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Abstract

Most fact checking models for automatic fake
news detection are based on reasoning: given
a claim with associated evidence, the models
aim to estimate the claim veracity based on the
supporting or refuting content within the evi-
dence. When these models perform well, it is
generally assumed to be due to the models hav-
ing learned to reason over the evidence with re-
gards to the claim. In this paper, we investigate
this assumption of reasoning, by exploring the
relationship and importance of both claim and
evidence. Surprisingly, we find on political
fact checking datasets that most often the high-
est effectiveness is obtained by utilizing only
the evidence, as the impact of including the
claim is either negligible or harmful to the ef-
fectiveness. This highlights an important prob-
lem in what constitutes evidence in existing ap-
proaches for automatic fake news detection.

1 Introduction

Misinformation is spreading at increasing rates
(Vosoughi et al., 2018), particularly online, and
is considered a highly pressing issue by the World
Economic Forum (Howell et al, 2013). To com-
bat this problem, automatic fact checking, espe-
cially for estimating the veracity of potential fake
news, have been extensively researched (Hassan
et al., 2017; Hansen et al., 2019; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019). Given
a claim, most fact checking systems are evidence-
based, meaning they utilize external knowledge to
determine the claim veracity. Such external knowl-
edge may consist of previously fact checked claims
(Shaar et al., 2020), but it typically consists of us-
ing the claim to query the web through a search
API to retrieve relevant hits. While including the
evidence in the model increases the effectiveness

∗Equal contribution.

over using only the claim, existing work has not fo-
cused on the predictive power of isolated evidence,
and hence whether it assists the model in enabling
better reasoning.

In this work we investigate if fact checking mod-
els learn reasoning, i.e., provided a claim and asso-
ciated evidence, whether the model determines the
claim veracity by reasoning over the evidence. If
the model learns reasoning, we would expect the
following proposition to hold: A model using both
the claim and evidence should perform better on
the task of fact checking compared to a model using
only the claim or evidence. If a model is only given
the claim as input, it does not necessarily have
the information needed to determine the veracity.
Similarly, if the model is only given the evidence,
the predictive signal must come from dataset bias
or the differences in the evidence obtained from
claims with varying veracity, as it otherwise cor-
responds to being able to provide an answer to an
unknown question. In our experimental evaluation
on two political fact checking datasets, across mul-
tiple types of claim and evidence representations,
we find the evidence provides a very strong pre-
dictive signal independent of the claim, and that
the best performance is most often obtained while
entirely ignoring the claim. This highlights that
fact checking models may not be learning to rea-
son, but instead exploit an inherent signal in the
evidence itself, which can be used to determine
factuality independent of using the claim as part
of the model input. This highlights an important
problem in what constitutes evidence in existing
approaches for automatic fake news detection. We
make our code publicly available1.

1https://github.com/casperhansen/
fake-news-reasoning

https://github.com/casperhansen/fake-news-reasoning
https://github.com/casperhansen/fake-news-reasoning
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2 Related Work

Automatic fact checking models include deep learn-
ing approaches, based on contextual and non-
contextual embeddings, which encode the claim
and evidence using RNNs or Transformers (Shaar
et al., 2020; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019; Hassan
et al., 2017), and non-deep learning approaches
(Wang, 2017; Pérez-Rosas et al., 2018), which uses
hand-crafted features or bag-of-word representa-
tions as input to traditional machine learning classi-
fiers such as random forests, SVM, and MLP (Mi-
halcea and Strapparava, 2009; Pérez-Rosas et al.,
2018; Baly et al., 2018; Reddy et al., 2018).

Generally, models may learn to memorize arti-
fact and biases rather than truly learning (Guru-
rangan et al., 2018; Moosavi and Strube, 2017;
Agrawal et al., 2016), e.g., from political individ-
uals often leaning towards one side of the truth
spectrum. Additionally, language models have
been shown to implicitly store world knowledge
(Roberts et al., 2020), which in principle could en-
hance the aforementioned biases. To this end, we
design our experimental setup to include represen-
tative fact checking models of varying complex-
ity (from simple term-frequency based represen-
tations to contextual embeddings), while always
evaluating each trained model on multiple different
datasets to determine generalizability.

