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Abstract

Is bias amplified when neural machine trans-
lation (NMT) models are optimized for speed
and evaluated on generic test sets using
BLEU? We investigate architectures and tech-
niques commonly used to speed up decoding
in Transformer-based models, such as greedy
search, quantization, average attention net-
works (AANSs) and shallow decoder models
and show their effect on gendered noun trans-
lation. We construct a new gender bias test set,
SimpleGEN, based on gendered noun phrases
in which there is a single, unambiguous, cor-
rect answer. While we find minimal over-
all BLEU degradation as we apply speed op-
timizations, we observe that gendered noun
translation performance degrades at a much
faster rate.

Introduction

Optimizing machine translation models for pro-
duction, where it has the most impact on society
at large, will invariably include speed-accuracy
trade-offs, where accuracy is typically approxi-
mated by BLEU scores (Papineni et al., 2002) on
generic test sets. However, BLEU is notably not
sensitive to specific biases such as gender. Even
when speed optimizations are evaluated in shared
tasks, they typically use BLEU (Papineni et al.,
2002; Heafield et al., 2020) to approximate quality,
thereby missing gender bias. Furthermore, these
biases probably evade detection in shared tasks that
focus on quality without a speed incentive (Guillou
et al., 2016) because participants would not typi-
cally optimize their systems for speed. Hence, it
is not clear if Neural Machine Translation (NMT)
speed-accuracy optimizations amplify biases. This
work attempts to shed light on the algorithmic
choices made during speed-accuracy optimizations
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source That physician is a funny lady!

reference  jEsa médica/doctora es una mujer graciosa!
system A jEse médico es una dama graciosa!

system B jEse médico es una dama divertida!

system C  Ese médico es una mujer divertida!
system D jEse médico es una dama divertida!

Table 1: Translation of a simple source sentence by 4
different commercial English to Spanish MT systems.
All of these systems fail to consider the token “lady”
when translating the occupation-noun, rendering it in
with the masculine gender “doctor/médico”.

and their impact on gender biases in an NMT sys-
tem, complementing existing work on data bias.

We explore optimizations choices such as
(1) search (changing the beam size in beam search);
(ii) architecture configurations (changing the num-
ber of encoder and decoder layers); (iii) model
based speedups (using Averaged attention net-
works (Zhang et al., 2018)); and (iv) 8-bit quanti-
zation of a trained model..

Prominent prior work on gender bias evaluation
forces the system to “guess” the gender (Stanovsky
et al., 2019a) of certain occupation nouns in the
source sentence. Consider, the English source sen-
tence “That physician is funny.”, containing no in-
formation regarding the physician’s gender. When
translating this sentence into Spanish (where the oc-
cupation nouns are explicitly specified for gender),
an NMT model is forced to guess the gender of the
physician and choose between masculine forms,
doctor/médico or feminine forms doctora/médica.
While investigating bias in these settings is valu-
able, in this paper, we hope to highlight that the
problem is much worse — despite an explicit gen-
der reference in the sentence, NMT systems still
generate the wrong gender in translation (see Ta-
ble 1), resulting in egregious errors where not only
is the gender specification incorrect but the gener-
ated sentence also fails in morphological gender
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That £ /m-occ-sg is a funny f/m-n-sg!

Templates My f/m-relisa f/m-occ-sg.
f-occ-sg = {nurse, nanny...}
m-occ-sg = {physician, mechanic...}

Keywords f-rel = {sister, mother..}

m-rel = {brother, father...}
f-n-sg = {woman, gal, lady...}
m-n-sg = {man, guy...}

That engineer is a funny guy!
pro. MoMe My father is a mechanic.

That nanny is a funny lady!

FoFe My mother is a nurse.

Generated

That mechanic is my funny woman!
. MoFc . . e
anti. My sister is a physician.

That nurse is funny man!

FoMe My brother is a nanny.

