.
W

(a′1)

i′1j
′
1
W?

j′1i
′
2

.
W

(a′2)

i′2j
′
2
· · ·

.
W

(a′m+1)

i′m+1j
′
m+1

ej′m+1

�

A.2
Lemma 2. For m ≥ 1 and m-tuple of transitions ~τ = 〈i1

a1−→ j1, . . . , im
am−−→ jm〉

p(~τ) =
1

Z

m∑
n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏
k=1

W
(ak)
ikjk

(10)
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Proof. Let T~τ be the set of trajectories such that τi ` ∈ T~τ ⇐⇒ ~τ ⊆ τi `. Then,

p(~τ) =
1

Z

∑
τi `∈T~τ

w(τi `)

We prove the lemma by induction on m.
Base Case: Then, m = 1 and ~τ = 〈i1

a1−→ j1〉. We have that

1

Z

∂Z

∂W
(a1)
i1j1

W
(a1)
i1j1

=
1

Z

∂

∂W
(a1)
i1j1

 ∑
τi `∈T

w(τi `)

W
(a1)
i1j1

(a)
=

1

Z

 ∑
τi `∈T~τ

w(τi `)

 = p(i1
a1−→ j1)

Step (a) holds because taking the derivative of Z with respect to W
(a1)
i1j1

yields the sum of the weights

all trajectories which include i1
a1−→ j1 where we exclude W

(a1)
i1j1

from the computation of the weight.

Then, we can push the outer W(a1)
i1j1

into the equation to obtain the sum of the weights of all trajectories

containing i1
a1−→ j1.

Inductive Step: Suppose that (10) holds for any m-tuple. Let ~τ = 〈i1
a1−→ j1, . . . , im+1

am+1−−−→ jm+1〉.
Without loss of generality, fix i1

a1−→ j1 and let ~τ ′ be ~τ without i1
a1−→ j1.

1

Z

m+1∑
n=1

∂nZ

∂W
(a1)
i1j1

. . . ∂W
(an)
injn

n∏
k=1

W
(ak)
ikjk

(b)
= W

(a1)
i1j1

∂

∂W
(a1)
i1j1

[
1

Z

m+1∑
n=2

∂(n−1)Z

∂W
(a2)
i2j2

. . . ∂W
(an)
injn

n∏
k=2

W
(ak)
ikjk

]
︸ ︷︷ ︸

Inductive hypothesis

(c)
= W

(a1)
i1j1

∂

∂W
(a1)
i1j1

︷ ︸︸ ︷ 1

Z

∑
τi `∈T~τ ′

w(τi `)


(d)
=

1

Z

∂

∂W
(a1)
i1j1

 ∑
τi `∈T~τ ′

w(τi `)

W
(a1)
i1j1

(e)
= p(~τ)

Step (b) pushes 1
Z and

∏n
k=2W

(ak)
ikjk

as constants into the derivative and step (c) uses our induction
hypothesis on ~τ ′. Then, step (d) takes 1

Z out of the derivative as we pushed it in as a constant. Finally,
step (e) follows by the same reasoning as step (a) in the base case above. �

A.3
Theorem 4. Algorithm E2 computes the second-order expectation of additively decomposable functions
r: T 7→ RR and t: T 7→ RT in:

O(N3+N2(RT+AR′T ′)) time

O(N2+RT+N(R+ T )) space

where R=min(NR′, R) and T=min(NT ′, T ).
Proof. We provide a proof of correctness (the time and space bounds are discussed in the main paper).
Zmigrod et al. (2021) show that we can find second-order expectations over by finding the expectations
over pairs of transitions. That is,

Eτi `
[
r(τi `)t(τi `)

>
]
=

N∑
i,j,k,l=0

∑
a,b∈A

p
(
i
a−→ j, k

b−→ l
)
r
(a)
ij t

(b)
kl

>
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We can use Lemma 2 for the m = 2 case, to find that the expectation is given by

Eτi `
[
r(τi `)t(τi `)

>
]

=
1

Z

[ N∑
i,j=0

∑
a∈A

∂Z

∂W
(a)
ij

W
(a)
ij r

(a)
ij t

(a)
ij

>
+

N∑
i,j,k,l=0
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∂2Z

∂W
(a)
ij ∂W

(b)
kl

W
(a)
ij W

(b)
kl r

(a)
ij t

(b)
kl

>
]

The first summand can be rewritten as

N∑
i,j=0

∑
a∈A

∂Z

∂W
(a)
ij

W
(a)
ij r

(a)
ij t

(a)
ij

>
=

N∑
i,j=0

∑
a∈A

si
.
W

(a)
ij ejW

(a)
ij r

(a)
ij t

(a)
ij

>

The second summand can be rewritten as

N∑
i,j,k,l=0

∑
a,b∈A

∂2Z

∂W
(a)
ij ∂W

(b)
kl

W
(a)
ij W

(b)
kl r

(a)
ij t

(b)
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>

=
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.
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ij W?
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.
W

(b)
kl elW
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ij W

(b)
kl r

(a)
ij t

(b)
kl

>
+ sk

.
W

(b)
kl W

?
li

.
W

(a)
ij ejW

(a)
ij W

(b)
kl r

(a)
ij t

(b)
kl

>

Consider the first summand of the above expression

N∑
i,j,k,l=0

∑
a,b∈A

si
.
W

(a)
ij W?

jk

.
W

(b)
kl elW

(a)
ij W

(b)
kl r

(a)
ij t

(b)
kl

>

=
N∑

j,k=0

 N∑
i=0

∑
a∈A

si
.
W

(a)
ij W

(a)
ij r

(a)
ij


︸ ︷︷ ︸
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= r̂sj

W?
jk

 N∑
l=0

∑
b∈A

.
W

(b)
kl elW

(b)
kl t

(b)
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>
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def
= t̂ek

>

=

N∑
j,k=0̂

rsjW
?
jk t̂

e
k

>

Similarly, the second summand can be written as

N∑
j,k=0̂

rekW
?
jk t̂

s
j

>

Finally, recomposing all the pieces together,

Eτi `
[
r(τi `)t(τi `)

>
]
=

1

Z

[ N∑
i,j=0

r̂siW
?
ij t̂

e
j

>
+ r̂ejW

?
ij t̂

s
i

>
+
∑
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si
.
W

(a)
ij ejW

(a)
ij r
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(a)
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>
]
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