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Abstract

Sparse attention has been claimed to increase
model interpretability under the assumption
that it highlights influential inputs.  Yet
the attention distribution is typically over
representations internal to the model rather
than the inputs themselves, suggesting this
assumption may not have merit. We build on
the recent work exploring the interpretability
of attention; we design a set of experiments
to help us understand how sparsity affects our
ability to use attention as an explainability tool.
On three text classification tasks, we verify
that only a weak relationship between inputs
and co-indexed intermediate representations
exists—under sparse attention and other-
wise. Further, we do not find any plausible
mappings from sparse attention distributions
to a sparse set of influential inputs through
other avenues. Rather, we observe in this
setting that inducing sparsity may make it less
plausible that attention can be used as a tool
for understanding model behavior.

1 Introduction

Interpretability research in natural language pro-
cessing (NLP) is becoming increasingly important
as complex models are applied to more and more
downstream decision making tasks. In light of
this, many researchers have turned to the attention
mechanism, which has not only led to impressive
performance improvements in neural models, but
has also been claimed to offer insights into how
models make decisions. Specifically, a number of
works imply or directly state that one may inspect
the attention distribution to determine the amount
of influence each input token has in a model’s
decision-making process (Xie et al., 2017; Mullen-
bach et al., 2018; Niculae et al., 2018, inter alia).
Many lines of work have gone on to exploit this
assumption when building their own “interpretable”
models or analysis tools (Yang et al., 2016; Tu et al.,
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2016; De-Arteaga et al., 2019); one subset has even
tried to make models with attention more inter-
pretable by inducing sparsity—a common attribute
of interpretable models (Lipton, 2018; Rudin,
2019)—in attention weights, with the motivation
that this allows model decisions to be mapped to
a limited number of items (Martins and Astudillo,
2016; Malaviya et al., 2018; Zhang et al., 2019).
Yet, there lacks concrete reasoning or evidence that
sparse attention weights leads to more interpretable
models: customarily, attention is not directly over
the model’s inputs, but rather over some represen-
tation internal to the model, e.g. the hidden states
of a recurrent network or contextual embeddings
of a Transformer (see Fig. 1). Importantly, these
internal representations do not solely encode infor-
mation from the input token they are co-indexed
with (Salehinejad et al., 2017; Brunner et al., 2020),
but rather from a range of inputs. This presents
the question: if internal representations themselves
may not be interpretable, can we actually deduce
anything from “interpretable” attention weights?
We build on the recent line of work challenging
the validity of attention-as-explanation methods
(Jain and Wallace, 2019; Serrano and Smith, 2019;
Grimsley et al., 2020, inter alia) and specifically
examine how sparsity affects their observations. To
this end, we introduce a novel entropy-based metric
to measure the dispersion of inputs’ influence,
rather than just their magnitudes. Through exper-
iments on three text classification tasks, utilizing
both LSTM and Transformer-based models, we
observe how sparse attention affects the results of
Jain and Wallace (2019) and Wiegreffe and Pinter
(2019), additionally exploring whether it allows
us to identify a core set of inputs that are important
to models’ decisions. We find we are unable to
identify such a set when using sparse attention;
rather, it appears that encouraging sparsity may
simultaneously encourage a higher degree of
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contextualization in intermediate representations.
We further observe a decrease in the correlation
between the attention distribution and input feature
importance measures, which exacerbates issues
found by prior works. The primary conclusion of
our work is that we should not believe sparse atten-
tion enhances model interpretability until we have
concrete reasons to believe so; in this preliminary
analysis, we do not find any such evidence.

2 Attention-based Neural Networks

We consider inputs x = z1 - - -, € V" of length
n where the tokens from taken from an alpha-
bet V. We denote the embedding of x, e.g., its
one hot encoding or (more commonly) a linear
transformation of its one-hot encoding with an em-
bedding matrix E € RVl as x(©) ¢ Rdxn,
Our embedded input X (¢ is then fed to an en-
coder, which produces n intermediate representa-
tions I = [hy;...;h,] € R™*", where h; € R™
and m is a hyperparameter of the encoder. This
transformation is quite architecture dependent.