Table 2: Example Templates, Keywords and a sample
of the resulting generated source sentences.

agreement. To focus on these egregious errors, we
construct a new data set, SimpleGEN. In Simple-
GEN, all source sentences include an occupation
noun (such as “mechanic”, “nurse” etc.) and an
unambiguous “signal” specifying the gender of the
person being referred to by the occupation noun.
For example, we modify the previous example to
“That physician is a funny lady”. We call our dataset
“Simple” because it contains all the information
needed by a model to produce correctly gendered
occupation nouns. Furthermore, our sentences are
short (up to 12 tokens) and do not contain com-
plicated syntactic structures. Ideally, Simple GEN
should obviate the need for an NMT model to in-
correctly guess the gender of occupation nouns, but
using this dataset we show that gender translation
accuracy, particularly in female context sentences
(see Section 2), is negatively impacted by various
speed optimizations at a greater rate than a drop in
BLEU scores. A small drop in BLEU can hide a
large increase in biased behavior in an NMT sys-
tem. Further illustrating how insensitive BLEU is
as a metric to such biases.

2 SimpleGEN: A gender bias test set

Similar to Stanovsky et al. (2019b), our goal is
to provide English input to an NMT model and
evaluate if it correctly genders occupation-nouns.
We focus on English to Spanish (En-Es) and En-
glish to German (En-De) translation directions as
occupation-nouns are explicitly specified for gen-
der in these target languages while English is un-
derspecified for such a morphological phenomenon
which forces the model to attend to contextual clues.
Furthermore, these language directions are consid-
ered “high-resource” and often cited as exemplars
for advancement in NMT.

A key differentiating characterization of our test
set is that there is no ambiguity about the gender
of the occupation-noun. We achieve this by us-
ing carefully constructed templates such that there
is enough contextual evidence to unambiguously
specify the gender of the occupation-noun. Our
templates specify a “scaffolding” for sentences
with keywords acting as placeholders for values
(see Table 2). For the occupation keywords such
as f-occ—-sg and m—occ-sg, we select the oc-
cupations for our test set using the U.S Department
of Labor statistics of high-demand occupations.! A
full list of templates, keywords and values is in ta-
ble A6. Using our templates, we generate English
source sentences which fall into two categories:
(i) pro-stereotypical (pro) sentences contain either
stereotypical male occupations situated in male
contexts (MOMC) or female occupations in female
contexts (FOFC), and (i1) anti-stereotypical (anti)
sentences in which the context gender and occupa-
tion gender are mismatched, i.e. male occupations
in female context (MOFC) and female occupations
in male contexts (FOMC). Note that we use the
terms “male context” or “female context” to cate-
gorize sentences in which there is an unambiguous
signal that the occupation noun refers to a male or
female person, respectively. We generated 1332
pro-stereotypical and anti-stereotypical sentences,
814 in the MOMC and MOFC subgroups and 518
in the FOMC and FOFC subgroups (we collect
more male stereotypical occupations compared to
female, which causes this disparity).

To evaluate the translations of NMT models on
SimpleGEN, we also create an occupation-noun
bilingual dictionary, that considers the number and
gender as well as synonyms for the occupations.
For example for the En-Es direction, the English
occupation term ‘physician”, has corresponding
entries for its feminine forms in Spanish as “doc-
tora” and “médica” and for its masculine forms
“doctor” and “médico” (See table A8 for our full
dictionary). By design, non-occupation keywords
such as f-rel and f-n-sg specify the expected
gender of the occupation-noun on the target side,
enabling dictionary based correctness verification.

3 Speeding up NMT

There are several “knobs” that can be tweaked
to speed up inference for NMT models. Setting the
beam-size (bs) to 1 during beam search is likely the

"https://www.dol.gov/agencies/wb/data/high-demand-
occupations
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Source That physician is a funny lady! Label
iEsa doctora es una mujer graciosa! Correct
. jEsa médica es una mujer feliz! Correct
Translations ! 1 A e
iEse médico es una mujer graciosa! Incorrect
iEse medicacién es una mujer graciosa! NA

Table 3: Our evaluation protocol with an example
source sentence and four example translations.

simplest approach to obtain quick speedups. Low-
bit quantization (INT8) is another recent approach
which improves decoding speed and reduces the
memory footprint of models (Zafrir et al., 2019;
Quinn and Ballesteros, 2018).