3 Methods

Problem definition. In automatic fact checking
of fake news we are provided with a dataset of
D = {(c1, e1, y1), ..., (cn, en, yn)}, where ci cor-
responds to a textual claim, ei is evidence used to
support or refute the claim, and yi is the associated
truth label to be predicted based on the claim and
evidence. Following current work on fact checking
of fake news (Hassan et al., 2017; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019), we
consider the evidence to be a list of top-10 search
snippets as returned by Google search API when
using the claim as the query. Note that while addi-
tional metadata may be available–such as speaker,
checker, and tags–this work focuses specifically
on whether models learn to reason based on the
combination of claim and evidence, hence we keep
the input representation to consist only of the latter.

Overview. In the following we describe the dif-
ferent models used for the experimental compari-

son (Section 4), which consists of models based on
term frequency (term-frequency weighted bag-of-
words (Salton and Buckley, 1988)), word embed-
dings (GloVe word embeddings (Pennington et al.,
2014)), and contextual word embeddings (BERT
(Devlin et al., 2019)). These representations are
chosen as to include the typical representations
most broadly used among past and current NLP
models.

Term-frequency based Random Forest. We
construct a term-frequency weighted bag-of-words
representation per sample based on concatenat-
ing the text content of the claim and associ-
ated evidence snippets. We train a Random For-
est (Breiman, 2001) as the classifier using the Gini
impurity measure. In the setting of only using ei-
ther the claim or evidence snippets as the input,
only the relevant part is used for constructing the
bag-of-words representation.

GloVe-based LSTM model. We adapt the
model by Augenstein et al. (2019), which originally
was proposed for multi-domain veracity prediction.
Using a pretrained GloVe embedding (Pennington
et al., 2014)2, claim and snippet tokens are embed-
ded into a joint space. We encode the claim and
snippets using an attention-weighted bidirectional
LSTM (Hochreiter and Schmidhuber, 1997):

hci = attn (BiLSTM(ci)) (1)

hei,j = attn (BiLSTM(ei,j)) (2)

where attn(·) is a function that learns an attention
score per element, which is normalized using a
softmax, and returns a weighted sum. We combine
the claim and snippet encodings using using the
matching model by Mou et al. (2016) as:

si,j =
[
hci ; hei,j ; hci − hei,j ; hci · hei,j

]
(3)

where ”;” denotes concatenation. The joint claim-
evidence encodings are attention weighted and
summed, projected through a fully connected layer
into RL, where L is the number of possible labels:

oi = attn([si,1 ; ... ; si,10]) (4)

pi = softmax (FC(oi)) (5)

Lastly, the model is trained using cross entropy
as the loss function. In the setting of using only
the claim as the input (i.e., without the evidence),
then hci is used in Eq. 5 instead of oi. If only the

2http://nlp.stanford.edu/data/glove.
840B.300d.zip

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF (∼13 seconds) F1micro F1macro F1micro F1macro F1micro F1macro F1micro F1macro

Claim 0.473 0.231 0.273 0.223 0.254 0.255 0.546 0.243
Evidence 0.504 0.280 0.244 0.195 0.301 0.299 0.597 0.232
Claim+Evidence 0.550 0.271 0.245 0.190 0.310 0.304 0.579 0.207

LSTM (∼12 minutes, 888K parameters)

Claim 0.408 0.243 0.260 0.228 0.237 0.237 0.565 0.221
Evidence 0.495 0.253 0.262 0.208 0.290 0.295 0.550 0.273
Claim+Evidence 0.529 0.253 0.258 0.189 0.288 0.294 0.509 0.256

BERT (∼264 minutes, 109M parameters)

Claim 0.533 0.312 0.249 0.209 0.275 0.282 0.550 0.273
Evidence 0.531 0.321 0.249 0.224 0.351 0.359 0.577 0.286
Claim+Evidence 0.556 0.313 0.231 0.191 0.285 0.292 0.564 0.259

Table 1: Evaluation using micro and macro F1. Per column, the best score per method is underlined and the best
score across all methods is highlighted in bold. We report the training time and number of model parameters, for
Claim+Evidence on PolitiFact, in the parentheses. RF is trained on 5 cores and neural models on a Titan RTX.

evidence is used, then an attention weighted sum
of the evidence snippet encodings is used in Eq. 5
instead of oi.