An alignment function A(-,-) maps a query q
and a key K to weights a(®) for a decoding time
step t; we subsequently drop ¢ for simplicity. In col-
loquial terms, A chooses which values of K should
receive the most attention based on q, which is then
represented in the vector a(®) € R™. For the NLP
tasks we consider, we have K = I = [hy;...;hy,],
the encoder outputs. A query q may be, e.g., a rep-
resentation of the question in question answering.

The weights a are projected to sum to 1, which
results in the attention distribution «c. Mathe-
matically, this is done via a projection onto the
probability simplex using a projection function ¢,
e.g., softmax or sparsemax. We then compute the
context vector as ¢ = » . ; «; h;. This context
vector is fed to a decoder, whose structure is again
architecture dependent, which generates a (possi-
bly unnormalized) probability distribution over the
set of labels ), where ) is defined by the task.

Attention. We experiment with two methods of
constructing an attention distribution: (1) addi-
tive attention, proposed by Bahdanau et al. (2015):
A(K,q); = v tanh(W1 K; + Waq) and (2) the
scaled dot product alignment function,Tas in the
N
v € R and Wy, Wy € R™ are weight matrices.
Note that the original (without attention) neural

encoder—decoder architecture, as in Sutskever et al.

Transformer network: A(K,q) where

123

(2014), can be recovered with alignment function
A(-,+) =10,...,0,1], i.e., only the last of the n in-
termediate representations is given to the decoder.

Projection Functions. A projection function ¢
takes the output of the alignment function and maps
it to a valid probability distribution: ¢ : R™" —
A"~ The standard projection function is softmax:

exp(z)

Qbsoft(z) = Zle[n] eXp(zi)

(D

= argmin Z pilogp; — p'z
peAn—t 1€[n]

However, softmax leads to non-sparse solutions as
an entry ¢sof(z); can only be 0 if z; = —oco. Al-
ternatively, Martins and Astudillo (2016) introduce
sparsemax, which can output sparse distributions:

2)

Psparse(2z) = argmin |[p — ZH%
peAn—1

In words, sparsemax directly maps z onto the
probability simplex, which often leads to solutions
on the boundary, i.e. where at least one entry of
p is 0. One shortcoming of sparsemax is the lack
of control over the degree of sparsity. Sparsegen
(Laha et al., 2018) fills this gap:

. 2
(bsparseg(z) = argmin Hp - Q(Z)Hg —A HpHQ 3)
peAn—1
where the degree of sparsity can be tuned via the hy-
perparameter \ € (—o0, 1); a larger A encourages
more sparsity in the minimizing solution.

3 Model Interpretability

Model interpretability and explainability have been
framed in different ways (Gehrmann et al., 2019)—
as model understanding tasks, where (spurious)
features learned by a model are identified, or as
decision understanding tasks, where explanations
for particular instances are produced. We consider
the latter in this paper. Such tasks can be framed as
generative, where models generate free text expla-
nations (Camburu et al., 2018; Kotonya and Toni,
2020; Atanasova et al., 2020b), or as post-hoc in-
terpretability methods, where salient portions of
the input are highlighted (Lipton, 2018; DeYoung
et al., 2020; Atanasova et al., 2020a).

As there does not exist a clearly superior choice
for framing decision understanding for NLP tasks
(Miller, 2019; Carton et al., 2020; Jacovi and



Goldberg, 2021), we follow a substantial body of
prior work in considering the post-hoc definition of
interpretability based on local methods proposed
by Lipton (2018). This definition is naturally oper-
ationalized through feature importance metrics and
meta models (Jacovi and Goldberg, 2020). Further,
we acknowledge the specific requirement that an
interpretable model obeys some set of structural
constraints of the domain in which it is used, such
as monotonicity or physical constraints (Rudin,
2019). For NLP tasks such as sentiment analysis or
topic classification, such constraints may logically
include the utilization of only a few key words
in the input when making a decision, in which
case, knowing the magnitude of the influence each
input token has on a model’s prediction through,
e.g., feature importance metrics, may suffice to
verify the model obeys such constraints. While
this collective definition is limited (Doshi-Velez
and Kim, 2017; Guidotti et al., 2018; Rudin, 2019),
we posit that if attention cannot provide model
interpretability at this level, then it would likewise
not be able to under more rigorous constraints.