For model and architecture based speedups, we
focus our attention on Transformer based NMT
models which are now the work-horses in NLP
and MT (Vaswani et al., 2017). While transform-
ers are faster to train compared to their predeces-
sors, Recurrent Neural Network (RNN) encoder-
decoders (Bahdanau et al., 2014; Luong et al.,
2015), transformers suffer from slower decoding
speed. Subsequently, there has been interest in
improving the decoding speed of transformers.

Shallow Decoders (SD): Shallow decoder mod-
els simply reduce the decoder depth and increase
the encoder depth in response to the observation
that decoding latency is proportional to the number
of decoder layers (Kim et al., 2019; Miceli Barone
et al., 2017; Wang et al., 2019; Kasai et al., 2020).
Alternatively, one can employ SD models without
increasing the encoder layers resulting in smaller
(and faster) models.

Average Attention Networks (AAN): Average
Attention Networks reduce the quadratic complex-
ity of the decoder attention mechanism to linear
time by replacing the decoder-side self-attention
with an average-attention operation using a fixed
weight for all time-steps (Zhang et al., 2018). This
results in a = 3-4x decoding speedup over the stan-
dard transformer.

4 Experimental Setup

Our objective is not to compare the various op-
timization methods against each other, but rather
surface the impact of these algorithmic choices
on gender biases. We treat all the optimization
choices described in section 3 as data points avail-
able to conduct our analysis. To this end, we train
models with all combinations of optimizations de-
scribed in section 3 using the Fairseq toolkit (Ott
et al.,, 2019). Our baseline is a standard large
transformer with a (6,6) encoder-decoder layer
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configuration. For our SD models we use the
following encoder-decoder layer configurations
{(8,4),(10,2),(11,1)}. We also train smaller
shallow decoder (SSD) models without increas-
ing the encoder depth {(6,4), (6,2),(6,1)}. For
each of these 7 configurations, we train AAN ver-
sions. Next, we save quantized and non-quantized
versions for the 14 models, and decode with beam
sizes of 1 and 5. We repeat our analysis for English
to Spanish and English to German directions, us-
ing WMT13 En-Es and WMT14 En-De data sets,
respectively. For the En-Es we limited the train-
ing data to 4M sentence pairs (picked at random
without replacement) to ensure that the training for
the two language directions have comparable data
sizes. We apply Byte-Pair Encoding (BPE) with
32k merge operations to the data (Sennrich et al.,
2016).

We measure decoding times and BLEU scores
for the model’s translations using the WMT test
sets. Next, we evaluate each model’s performance
on SimpleGEN, specifically calculating the per-
cent of correctly gendered nouns, incorrectly gen-
dered nouns as well as inconclusive results. Ta-
ble 3 shows an example of our evaluation protocol
for an example source sentences and four possible
translations. We deem the first two as correct even
though the second translation incorrectly translates
“funny” as “feliz” since we focus on the translation
of “physician” only. The third translation is deemed
incorrect because the masculine form “médico” is
used and the last translation is deemed inconclu-
sive since it is in the plural form. We average these
metrics over 3 trials, each initialized with different
random seeds. We obtained 56 data points for each
language direction.

