
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1172–1182

August 1–6, 2021. ©2021 Association for Computational Linguistics

1172

More Identifiable yet Equally Performant Transformers
for Text Classification

Rishabh Bhardwaj1, Navonil Majumder1, Soujanya Poria1, Eduard Hovy2

1 Singapore University of Technology and Design, Singapore
2 Carnegie Mellon University, Pittsburgh, PA, USA
rishabh bhardwaj@mymail.sutd.edu.sg
{navonil majumder, sporia}@sutd.edu.sg

hovy@cs.cmu.edu

Abstract

Interpretability is an important aspect of
the trustworthiness of a model’s predic-
tions. Transformer’s predictions are widely
explained by the attention weights, i.e.,
a probability distribution generated at its
self-attention unit (head). Current empirical
studies provide shreds of evidence that
attention weights are not explanations by
proving that they are not unique. A recent
study showed theoretical justifications to this
observation by proving the non-identifiability
of attention weights. For a given input to a
head and its output, if the attention weights
generated in it are unique, we call the weights
identifiable. In this work, we provide deeper
theoretical analysis and empirical observa-
tions on the identifiability of attention weights.
Ignored in the previous works, we find the at-
tention weights are more identifiable than we
currently perceive by uncovering the hidden
role of the key vector. However, the weights
are still prone to be non-unique attentions
that make them unfit for interpretation. To
tackle this issue, we provide a variant of the
encoder layer that decouples the relationship
between key and value vector and provides
identifiable weights up to the desired length
of the input. We prove the applicability
of such variations by providing empirical
justifications on varied text classification
tasks. The implementations are available
at https://github.com/declare-lab/

identifiable-transformers.

1 Introduction

Widely adopted Transformer architecture (Vaswani
et al., 2017) has obviated the need for sequen-
tial processing of the input that is enforced in tra-
ditional Recurrent Neural Networks (RNN). As
a result, compared to a single-layered LSTM or
RNN model, a single-layered Transformer model
is computationally more efficient, reflecting in a
relatively shorter training time (Vaswani et al.,

2017). This advantage encourages the training of
deep Transformer-based language models on large-
scale datasets. Their learning on large corpora
has already attained state-of-the-art (SOTA) per-
formances in many downstream Natural Language
Processing (NLP) tasks. A large number of SOTA
machine learning systems even beyond NLP (Lu
et al., 2019) are inspired by the building blocks of
Transformer that is multi-head self-attention (Rad-
ford et al., 2018; Devlin et al., 2018).

A model employing an attention-based
mechanism generates a probability distribu-
tion a = {a1, . . . , an} over the n input units
z = {z1, . . . , zn}. The idea is to perform a
weighted sum of inputs, denoted by

∑n
i=1 aizi,

to produce a more context-involved output. The
attention vector, a, are commonly interpreted as
scores signifying the relative importance of input
units. However, counter-intuitively, it is recently
observed that the weights generated in the model
do not provide meaningful explanations (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Attention weights are (structurally) identifiable
if we can uniquely determine them from the output
of the attention unit (Brunner et al., 2019). Iden-
tifiability of the attention weights is critical to the
model’s prediction to be interpretable and repli-
cable. If the weights are not unique, explanatory
insights from them might be misleading.

The self -attention transforms an input sequence
of vectors z = {z1, . . . , zn} to a contextual-
ized output sequence y = {y1, . . . , yn}, where
yk =

∑n
i=1 a(k,i) zi. The scalar a(k,i) captures how

much of the ith token contributes to the contextual-
ization of kth token. A Transformer layer consists
of multiple heads, where each head performs self-
attention computations, we break the head compu-
tations in two phases:

• Phase 1: Calculation of attention weights
a(k,i). It involves mapping input tokens to

https://github.com/declare-lab/identifiable-transformers
https://github.com/declare-lab/identifiable-transformers

1173

key and query vectors. The dot product of kth
query vector and ith key vector gives a(k,i).