3.1 Measures of Feature Importance

Gradient-Based Methods. Gradient-based mea-
sures of feature importance (F1; Baehrens et al.,
2010; Simonyan et al., 2014; Poerner et al., 2018)
use the gradient of a function’s output w.r.t. a fea-
ture to measure the importance of that feature. In
the case of an attentional neural network for binary
classification f(-), we can take the gradient of f
w.r.t. the variable x and evaluate at a point x = x’
to gain a sense of how much influence each z, had
on the outcome § = f(x’). These measures are not
restricted to the relationship between inputs x; and
the outcome f(x); they can also be adapted to mea-
sure for effects from and to intermediate represen-
tations h,,. Formally, our measures are as follows:

of
ax®
i |lo
gi(z;) = “4)
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k=1 e
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S ||

where g;(z;) € [0,1] and g, (hy,) € [0, 1] rep-
resents the gradient-based FI of token x; on ¢
and intermediate representation h,, respectively.

Gradient-based methods are often used in explain-
ability techniques, as they have exhibited higher
correlation with human judgement than others
(Atanasova et al., 2020a). Note that we take gradi-
ents w.r.t. the embedding of token x; and that in the
latter metric, we measure the influence of x; on the
magnitude of h,—a decision we discuss in App. A.

Leave-One-Out (LOO)-based Methods. As a
secondary FI metric, we observe how model pre-
dictions change when a specific input token is re-
moved. For token z;, this can be calculated as:

N (1
> k=19 = G-kl
where ¢_; is the prediction of a model with input

x; removed. The formula can also be used for inter-
mediate representations; we denote this as Dy (h;).

Dy (i) (6)

4 Experiments

Setup. We run experiments across several model
architectures, attention mechanisms, and datasets
in order to understand the effects of induced
attentional sparsity on model interpretability. We
use three binary classification datasets: ImDB and
SST (sentiment analysis) and 20News (topic clas-
sification). We use the dataset versions provided
by Jain and Wallace (2019), exactly following
their pre-processing steps. We show a subset
of representative results here, with additional
results in App. C. Further details, including model
architecture descriptions, dataset statistics and
baselines accuracies may be found in App. B.

Inputs and Intermediate Representations are
not Interchangeable. We first explore how
strongly-related inputs are to their co-indexed inter-
mediate representations. A strong relationship on
its own may validate the use of sparse attention, as
the ability to identify a subset of influential interme-
diate representations would then directly translate
to a set of influential inputs. Previous works show
that the “contribution” of a token x; to its intermedi-
ate representation h; is often quite low for various
model architectures (Salehinejad et al., 2017; Ming
etal., 2017; Brunner et al., 2020; Tutek and Snajder,
2020). In the context of attention, we find this prop-
erty to be evinced by the adversarial experiments
of Wiegreffe and Pinter (2019) (§4) and Jain and
Wallace (2019) (§4), which we verify in App. C.
They construct adversarial attention distributions
by optimizing for divergence from a baseline
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Figure 1: Correlation between the attention distribu-
tion and gradient-based FI measures. We see a notably
stronger correlation between attention and FI of inter-
mediate representation than of inputs across all models.

IMDb 20-News SST
H(gn, (x)) H(gn,(x)) H(gn,(x))
BiLSTM (Softmax) 0.71 £0.09 0.75 +0.12 0.93 +0.05
BiLSTM (Sparsemax) 0.72 £0.10 0.68 +0.12 091 +0.07
Transformer (Softmax) 0.76 +0.08 0.48 +0.06 0.73 +0.09
Transformer (Sparsemax) 0.72 +0.09 0.46 +0.06 0.63 +0.08

Table 1: Mean entropy of gradient-based FI of input to
intermediate representations. Green numbers are std.
deviations. Projection functions are parenthesized.

model’s attention distribution by: (1) adopting all
of the baseline model’s parameters and directly op-
timizing for divergence and (2) training an entirely
new model and optimizing for divergence as part of
the training process. The former method leads to a
large drop in performance (accuracy) while the lat-
ter does not. If we believe the model must encode
the same information to achieve similar accuracy,
this discrepancy implies that in the latter method,
the model likely “redistributes” information across
encoder outputs (i.e., intermediate representations
h,), which would suggest token-level information
is not tied to a particular hy,.