5 Analysis

Table 4a shows the performance of 6 selected
models including a baseline transformer model
with 6 encoder and decoder layers. The first two
columns (time and BLEU) were computed using
the WMT test sets. The remaining columns re-
port metrics using SimpleGEN. The algorithmic
choices resulting in the highest speed-up, result in
a 1.5% and 4% relative drop in BLEU for En-Es
and En-De, respectively (compared to the baseline
model). The pro-stereotypical (pro) column shows
the percentage correct gendered translation for sen-
tences where the occupation gender matches the
context gender. As expected the accuracies are rel-
atively high (80.9 to 77.7) for all the models. The



direction  model time(s) BLEU  pro anti A  FOFC MOFC AFC MOMC FOMC AMC
baseline (bl) 3,662.8 332 809 442 367 69.4 41.7 27.7 88.2 48.1 40.0
bl w/ bs=1 2,653.1 327 795 449 346 68.4 42.8 25.6 86.6 48.2 38.4
bl w/ AAN 3,009.4 329 786 378 40.8 67.4 33.6 338 85.6 443 413
En-Es bl w/ SD(10, 2) 2,241.7 329 779 381 398 67.3 359 314 84.6 41.7 429
bl w/ SSD(6, 2) 1,993.5 327 777 387 390 66.0 33.8 322 85.1 46.3 38.8
bl w/ quantization  2,116.1 327 798 414 384 67.0 372 298 88.0 48.1 39.8

max rel. % drop 45.6 1.5 39 151 4.9 21.4 4.0 135
baseline (bl) 3,653.0 272 677 397 280 575 316 259 742 52.3 21.8
bl w/ bs=1 2,504.5 267 650 392 258 51.5 29.7 21.8 735 54.0 19.5
bl w/ AAN 2,600.0 27.1 685 33.0 355 58.0 239 341 753 474 27.8
En-De bl w/ SD(10, 2) 1,960.8 27.1 675 326 350 57.7 26.5 31.2 73.8 46.7 27.1
bl w/ SSD(6, 2) 2,091.0 270 669 359 310 56.6 30.3 26.2 735 44.6 289
bl w/ quantization  2,205.1 26.1 632 332 30.0 50.5 246 259 71.3 46.8 24.6

max rel. % drop 46.3 4.0 65 179 13.0 22.1 53 9.5

(a) Each speed-up optimization individually.

direction  model time(s) BLEU pro  anti A FOFC MOFC AFC MOMC FOMC AMC
baseline 3,662.8 332 809 442 367 69.4 41.7 277 88.2 48.1 40.0
+bs=1 2,653.1 327 795 449 346 68.4 428 256 86.6 48.2 38.4
+AAN 1,971.8 325 774 385 389 67.4 349 325 83.7 44.0 39.7
En-Es +SD(10, 2) 1,164.2 321 753 362 39.1 57.1 317 253 86.8 432 43.6
+SSD(6, 2) 1,165.7 319 78.6 404 382 66.9 36.3 30.5 86.0 46.8 39.2
+quantization 679.6 31,1 731 349 382 58.7 29.5 29.2 82.3 434 38.8

max rel. % drop 81.4 6.3 9.6 223 17.7 31.0 6.7 10.4
baseline 3,653.0 272 677 397 280 575 316 259 74.2 523 21.8
+bs=1 2,504.5 267 650 392 258 515 29.7 218 735 54.0 19.5
+AAN 2,176.6 263 667 322 345 54.6 22.1 325 74.4 48.1 26.3
En-De +SD(10, 2) 1,332.3 258 642 29.1 351 50.3 222 28.1 73.0 44.7 28.3
+SSD(6, 2) 1,153.2 257 647 289 359 539 199 341 71.6 43.0 28.6
+quantization 732.6 247 610 233 376 46.3 148 315 70.3 36.7 33.6

max rel. % drop 79.9 9.2 9.9 413 19.5 532 55 29.8

(b) “Stacked” speed-up optimizations.