• Phase 2: Calculation of a contextualized repre-
sentation for each token. It involves mapping
input tokens to the value vectors. The con-
textualized representation for kth token can
be computed by the weighted average of the
value vectors, where the weight of ith token is
a(k,i) computed in first phase.

The identifiability in Transformer has been re-
cently studied by Brunner et al. (2019) which pro-
vides theoretical claims that under mild conditions
of input length, attention weights are not unique
to the head’s output. Essentially their proof was
dedicated to the analysis of the computations in the
second phase, i.e., token contextualization. How-
ever, the theoretical analysis ignored the crucial
first phase where the attention weights are gener-
ated. Intrinsic to their analysis, the attention identi-
fiability can be studied by studying only the second
phase of head computations. However, even if we
find another set of weights from the second phase,
it depends on the first phase if those weights can be
generated as the part of key-query multiplication.

In this work, we probe the identifiability of at-
tention weights in Transformer from a perspective
that was ignored in Brunner et al. (2019). We ex-
plore the previously overlooked first phase of self-
attention for its contribution to the identifiability in
Transformer. During our analysis of the first phase,
we uncover the critical constraint imposed by the
size of the key vector1 dk. The flow of analysis can
be described as

• We first show that the attention weights are
identifiable for the input sequence length ds no
longer than the size of value vector dv (§3.1)
(Brunner et al., 2019)2.

• For the case when ds > dv, we analyse the at-
tention weights as raw dot-product (logits) and
the softmaxed dot-product (probability sim-
plex), independently. An important theoretical
finding is that both versions are prone to be
unidentifiable.

• In the case of attention weights as logits
(§3.2.1), we analytically construct another set
of attention weights to claim the unidentifi-
ability. In the case of attention weights as

1The size of key and query vector is expected to be the
same due to the subsequent dot product operation

2The sequence length denotes number of tokens at input.

softmaxed logits (§3.2.2), we find the atten-
tion identifiability to be highly dependent on dk.
Thus, the size of key vector plays an important
role in the identifiability of the self-attention
head. The pieces of evidence suggest that the
current analysis in Brunner et al. (2019) ignored
the crucial constraints from the first phase in
their analysis.

To resolve the unidentifiability problem, we pro-
pose two simple solutions (§4). For the regular set-
ting of the Transformer encoder where dv depends
on the number of attention heads and token em-
bedding dimension, we propose to reduce dk. This
may lead to more identifiable attention weights.
Alternatively, as a more concrete solution, we pro-
pose to set dv equal to token embedding dimension
while adding head outputs as opposed to the regular
approach of concatenation (Vaswani et al., 2017).
Embedding dimension can be tuned according to
the sequence length up to which identifiability is
desired. We evaluate the performance of the pro-
posed variants on varied text classification tasks
comprising of ten datasets (§5).

In this paper, our goal is to provide concrete the-
oretical analysis, experimental observations, and
possible simple solutions to identifiability of atten-
tion weights in Transformer. The idea behind iden-
tifiable variants of the Transformer is—the harder
it is to obtain alternative attention weights, the like-
lier is they are identifiable, which is a desirable
property of the architecture. Thus, our contribution
are as follows:

• We provide a concrete theoretical analysis of
identifiability of attention weights which was
missing in the previous work by Brunner et al.
(2019).

• We provide Transformer variants that are
identifiable and validate them empirically by
analysing the numerical rank of the attention
matrix generated in the self-attention head of
the Transformer encoder. The variants have
strong mathematical support and simple to
adopt in the standard Transformer settings.

• We provide empirical evaluations on varied
text classification tasks that show higher iden-
tifiability does not compromise with the task’s
performance.

1174

2 Background

2.1 Identifiability

A general trend in machine learning research is to
mathematically model the input-output relationship
from a dataset. This is carried out by quantitatively
estimating the set of model parameters that best fit
the data. The approach warrants prior (to fitting)
examination of the following aspects:

• The sufficiency of the informative data to the
estimate model parameters, i.e., practical iden-
tifiability. Thus, the limitation comes from the
dataset quality or quantity and may lead to am-
biguous data interpretations (Raue et al., 2009).