BERT-based model. In a similar fashion to
the LSTM model, we construct a model based on
BERT (Devlin et al., 2019)3, where the [CLS]
token encoding is used for claim and evidence rep-
resentations. Specifically, the claim and evidence
snippets are encoded as:

hci = BERT(ci), hei,j = BERT(ci, ei,j) (6)

hei = attn([hei,1 ; ... ; hei,10 ]) (7)

where the claim acts as the question when encod-
ing the evidence snippets. Similarly to Eq. 5, the
prediction is obtained by concatenating the claim
and evidence representations and project it through
a fully connected layer into RL:

pi = softmax(FC([hci ; hei ])) (8)

where cross entropy is used as the loss function
for training the model. In the setting that only the
claim is used as input, then only hci is used in Eq. 8.
If only the evidence is used, then hei,j is computed
without including ci, and only hei is used in Eq. 8.

3We use bert-base-uncased from https://
huggingface.co/bert-base-uncased.

#Claims Labels

PolitiFact 13,581 pants on fire! (10.6%), false (19.2%), mostly false
(17.0%), half-true (19.8%), mostly true (18.8%),
true (14.8%)

Snopes 5,069 false (64.3%), mostly false (7.5%), mixture
(12.3%), mostly true (2.8%), true (13.0%)

Table 2: Dataset statistics.

4 Experimental Evaluation

4.1 Datasets

We focus on the domain of political fact checking,
where we use claims and associated evidence from
PolitiFact and Snopes, which we extract from the
MultiFC dataset (Augenstein et al., 2019). Using
the claim as a query, the evidence is crawled from
Google search API as the search snippets of the
top-10 results, and is filtered such that the web-
site origin of a given claim does not appear as evi-
dence. To facilitate better comparison between the
datasets, we filter claims with non-veracity related
labels4. The dataset statistics are shown in Table 2.

4.2 Experimental setup

Both datasets are split into train/val/test sets using
label-stratified sampling (70/10/20% splits). We
tune all models on the validation split, and use
early stopping with a patience of 10 for neural

4For PolitiFact we exclude [full flop, half flip, no flip]
and for Snopes we exclude [unproven, miscaptioned, legend,
outdated, misattributed, scam, correct attribution].

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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Figure 1: Macro F1 scores when removing evidence from either the top or bottom of the evidence snippet ranking.

models. Following Augenstein et al. (2019), we use
micro and macro F1 for evaluation. The models are
evaluated on both the within dataset test sets, but
also out-of dataset test sets (e.g., a model trained on
Snopes is evaluated on both Snopes and PolitiFact).
In the out-of dataset evaluation we need the labels
to be comparable, hence in that setting we merge
”pants on fire!” and ”false” for PolitiFact.

5 Tuning details

In the following, the best overall parameter con-
figurations are underlined. The best configuration
is chosen based on the average of the micro and
macro F15. For RF, we tune the number of trees
from [100,500,1000], the minimum number of sam-
ples in a leaf from [1,3,5,10], and the minimum
number of samples per split from [2,5,10]. For the
LSTM model, we tune the learning rate from [1e-
4,5e-4,1e-5], batch size [16,32], number of LSTM
layers from [1,2], dropout from [0, 0.1], and fix
the number of hidden dimensions to 128. For the
BERT model, we tune the learning rate from [3e-5,
3e-6, 3e-7] and fix the batch size to 8.

5.1 Results

The results can be seen in Table 1. Overall, we
see that the BERT model trained only on Evidence
obtains the best results in 4/8 columns, and, no-
tably, in 3/4 cases the BERT model with Evidence
obtains the best macro F1 score on within and out-

5https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_
score.html

of dataset prediction. Random forest using term-
frequency as input obtains the best out-of dataset
micro F1 for both datasets (using either only Claim
or only Evidence). Across all methods, the combi-
nation of Claim+Evidence only marginally obtains
the best results a single time (for Snopes micro
F1). For further details, in Table 3 we compute the
accuracy scores for all the false labels, mixture or
half-true label, and true labels.