Table 4: Results showing the effect of speed-up optimizations applied individually (in Table 4a) and stacked in
Table 4b). We selected 6 models in both sections to highlight their effect on decoding time, BLEU and the %
correctness on gender-bias metrics. The last row for each section (and each direction), shows the relative % drops
in all the metrics between the fastest optimization method and the baseline. For example, for En-Es the relative %
drop of decoding time for Table 4a is calculated as 100 x (3662.8 — 1993.5)/3662.8.

last row in each section shows the maximum rela-
tive drop in each metric. We find that for the pro-
stereotypical column the maximum relative drop is
1.5 and 6.5 for Spanish and German, respectively,
which is similar to the relative change in BLEU
scores. However, we find that the models are able
to perform better on MOMC compared to FOFC
suggesting biases even within the pro-stereotypical
setting. In the anti-stereotypical (anti) column, we
observe below-chance accuracies of only 44.2%
and 39.7% for the two language directions, even
from our best model. Columns FOFC and MOFC,
show the difference in performance for sentences
in the female context (FC) category in the pres-
ence of a stereotypical female occupation versus
a stereotypical male occupation. We see a large
imbalance in performance in these two columns
summarized in AFC. Similarly, AMC summarizes
the drop in performance when the model is con-
fronted with stereotypical female occupations in
a male context when compared to a male occu-
pation in a male context. This suggests that the
transformer’s handling of grammatical agreement

especially in cases where an occupation and con-
textual gender mismatch could be improved. The
speedups disproportionately affect female context
(FC) sentences across all categories.

In terms of model choices, we find that AANs
deliver moderate speed-ups and minimal BLEU re-
duction compared to the baseline. However, AANs
suffer the most degradation in terms of gender-bias.
A, AFC and AMC are the highest for the ANN
model in both language directions. On the other
hand, greedy decoding with the baseline model has
the smallest degradation in terms of gender-bias.

While Table 4a reveals the effect of select indi-
vidual model choices, NMT practitioners, typically
“stack” the optimization techniques together for
large-scale deployment of NMT systems. Table 4b
shows that stacking can provide ~ 80 — 81% rela-
tive drop in decoding time. However, we again see
a disturbing trend where large speedups and small
BLEU drops are accompanied with large drops in
gender test performance. Again, FC sentences dis-
proportionately suffer large drops in accuracy, par-
ticularly in MOFC in the En-De direction, where
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Figure 1: Plots showing relative percentage drop of BLEU and gender-test metrics on the y-axis and relative
percentage drop in decoding time in the x-axis FOr the two language directions analyzed. A breakdown of pro and
anti into their constituent groups MOMC, FOFC, MOFc and FOMC is shown in Appendix A.3.

we see a 53.2% relative drop between the baseline
and the fastest optimization stack.

While tables 4a and 4b show select models, we
illustrate and further confirm our findings using all
the data points (56 models trained) using scatter
plots shown in fig. 1. We see that relative % drop
in BLEU aligns closely with the relative % drop
in gendered translation in the pro-stereotypical set-
ting. In the case of German, the two trendlines
are virtually overlapping. However, we see a steep
drop for the anti-stereotypical settings, suggesting
that BLEU scores computed using a typical test
set only captures the stereotypical cases and even
small reduction in BLEU could result in more in-
stances of biased translations, especially in female
context sentences.

6 Related Work

Previous research investigating gender bias in
NMT has focused on data bias, ranging from as-
sessment to mitigation. For example, Stanovsky
et al. (2019b) adapted an evaluation data set for
co-reference resolution to measure gender biases in
machine translation. The sentences in this test set
were created with ambiguous syntax, thus forcing
the NMT model to “guess” the gender of the occu-
pations. In contrast, there is always an unambigu-
ous signal specifying the occupation-noun’s gender
in SimpleGEN. Similar work in speech-translation
also studies contextual hints, but their work uses
real-world sentences with complicated syntactic
structures and sometimes the contextual hints are
across sentence boundaries resulting in gender-
ambiguous sentences (Bentivogli et al., 2020).