• The possibility that the structure of the model
allows its parameters to be uniquely estimated,
irrespective of the quality or quantity of the avail-
able data. This aspect is called structural identifi-
ability. A model is said to be structurally uniden-
tifiable if a different set of parameters yield the
same outcome.

In this work, we focus on the structural identifia-
bility (Bellman and Åström, 1970). It is noteworthy
that the goodness of the fit of a model on the data
does not dictate its structural identifiability. Simi-
lar to Brunner et al. (2019), we focus our analysis
on the identifiability of attention weights, which
are not model parameters, yet demands meaningful
interpretations and are crucial to the stability of
representations learned by the model.

2.2 Transformer Encoder Layer

We base our analysis on the building block of
Transformer, i.e., the encoder layer (Vaswani et al.,
2017). The layer has two sub-layers. First sub-
layer performs the multi-head self-attention, and
second is feed-forward network. Given a sequence
of tokens {x1, . . . , xds}, an embedding layer trans-
forms it to a set of vector {z1, . . . , zds} ∈ Rde ,
where de denotes token embedding dimension. To
this set, we add vectors encoding positional infor-
mation of tokens {p1, . . . , pds} ∈ Rde .

Multi-head Attention. Input to a head of multi-
head self-attention module is W ∈ Rds×de , i.e., a
sequence of ds tokens lying in a de-dimensional
embedding space. Tokens are projected to dq-size
query, dk-size key, and dv-size value vectors using
linear layers, resulting in the respective matrices -
Query Q ∈ Rds×dq , Key K ∈ Rds×dk , and Value

Figure 1: An illustration for a Transformer with two-head
attention units. Triangles depict matrix weights. The left
side shows concatenation of head outputs fed to a linear layer.
The right side shows another interpretation of the same set of
operations where we consider a linear transform applied to
each head first. The transformed head outputs are then added.

V ∈ Rds×dv . The attention weights A ∈ Rds×ds

can be computed by

A = softmax

(
Q KT√
dq

)
. (1)

The (i, j)th element of A shows how much of ith
token is influenced by jth token. The output of a
head H ∈ Rds×de is given by

H = A V D = A T, (2)

where D ∈ Rdv×de is a linear layer and the ma-
trix T ∈ Rds×de denotes the operation V D. The
Rds×de output of multi-head attention can be ex-
pressed as a summation over H obtained for each
head3. The ith row of multi-head output matrix
corresponds to the de dimensional contextualized
representation of ith input token. In the original
work, Vaswani et al. (2017), the multi-head op-
eration is described as the concatenation of A V
obtained from each head followed by a linear trans-
formation D ∈ Rde×de . Both the explanations are
associated with the same sequence of matrix opera-
tions as shown in fig. 1.

In regular Transformer setting, a token vector
is ti ∈ {(zj + pj)}dsi=1 is de = 512 dimensional,
number of heads h=8, size of dk=dq=dv=de/h=64.

Feed-Forward Network. This sub-layer per-
forms the following transformations on each token
representation at the output of a head:

y1 = Linear1(Norm(ti + head output for ti))

y2 = Norm(ti +ReLU(Linear2(y1)))

Linear1 and Linear2 are linear layers with 2048
and 512 nodes, respectively. Norm denotes mini-
batch layer normalization.

3For simplicity, we have omitted head indices.

1175

3 Identifiability of Attention

The output of an attention head H is the product of
A and T (eq. (2)). Formally, we define identifiabil-
ity of attention in a head:
Definition 3.1. For an attention head’s output H,
attention weights A are identifiable if there exists a
unique solution of A T = H.