As further verification of high degrees of
contextualization in attentional models, we report a
novel quantification, offering insights into whether
individual intermediate representations can be
linked primarily to any single input—i.e., perhaps
not the co-indexed input; we measure the normal-
ized entropy! of the gradient-based FI of inputs to
intermediate representations I:I(ghp (x)) € [0,1] to
gain a sense of how dispersed influence for inter-
mediate representation is across inputs. A value of
1 would indicate all inputs are equally influential;
a value of 0 would indicate solely a single input

'We use Shannon entropy H(p) := — >, p(x)logp(x)
albeit normalized (i.e. divided) by maximum possible entropy
of the distribution to control for dimension.

Entropy of Input Feature Importance Measure Distributions
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Figure 2: Entropy of gradient-based g;(x) and LOO
Dy(x) FI distributions. Results are from models with
full spectrum of projection functions.

IMDb 20-News SST
BiLSTM (tanh) -0.935 -0.675 -0.866
Transformer (dot) -0.830 -0.409 -0.810

Table 2: Correlation between sparsegen parameter® \
and entropy of gradient-based input FI H(gj(x)).

has influence on an intermediate representation.
Results in Table 1 show consistently high entropy
in the distribution of the influence of inputs z;
on an intermediate representation h,, across all
datasets, model architectures, and projection
functions, which suggests the relationship between
intermediate representations and inputs is far from
one-to-one in these tasks.

Sparse Attention # Sparse Input Feature
Importance. Our prior results demonstrated
that—even when using sparse attention—we can-
not identify a subset of influential inputs directly
through intermediate representations; we explore
whether a subset can still be identified through
FI metrics. In the case where the normalized FI
distribution highlights only a few key items, the
distribution will, by definition, have low entropy.
Thus, we explore whether sparse attention leads to
lower entropy input FI distributions in comparison
to standard attention. We find no such trend;
Fig. 2 shows that across all models and settings,
the entropy of the FI distribution is quite high.
Further, we see a consistent negative correlation
between this entropy and the sparsity parameter
of the sparsegen projection (Table 2), implying
that entropy of feature importance increases as we
raise the degree of sparsity in a.

Correlation between Attention and Feature Im-
portance. Finally, we follow the experimental
setup of Jain and Wallace (2019), who postulate
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Correlation between Attention and Feature Importance Measures
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Figure 3: Correlation between the attention distribu-
tion and input FI measures as a function of the spar-
sity penalty X used in the projection function @sparseg-
x-axis is log-scaled for A < 0 since A € (—o0,1). Re-
sults are from the IMDb dataset.

that if the attention distribution indicates which
inputs influence model behavior, then one may
reasonably expect attention to correlate’ with FI
measures of the input. While they find only a weak
correlation, we explore how inducing sparsity
in the attention distribution affects this result.
Surprisingly, Fig. 3 shows a downward trend in
this correlation as the sparsity parameter A of the
sparsegen projection function is increased. As
argued by Wiegreffe and Pinter (2019), a lack of
this correlation does not indicate attention cannot
be used as explanation; FI measures are not ground-
truth indicators of critical inputs. However, the
inverse relationship between input FI and attention
is rather surprising. If anything, we may surmise
sparsity in « leads to less faithful explanations
from c. From these results, we posit that promot-
ing sparsity in attention distribution may simply
lead to the dispersion of information to different
intermediate representations, a behavior similar
to that seen when constraining attention for diver-
gence from another distribution, i.e., in the adver-
sarial experiments of Wiegreffe and Pinter (2019)
compared to those of Jain and Wallace (2019).

5 Related Work

The use of attention as an indication of inputs’ influ-
ence on model decisions may at first seem natural;
yet a large body of work has recently challenged
this practice. Perhaps the first to do so was Jain
and Wallace (2019), which revealed both a lack of
correlation between the attention distribution and
well established feature importance metrics and of

2We use Kendall’s 7-b correlation (Knight, 1966).
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unique optimal attention weights.> Subsequently,
other studies arrived at similar results: Grimsley
et al. (2020) found evidence that causal explana-
tions are not attainable from attention layers over
text data; Jacovi and Goldberg (2020) explored
the faithfulness of attention heatmaps; Pruthi et al.
(2020) showed that attention masks can be trained
to give deceptive explanations. We view this work
as another such study, exploring attention’s innate
interpretability on a different axis.