Zmigrod et al. (2019) create a counterfactual
data-augmentation scheme by converting between
masculine and feminine inflected sentences. Thus,
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with the additional modified sentences, the aug-
mented data set equally represents both genders.
Vanmassenhove et al. (2018), Stafanovics et al.
(2020) and Saunders et al. (2020) propose a data-
annotation scheme in which the NMT model
is trained to obey gender-specific tags provided
with the source sentence. While Escudé Font
and Costa-jussa (2019) employ pre-trained word-
embeddings which have undergone a “debiasing”
process (Bolukbasi et al., 2016; Zhao et al., 2018).
Saunders and Byrne (2020) and Costa-jussa and
de Jorge (2020) propose domain-adaptation on
a carefully curated data set that “corrects” the
model’s misgendering problems. Costa-jussa et al.
(2020) consider variations involving the amount
of parameter-sharing between different language
directions in multilingual NMT models.

7 Conclusion

With the current mainstreaming of machine
translation, and its impact on people’s everyday
lives, bias mitigation in NMT should extend be-
yond data modifications and counter bias ampli-
fication due to algorithmic choices as well. We
focus on algorithmic choices typically considered
in speed-accuracy trade offs during productioniza-
tion of NMT models. Our work illustrates that such
trade offs, given current algorithmic choice prac-
tices, result in significant impact on gender trans-
lation, namely amplifying biases. In the process
of this investigation, we construct a new gender
translation evaluation set, SimpleGEN, and use it
to show that modern NMT architectures struggle
to overcome gender biases even when translating
source sentences that are syntactically unambigu-
ous and clearly marked for gender.
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A Appendices
A.1 Impact Statement

This work identifies a weakness of NMT models
where they appear to ignore contextual evidence
regarding the gender of an occupation noun and
apply an incorrect gender marker. It is difficult to
measure the adverse effects of biases in NMT, but
errors like the ones we highlight reduce trust in the
NMT system.

Intended use: We hope that this type of error
is further studied by NMT researchers leading to
a solution. Furthermore, we expect the speed-
optimization aspect of our work provides NMT en-
gineers with an extra point of consideration, as we
show gender-bias (errors in our dataset) increases
rapidly compared to metrics like BLEU on stan-
dard datasets. In this work, we limit ourselves to
viewing gender in the linguistic sense. SimpleGEN
is not meant to be a replacement for traditional MT
evaluation.

Risks: We recognize that socially, gendered lan-
guage evolves (e.g. in English, “actress” is rarely
used anymore). To the best of our knowledge, we
selected occupations that are typically gendered (in
Spanish and German) at present. Furthermore, we
only regard the gender binary as a linguistic con-
struct. It would be incorrect to use this work in the
context of gender identity or gender expression etc.

Dataset: The dataset is “synthetic” in that it has
been constructed using templates. We did not use
crowd-sourcing or private data.

A.2 Full Template and Terms

Keywords Values

f-n female, women

m-n male, men

f-n-pl women, ladies, females, gals
m-n-pl men, guys, males, fellows
f-n-sg gal, woman, lady

m-n-sg man, guy, fellow
f-obj-prn her

m-obj-prn him

f-pos-prn her

m-pos—-prn his

f-obj-pos—prn her

m-obj-pos-prn his

f-sbj-prn she

m-sbj-prn he

f-rel wife, mother, sister, girlfriend
m-rel husband, father, brother, boyfriend

Table A5: Keywords and the values they can take.
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Occupation Keywords Values

f-occ-sg clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary
director, engineer, truck driver, farmer,
laborer, mechanic, physician, president,
plumber, carpenter, groundskeeper
clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries
directors, engineers, truck drivers,
farmers, laborers, mechanics, physi-
cians, presidents, plumbers, carpenters,
groundskeepers

clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary
director, truck driver, farmer, la-
borer, mechanic, physician, president,
plumber, carpenter, groundskeeper
clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries
directors, truck drivers, farmers, labor-
ers, mechanics, physicians, presidents,
plumbers, carpenters, groundskeepers

m-occ-sg

f-occ-pl

m-occ-pl

f-occ-sg-C

m-occ—-sg-C

f-occ-pl-C

m-occ-pl-C

f-occ-sg-Vv

m-occ-sg-V engineer,
f-occ-pl-v
m-occ-pl-V engineers,

Table A6: Occupation keywords and the values they
can take. The prefix “m—" and “f-"" indicate that ac-
cording to the U.S Department of Labor these occu-
pations have a higher percentage of male and female
works, respectively.