The above definition can be reformulated as
Definition 3.2. A is unidentifiable if there exist an
Ã, (Ã 6= 0), such that (A+ Ã) is obtainable from
phase-1 of head computations and satisfy

(A+ Ã)T = A T =⇒ Ã T = 0.
(constraint-R1)

Under this constraint, we get ãi T = 0 where ãi
is the ith row of Ã. The set of vectors which when
multiplied to T gets mapped to zero describes the
left null space of T denoted by LN(T). The dimen-
sion of the left null space of T can be obtained by
taking the difference of the total number of rows
(ds) and the number of linearly independent rows,
i.e, rank of the matrix T denoted by rank(T). Let
dim(·) denotes the dimension of a vector space,
then

LN(T) = {v | vT T = 0} (3)

dim
(
LN(T)

)
= ds − rank(T). (4)

3.1 “A” is Identifiable for ds ≤ dv

If dim(LN(T)) = 0 then LN(T) = {0}, it leads
to the only solution of constraint-R1 that is Ã = 0.
Therefore, the unidentifiabilty condition does not
hold. Now we will prove such a situation exists
when the number of tokens is not more than the
size of value vector.

The matrix T in eq. (2) is product of ds × dv
value matrix V and dv × de transformation D. We
utilize the fact that the rank of product of two
matrices P and Q is upper bounded by the min-
imum of rank(P) and rank(Q), i.e., rank(P Q) ≤
min

(
rank(P), rank(Q)

)
. Thus, the upper bound

on rank(T) in eq. (4) can be determined by

rank(T) ≤ min
(
rank(V), rank(D)

)
≤ min

(
min(ds, dv),min(dv, de)

)
≤ min

(
ds, dv, dv, de

)
≤ min

(
ds, dv

)
(as de > dv)

= min
(
ds, 64

)
(5)

where the last inequality is obtained for a head in
the regular Transformer for which dv=64.

Figure 2: Numerical rank of T (IMDB) and dimension of its
left null space are scattered in blue and red, respectively.

Numerical rank. To substantiate the bounds on
rank(T) as derived above, we set up a model with
a single encoder layer (§6). The model is trained
to predict the sentiment of IMDB reviews (§5). We
feed the review tokens to the model and store the
values generated in T of the first head. A standard
technique for calculating the rank of a matrix with
floating-point values and computations is to use
singular value decomposition. The rank of the ma-
trix will be computed as the number of singular
values larger than the predefined threshold4. The
fig. 2 illustrates how the rank changes with the se-
quence length ds. The numerical rank provides
experimental support to the theoretical analysis.

rank(T) =
{
ds if ds ≤ dv,
dv if ds > dv.

(6)

Thus,

dim
(
LN(T)

)
= ds − rank(T)

=

{
0 if ds ≤ dv,
(ds − dv) if ds > dv.

= max (ds − dv, 0)
(7)

With this, we infer A is identifiable if ds ≤ dv = 64.
For the identifiability study, since we focus on
a model’s capability of learning unique attention
weights, we will assume T has the maximum ob-
tainable rank set by its upper bound.

3.2 Idenitifiability when ds > dv
(the hidden role of dk)

In this case, from eq. (7), we obtain a non zero
value of dim

(
LN(T)

)
. It allows us to find infi-

nite Ã’s satisfying (A+ Ã)T = A T. However,
4The threshold value is max(ds, de) ∗ eps ∗ ||T ||2. The

eps is floating-point machine epsilon value, i.e., 1.19209e-07
in our experiments

1176

constraint-R1 demands Ã to be obtainable from the
first phase of self-attention. As a first step, we focus
our analysis on the attention matrix without apply-

ing softmax non-linearity, i.e., A =

(
Q KT√

dq

)
. The

analysis is crucial to identify constraints coming
from the first phase of self-attention in Transformer
that impact identifiability. Insights from this will
help us analyse softmax version of A.

3.2.1 Attention Weights as Logits

Since the logits matrix A is obtained from the prod-
uct of Q and KT , we can assert that

rank(A) ≤ min
(
rank(Q), rank(KT)

)
≤ min

(
de, dk, dq, de

)
= dk.