Further, this work fits into the context of a larger
body of interpretability research in NLP, which
has challenged the informal use of terms such as
faithfulness, plausibility, and explainability (Lip-
ton, 2018; Arrieta et al., 2020; Jacovi and Gold-
berg, 2021, inter alia) and tried to quantify the
reliability of current definitions (Atanasova et al.,
2020a). While we consider their findings in our
experimental design—e.g., in our choice of feature
importance metrics—we recognize that further ex-
periments would be needed to address all of their
concerns; for example, this work could be extended
by using the benchmark created by DeYoung et al.
(2020) as an additional metric of interpretability.

6 Conclusion

Prior work has cited interpretability as a driving
factor for promoting sparsity in attention distribu-
tions. We explore how induced sparsity affects
the ability to use attention as a tool for explaining
model decisions. In our experiments on text clas-
sification tasks, we see that while sparse attention
distributions may allow us to pinpoint influential
intermediate representations, we are unable to find
any plausible mapping from sparse attention to a
small, critical set of influential inputs. Rather, we
find evidence that inducing sparsity may make it
even less plausible to use the attention distribution
to interpret model behavior. We conclude that we
need further reason to believe sparse attention in-
creases model interpretability as our results do not
support such claims.
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Ethical Considerations

Machine learning models are being deployed in an
increasing number of sensitive situations. In these
settings, it is critical that models are interpretable,
so that we can avoid e.g., inadvertent racial or gen-
der bias. Giving a false sense of interpretability can
allow models with undesirable (i.e., unethical or un-
stable) behavior to fly under the radar. We view this
work as another critique of interpretability claims
and hope our results will encourage the more care-
ful consideration of interpretability assumptions
when using machine learning models in practice.

References

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador Garcia, Sergio Gil-Lépez,
Daniel Molina, Richard Benjamins, Raja Chatila,
and Francisco Herrera. 2020. Explainable Artificial
Intelligence (XAI): Concepts, Taxonomies, Oppor-
tunities and Challenges toward Responsible Al. In-
formation Fusion, 58.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020a. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 32563274, Association for Com-
putational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020b. Generating
fact checking explanations. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 73527364, Association
for Computational Linguistics.

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Miiller. 2010. How to explain individual clas-
sification decisions. Journal of Machine Learning
Research, 11:1803-1831.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations.

Gino Brunner, Yang Liu, Damidn Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Watten-
hofer. 2020. On identifiability in Transformers. In
8th International Conference on Learning Represen-
tations.

Oana-Maria Camburu, Tim Rocktischel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-SNLI: Nat-
ural Language Inference with Natural Language Ex-
planations. In Advances in Neural Information Pro-
cessing Systems 31, pages 9539-9549. Curran Asso-
ciates, Inc.

127

Samuel Carton, Anirudh Rathore, and Chenhao Tan.
2020. Evaluating and characterizing human ratio-
nales. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 9294-9307, Association for Com-
putational Linguistics.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kentha-
padi, and Adam Tauman Kalai. 2019. Bias in bios:
A case study of semantic representation bias in a
high-stakes setting. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency,
page 120-128, Association for Computing Machin-
ery.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443-4458, Asso-
ciation for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
CoRR, abs/1702.08608.

Sebastian Gehrmann, Hendrik Strobelt, Robert
Krueger, Hanspeter Pfister, and Alexander M
Rush. 2019. Visual interaction with deep learning
models through collaborative semantic inference.
IEEE Transactions on Visualization and Computer
Graphics, 26(1):884-894.

Christopher Grimsley, Elijah Mayfield, and Julia
R.S. Bursten. 2020. Why attention is not expla-
nation: Surgical intervention and causal reasoning
about neural models. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 1780-1790, European Language Resources
Association.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
2018. A survey of methods for explaining black box
models. ACM Computing Surveys, 51(5).

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 41984205, Association
for Computational Linguistics.

Alon Jacovi and Yoav Goldberg. 2021.  Aligning
Faithful Interpretations with their Social Attribution.

Transactions of the Association for Computational
Linguistics, 9:294-310.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-


https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
http://portal.acm.org/citation.cfm?id=1859912
http://portal.acm.org/citation.cfm?id=1859912
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=BJg1f6EFDB
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.747
https://doi.org/10.18653/v1/2020.emnlp-main.747
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
https://doi.org/10.1109/TVCG.2019.2934595
https://doi.org/10.1109/TVCG.2019.2934595
https://www.aclweb.org/anthology/2020.lrec-1.220
https://www.aclweb.org/anthology/2020.lrec-1.220
https://www.aclweb.org/anthology/2020.lrec-1.220
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357

guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556, Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

William R. Knight. 1966. A computer method
for calculating Kendall’s tau with ungrouped data.