Surprisingly, a BERT model using only the Ev-
idence is capable of predicting the veracity of the
claim used for obtaining the evidence. This shows
that a strong signal must exist in the evidence it-
self, and the evidence found by the search engine
appears to be implicitly affected by the veracity of
the claim used as the query in some way6. The im-
provements reported in the literature by combining
claim and evidence, are therefore not evident of the
model learning to reason over the evidence with
regards to the claim, but instead exploiting a sig-
nal inherent in the evidence itself. This highlights
that the current approach for evidence gathering
is problematic, as the strong signal makes it pos-
sible (and most often beneficial) for the model to
entirely ignore the claim. This makes the model
entirely reliant on the process behind how the evi-
dence is generated, which is outside the scope of
the model, and thereby undesirable, as any change
in the search system may change the model per-
formance significantly. It may also be problematic
on a more fundamental level, e.g., to predict the

6Note that the claim origin website is always removed
from the evidence.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue

Claim 0.710 0.144 0.255 0.853 0.016 0.209 0.623 0.216 0.513 0.790 0.092 0.255
Evidence 0.705 0.152 0.441 0.829 0.006 0.117 0.654 0.248 0.510 0.891 0.039 0.192
Claim+Evidence 0.760 0.136 0.453 0.829 0.000 0.117 0.634 0.292 0.512 0.871 0.039 0.199

LSTM

Claim 0.674 0.232 0.280 0.875 0.047 0.137 0.566 0.212 0.504 0.833 0.026 0.234
Evidence 0.721 0.272 0.267 0.890 0.020 0.115 0.643 0.253 0.485 0.768 0.184 0.322
Claim+Evidence 0.757 0.248 0.168 0.879 0.008 0.107 0.671 0.210 0.460 0.704 0.171 0.378

BERT

Claim 0.746 0.256 0.379 0.854 0.094 0.045 0.604 0.292 0.475 0.765 0.171 0.287
Evidence 0.648 0.376 0.559 0.702 0.049 0.337 0.649 0.326 0.496 0.804 0.197 0.339
Claim+Evidence 0.747 0.264 0.379 0.882 0.067 0.042 0.667 0.175 0.558 0.790 0.092 0.367

Table 3: Accuracy scores computed on the false labels, mixture or half-true label, and true labels. All labels within
a group (e.g., any false label such as false or mostly false) are considered to be the same and as such this reduces
the problem to a three class classification problem.

veracity of the following two claims: ”the earth is
round” and ”the earth is flat”, the evidence could
be the same, but a model entirely dependent on the
evidence, and not the claim, would be incapable of
predicting both claims correctly.

5.2 Removal of evidence

We observed a strong predictive signal in the ev-
idence alone and now consider the performance
impact when gradually removing evidence snip-
pets. The evidence is removed consecutively either
from the top down or bottom up (i.e., removing the
most relevant snippets first and vice versa), until
no evidence is used. Figure 1 shows the macro F1
as a function of removed evidence when using the
Evidence or Claim+Evidence models. We observe
a distinct difference between the random forest
and LSTM model compared to BERT: for random
forest and LSTM, the Claim+Evidence models on
both datasets drop rapidly in performance when
the evidence is removed, while the BERT model
only experiences a very small drop. This shows
that when the Claim+Evidence is used in the BERT
model, the influence of the evidence is minimal,
while the evidence is vital for the Claim+Evidence
RF and LSTM models. For all models, we observe
that when evidence is removed from the top down,
the performance drop is larger than when evidence
is removed from the bottom up. Thus, the ranking
of the evidence as provided by the search engine is
related to its usefulness as evidence for fact check-
ing.

6 Conclusion

We investigate if fact checking models for fake
news detection are learning to process claim and
evidence jointly in a way resembling reasoning.
Across models of varying complexity and evalu-
ated on multiple datasets, we find that the best
performance can most often be obtained using only
the evidence. This highlights that models using
both claim and evidence are inherently not learn-
ing to reason, and points to a potential problem
in how evidence is currently obtained in existing
approaches for automatic fake news detection.
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