Table A7 shows the template we use to generate
our source sentences in SimpleGEN. We can gen-
erate sentences in one of the four sub-categories
(MOMC, MOFC, FOFC, FOMC) by setting occu-
pation keywords with the prefix m— or £— from our
terminology set Table A6). For example, to gener-
ate MOFC sentences, we set occupation-keywords
with prefix m— and non-occupation keywords with
prefix £-.

A.3 Breakdown of scatter plots

Figures A2a and A2b further divides pro-
stereotypical into male-occupations in male con-
texts (MoMc) and female-occupations in female
context (FoFc), and anti-stereotypical into male-
occupations in female contexts (MoFc) and female-
occupations in male contexts (FoMc).

A.4 Evaluation Dictionary

Table A8 shows the dictionary we use for evalua-
tion.



My {f/m}-relisa{f/m}-occ-sg-C.

My {f/m}-relisan {f/m}-occ-sg-V.

His {f/m}-relisa{f/m}-occ-sg-C.

His {f/m}-relisan {f/m}-occ-sg-V.

Alex’s {£/m}-rel became a {£/m}-occ-sg-C.

Alex’s {f/m}-rel became an {f/m}-occ-sg-V.

My {£/m}-rel enjoys {£/m}-pos-prn work a {£/m}-occ-sg-C.

My {f/m}-rel enjoys {f/m}-pos—-prn work an {£/m}-occ-sg-V.
Those {f/m}-n—-pl are {f/m}-occ-pl.

These {£/m}-n-pl work hard {£/m}-occ-pl.

Italked to {£/m}-obj—prn, {f/m}-sbj-prnisa{f/m}-occ-sg-C.
Italked to {f/m}-obj-prn, {f/m}-sbj-prnisan {f/m}-occ-sg-V.
{f/m}-sbj-prn works a {f/m}-occ-sg-C.

{f/m}-sbj-prn works an {f/m}-occ-sg-V.

I worked with {£/m}-obj-prn, {£/m}-sbj-prn is a very qualified {f/m}-occ-sg.
{f/m}-n {f/m}-occ-pl are rare .

{f/m}-n {f/m}-occ-pl are not predisposed for self-promotion .

{f/m}-n {£/m}-occ-pl performed well .

{f/m}-n {£/m}-occ-pl earn less than their counterparts .
{f/m}-sbj-prn enjoys {£/m}-pos—prn work a {£/m}-occ-sg-C.
{f/m}-sbj-prn enjoys {£/m}-pos—prn work an {f/m}-occ-sg-V.
Though {f/m}-sbj—-prn argued with { £ /m}-pos—prn colleagues, the { £ /m}-occ—sg was always respectful .
People laughed at the {£/m}-occ—-sg behind {£/m}-obj-pos-prn back .
The {£/m}-occ—-sg screamed when {f/m}-sbj-prn saw the mouse .
That {£/m}-occ—sg chooses {£/m}-obj-prn words very carefully .

That {£/m}-occ-sgisafunny {£/m}-n-sg !

Those {£/m}-occ-pl are talented {£ /m}-n-pl !

Their {£/m}-occ-sgis asmart {£/m}-n-sg!

The {£/m}-occ-sg is a very dynamic {f/m}-n-sg !

The {f/m}-occ-sgis a {f/m}-n-sg with a lot of experience.

This {£/m}-occ—-sg happens to be my {f/m}-rel.

The {£/m}-occ—sg works hard and {£/m}-sbj-prn excels !

The {£/m}-occ—-sg drove fast and {£/m}-sbj-prn was on time .
Asa{f/m}-occ-sg-C, {f/m}-sbj—prn is very competent .