Journal of the American Statistical Association,
61(314):436-439.

Neema Kotonya and Francesca Toni. 2020. Explain-
able automated fact-checking: A survey. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 5430-5443, Inter-
national Committee on Computational Linguistics.

Anirban Laha, Saneem Ahmed Chemmengath,
Priyanka Agrawal, Mitesh Khapra, Karthik Sankara-
narayanan, and Harish G Ramaswamy. 2018. On
controllable sparse alternatives to softmax. In
Advances in Neural Information Processing Systems
31, pages 6422-6432. Curran Associates, Inc.

Zachary C. Lipton. 2018. The mythos of model inter-
pretability. Queue, 16(3):31-57.

Chaitanya Malaviya, Pedro Ferreira, and André F. T.
Martins. 2018. Sparse and constrained attention for
neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
370-376, Association for Computational Linguis-
tics.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1614-1623.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267:1-38.

Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and
H. Qu. 2017. Understanding hidden memories of re-
current neural networks. In 2017 IEEE Conference
on Visual Analytics Science and Technology, pages
13-24.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable pre-
diction of medical codes from clinical text. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume I (Long Papers), pages 1101-1111, Association
for Computational Linguistics.

Vlad Niculae, André Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
sparse structured inference. In Proceedings of the

128

35th International Conference on Machine Learning,
volume 80, pages 3799-3808.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024—8035. Curran Asso-
ciates, Inc.

Nina Poerner, Hinrich Schiitze, and Benjamin Roth.
2018. Evaluating neural network explanation meth-
ods using hybrid documents and morphosyntactic
agreement. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 340-350, Associa-
tion for Computational Linguistics.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Gra-
ham Neubig, and Zachary C. Lipton. 2020. Learn-
ing to deceive with attention-based explanations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4782—
4793, Association for Computational Linguistics.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of Adam and beyond. In
6th International Conference on Learning Represen-
tations.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206-215.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Er-
rol Colak, and Shahrokh Valaee. 2017. Recent
advances in recurrent neural networks. CoRR,
abs/1801.01078.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931-2951, Association for Compu-
tational Linguistics.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In 2nd International Conference on Learning
Representations.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27, pages 3104-3112. Curran Associates, Inc.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational


http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.jstor.org/stable/2282833
http://www.jstor.org/stable/2282833
https://www.aclweb.org/anthology/2020.coling-main.474
https://www.aclweb.org/anthology/2020.coling-main.474
http://papers.nips.cc/paper/7878-on-controllable-sparse-alternatives-to-softmax.pdf
http://papers.nips.cc/paper/7878-on-controllable-sparse-alternatives-to-softmax.pdf
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.18653/v1/P18-2059
https://doi.org/10.18653/v1/P18-2059
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://ieeexplore.ieee.org/document/8585721
https://ieeexplore.ieee.org/document/8585721
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
http://proceedings.mlr.press/v80/niculae18a.html
http://proceedings.mlr.press/v80/niculae18a.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2020.acl-main.432
https://arxiv.org/pdf/1904.09237.pdf
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
http://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008

Linguistics (Volume 1: Long Papers), pages 7685,
Association for Computational Linguistics.

Martin Tutek and Jan Snajder. 2020. Staying true to
your word: (how) can attention become explanation?
In Proceedings of the 5th Workshop on Representa-
tion Learning for NLP, pages 131-142, Association
for Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11-20, Association for Computa-
tional Linguistics.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 950-962, Association for Computational Lin-
guistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489, Association for Computational
Linguistics.

J. Zhang, Y. Zhao, H. Li, and C. Zong. 2019. Atten-
tion with sparsity regularization for neural machine
translation and summarization. IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing,
27(3):507-518.

129


https://doi.org/10.18653/v1/2020.repl4nlp-1.17
https://doi.org/10.18653/v1/2020.repl4nlp-1.17
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/P17-1088
https://doi.org/10.18653/v1/P17-1088
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://ieeexplore.ieee.org/document/8550728
https://ieeexplore.ieee.org/document/8550728
https://ieeexplore.ieee.org/document/8550728