(8)

Therefore, the rank of attention matrix producible
by the head in the first phase of self-attention can
at most be equal to the size of key vectors dk. On
this basis, the head can produce only those A+ Ã
satisfying

rank(A+ Ã) ≤ dk (constraint-R2)

Proposition 3.3. There exists a non-trivial Ã that
satisfy (A+ Ã)T = A T and constraint-R2. Hence,
A is unidentifiable.

Proof. Let a1, . . . , ads and ã1, . . . , ãds denote
rows of A and Ã, respectively. Without the loss
of generality, let a1, . . . , adk be linearly indepen-
dent rows. For all j > dk, aj can be repre-
sented as a linear combination

∑dk
i=1 λ

j
iai, where

λji is a scalar. Next, we independently choose
first k rows of Ã that are {ã1, . . . , ãdk} from
LN(T). From the same set of coefficients of
linear combination λji for i ∈ {1, . . . , dk} and
j ∈ {dk+1, . . . , ds}, we can construct jth row of Ã
as ãj =

∑dk
i=1 λ

j
i ãi. Now, since we can construct

the jth row of (A+ Ã) from the linear combina-
tion of its first dk rows as

∑dk
i=1 λ

j
i (ai + ãi), the

rank of (A+ Ã) is not more than dk. For a set of
vectors lying in a linear space, a vector formed by
their linear combination should also lie in the same
space. Thus, the artificially constructed rows of
Ã belongs to LN(T). Therefore, there exist an Ã
that establishes the proposition which claims the
unidentifiability of A.

3.2.2 Attention Weights as Softmaxed Logits
The softmax over attention logits generates atten-
tion weights with each row of A (i.e., ai’s) is con-
strained to be a probability distribution. Hence, we
can define constraint over Ã as

(A+ Ã) ≥ 0 (P1)

Ã T = 0 (P2)

Ã 1 = 0. (P3)

P1 is non-negativity constraint on (A+ Ã) as it
is supposed to be the output of softmax; P2 de-
notes Ã ∈ LN(T); P3 can be derived from the fact
(A+ Ã)1 = 1 =⇒ (A 1+ Ã 1) = 1 =⇒ Ã 1 = 0
as (A 1 = 1). Where 1 ∈ Rds is the vector of
ones. The constraint in P2 and P3 can be com-
bined and reformulated as Ã[T, 1] = 0. Following
the similar analysis as in eq. (7), we can obtain
dim

(
LN([T, 1])

)
= max

(
ds− (dv +1), 0

)
. Dis-

regarding the extreme cases when ai is a one-hot
distribution, Brunner et al. (2019) proved the exis-
tence and construction of non-trivial Ã’s satisfying
all the constraints P1, P2, and P3.5

However, the proof by Brunner et al. (2019)
missed the constraint-R2, hence the existence of a
non-trivial Ã satisfying only the set of constraints
P1, P2 and P3 may not be a valid proposition to
claim attention weights unidentifiability. Essen-
tially, the work largely ignored the constraints com-
ing from the rank of the matrix that produces A

after softmax 6. Let Al denote logits
(

Q KT√
dq

)
and softmax(Al) = (A+ Ã), where softmax is
operated over each row of Al. We add an extra
constraint on Al

rank(Al) ≤ dk. (P4)

The constraint P4 confirms if there exists a logit
matrix Al that can generate (A+ Ã), given con-
straints P1, P2, and P3 are satisfied. The possibility
of such an Al will provide sufficient evidence that
A is unidentifiable. Next, we investigate how the
existence of Ã is impacted by the size of key vector
dk (query and key vector sizes are the same, i.e.,
dq=dk).

Let (A+ Ã)(i, k) denotes (i, k)th element of the
matrix. We can retrieve the set of matrices Al such
that softmax(Al) = A+ Ã, where

Al(i, k) = ci + log(A+ Ã)(i, k) (9)
5For the sake of brevity, we skip the construction method.
6(input to the softmax is equivalent to A in §3.2.1)

1177

Figure 3: Column vectors (c+ âk) of Al, where a(i,k) rep-
resents log(A+ Ã)(i, k).

for some arbitrary ci ∈ R; log denotes natural
logarithm. As shown in fig. 3, the column vectors
of Al can be written as c+ â1, . . . , c+ âds .