Asan {f/m}-occ-sg-V, {£/m}-sbj-prn is very competent .

When the {£/m}-occ—-sg arrived, everyone applauded {£/m}-obj-prn .
The {£/m}-occ—pl with the highest success rate per the polls, were {f/m}-n .
That {f/m}-occ-sgisalsomy {f/m}-rel.

The {f/m}-occ-sg moved here from Ethiopia where { £ /m}-sbj-prn is from .
The {£/m}-occ—sg arrives early for {f/m}-pos-prn shift .

That {£/m}-occ—sg is hella strict, watch out for {£/m}-obj-prn .

That { £ /m}-occ—-sg retired early, good for {£/m}-obj-prn.

Table A7: Our template set used to generate English source sentences.
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English Spanish-Masc Spanish-Fem German-Masc German-Fem
clerk funcionario|empleado administrativo ~ funcionarialempleada administrativa Mitarbeiter Mitarbeiterin
designer disefiador disefiadora Designer Designerin
hairdresser peluquero peluquera Friseur Friseurin
housekeeper amo de llaves|amo de casa ama de llaves|ama de casa Haushélter Haushilterin
nanny nifiero nifera Kinderbetreuer Kindermidchen
nurse enfermero enfermera Krankenpfleger Krankenschwester
secretary secretario secretaria Sekretdr Sekretdrin
director director directora Direktor Direktorin
engineer ingeniero ingeniera Ingenieur Ingenieurin

truck driver camionero camionera Lastwagenfahrer Lastwagenfahrerin
farmer granjero|campesino granjera|campesina Bauer Béuerin

laborer obrero|trabajador obreraltrabajadora Arbeiter Arbeiterin
mechanic mecanico mecanica Mechaniker Mechanikerin
physician médico médica Arzt Arztin

president presidente presidenta Prisident Présidentin
plumber plomero|fontanero plomera|fontanera Klempner Klempnerin
carpenter carpintero carpintera Tischler|Zimmermann  Tischlerin
groundskeeper  jardinero|guardidn jardinera|guardiana Girtner Girtnerin

clerks funcionarios funcionarias Miltarbeiter Mitarbeiterinnen
designers disefiadores disefiadoras Designer Designerinnen
hairdressers peluqueros peluqueras Friseure Friseurinnen
housekeepers amos de llaves|amos de casa amas de llaves|amas de casa Haushélter Haushiélterinnen
nannies nifieros nifieras Kinderbetreuer Kindermidchen
nurses enfermeros enfermeras Krankenpfleger Krankenschwestern
secretaries secretarios secretarias Sekretire Sekretdrinnen
directors directores directoras Direktoren Direktorinnen
engineers ingenieros ingenieras Ingenieuren Ingenieurinnin
truck drivers camioneros camioneras Lastwagenfahrerin Lastwagenfahrerinnen
farmers granjeros granjeras Bauern Béuerinnen
laborers obreros obreras Arbeiter Arbeiterinnen
mechanics mecdanicas mecanicos Mechaniker Mechanikerinnen
physicians médico médicas Arzte Arztinnen
presidents presidentes presidentas Prisidenten Présidentinnen
plumbers plomeros plomeras Klempner Klempnerinnen
carpenters carpinteros carpinteras Tischler Tischlerinnen
groundskeepers  jardineros|guardianes jardineras|guardianas Girtner Girtnerinnen

Table A8: Our dictionary of occupations. Entries with the “

as correct.
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”” symbol indicate that we accept either of the references



® bleu ® MoFc © FoFc ® FoMc ® MoMc

50 + M

(a) English-Spanish

® bleu ® MoFc © FoFc ® FoMc ® MoMc

(b) English-German

Figure A2: Plots showing relative percentage drop of
BLEU and gender-test metrics on the y-axis and rela-
tive percentage drop in decoding time in the x-axis.

109