For an arbitrarily picked Ã satisfying constraint
P1, P2, and P3, the dimensions of affine span S of
{â1, . . . , âds} could be as high as ds − 1 (fig. 4).
In such cases, the best one could do is to choose
a ca ∈ S such that the dimension of the linear
span of {â1 − ca, . . . , âds − ca}, i.e., rank(Al) is
ds − 1. Hence, to satisfy P4, ds − 1 ≤ dk =⇒
ds ≤ dk + 1. Thus, the set of (A+ Ã) satisfying
constraint P1, P2 and P3 are not always obtainable
from attention head for ds > dk. We postulate

Although it is easier to construct Ã satis-
fying constraints P1, P2 and P3, it is hard
to construct Ã satisfying constraint P4
over the rank of logit matrix Al. There-
fore, A becomes more identifiable as the
size of key vector decreases.

Figure 4: This is a simplified illustration for the case
ds = 3. Affine space (translated linear subspace)
spanned by vectors â1, â2 and â3. ca can be any ar-
bitrary vector in affine space. By putting c = −ca, we
can obtain a linear subspace whose rank is equal to rank
of the affine subspace.

Experimental evidence. We conduct an experi-
ment to validate the minimum possible numerical
rank of Al by constructing Ã. For Ã to be obtain-
able from the phase 1, the minimum possible rank
of Al should not be higher than dk. From IMDB
dataset (§5), we randomly sample a set of reviews

with token sequence length ds ranging from 66 to
128 7. For each review, we construct 1000 Ã’s
satisfying constraints P1, P2, and P3 —

First, we train a Transformer encoder-based
IMDB review sentiment classifier (§6). We ob-
tain an orthonormal basis for the left null space of
[T, 1] using singular value decomposition. To form
an Ã, we generate ds random linear combinations
of the basis vectors (one for each of its row). Each
set of linear combination coefficients is sampled
uniformly from [−10, 10]. All the rows are then
scaled to satisfy the constraint P1 as mentioned in
Brunner et al. (2019). Using eq. (9), we obtain a
minimum rank matrix Al’s by putting c = −â1.
Figure 5 depicts the obtained numerical rank of
Al. We observed all the obtained Al from (A+ Ã)
(using eq. (9)) are full-row rank matrices. However,
from the first phase of self-attention, the maximum
obtainable rank of Al is dk = 64. Thus, the experi-
mentally constructed Al’s do not claim unidentifi-
ability of A as it fails to satisfy the constraint P4,
while for Brunner et al. (2019), it falls under the
solution set to prove unidentifiability as it meets
constraints P1, P2 and P3.

Figure 5: The blue curve denotes the expected rank of Al’s
obtained from (A+ Ã), where Ã satisfies the constraints P1,
P2, and P3. The red curve denotes the maximum permissible
rank of Al that is obtainable from phase 1 of the head.

4 Solutions to Identifiability

Based on the Identifiability analysis in §3, we pro-
pose basic solutions to make Transformer’s atten-
tion weights identifiable.

Decoupling dk. Contrary to the regular Trans-
former setting where dk = dv, a simple approach
is to decrease the value of dk that is the size of the
key and query vector. It will reduce the possible

7dim
(
LN(T, 1)

)
> 0 for ds > dv + 1 = 65

1178

solutions of Ã by putting harder constraints on the
rank of attention logits, i.e., Al in eq. (9). However,
theoretically, dk decides the upper bound on di-
mensions of the space to which token embeddings
are projected before the dot product. Higher the
upper bound, more degree of freedom to choose
the subspace dimensions as compared to the lower
dk variants. Thus, there is a plausible trade-off
when choosing between dk induced identifiability
and the upper bound on the dimension of projected
space.

Head Addition. To resolve the unidentifiability
issue when sequence length exceeds the size of
value vector, we propose to keep the value vector
size and token embedding dimension to be more
than (or equal to) the maximum allowed input to-
kens, i.e., dv ≥ ds-max. In Vaswani et al. (2017), dv
was bound to be equal to de/h, where de is token
embedding dimension and h is number of heads.
This constraint on dv is because of the concatena-
tion of h self-attention heads to produce de-sized
output at the first sub-layer of the encoder. Thus, to
decouple dv from this constraint, we keep dv = de
and add each head’s output.8

5 Classification Tasks

For the empirical analysis of our proposed solutions
as mentioned in §4, we conduct our experiments
on the following varied text classification tasks:

5.1 Small Scale Datasets
IMDB (Maas et al., 2011). The dataset for the
task of sentiment classification consist of IMDB
movie reviews with their sentiment as positive or
negative. Each of the train and test sets contain
25,000 data samples equally distributed in both the
sentiment polarities.

TREC (Voorhees and Tice, 2000). We use the
6-class version of the dataset for the task of
question classification consisting of open-domain,
facet-based questions. There are 5,452 and 500
samples for training and testing, respectively.

SST (Socher et al., 2013). Stanford sentiment
analysis dataset consist of 11,855 sentences ob-
tained from movie reviews. We use the 3-class
version of the dataset for the task of sentiment
classification. Each review is labeled as positive,
neutral, or negative. The provided train/test/valid
split is 8,544/2,210/1,101.

8ds-max < de as in the regular Transformer setting.

5.2 Large Scale Datasets

SNLI (Bowman et al., 2015). The dataset con-
tain 549,367 samples in the training set, 9,842 sam-
ples in the validation set, and 9,824 samples in
the test set. For the task of recognizing textual
entailment, each sample consists of a premise-
hypothesis sentence pair and a label indicating
whether the hypothesis entails the premise, con-
tradicts it, or neutral.

Please refer to Zhang et al. (2015) for more de-
tails about the following datasets:

Yelp. We use the large-scale Yelp review dataset
for the task of binary sentiment classification.
There are 560,000 samples for training and 38,000
samples for testing, equally split into positive and
negative polarities.

DBPedia. The Ontology dataset for topic classi-
fication consist of 14 non-overlapping classes each
with 40,000 samples for training and 5,000 samples
for testing.

Sogou News. The dataset for news article clas-
sification consist of 450,000 samples for training
and 60,000 for testing. Each article is labeled in
one of the 5 news categories. The dataset is per-
fectly balanced.

AG News. The dataset for the news articles clas-
sification partitioned into four categories. The bal-
anced train and test set consist of 120,000 and 7,600
samples, respectively.

Yahoo! Answers. The balanced dataset for 10-
class topic classification contain 1,400,000 sam-
ples for training and 50,000 samples for testing.

Amazon Reviews. For the task of sentiment
classification, the dataset contain 3,600,000 sam-
ples for training and 400,000 samples for testing.
The samples are equally divided into positive and
negative sentiment labels.

Except for the SST and SNLI, where the valida-
tion split is already provided, we flag 30% of the
train set as part of the validation set and the rest
70% were used for model parameter learning.

6 Experimental Setup

Setting up the encoder. We normalize the text
by lower casing, removing special characters, etc.9

9https://pytorch.org/text/_modules/
torchtext/data/utils.html

https://pytorch.org/text/_modules/torchtext/data/utils.html
https://pytorch.org/text/_modules/torchtext/data/utils.html

1179

For each task, we construct separate 1-Gram vo-
cabulary (U) and initialize a trainable randomly
sampled token embedding (U × de) from N (0, 1).
Similarly, we randomly initialize a (ds-max × de)
positional embedding.

The encoder (§2.2) takes input a sequence of to-
ken vectors (ds×de) with added positional vectors.
The input is then projected to key and query vector
of size dk ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}. For
the regular Transformer setting, we fix the num-
ber of heads h to 8 and the size of value vector
dv = de/h that is 64. For each token at the in-
put, the outputs of attention heads are concatenated
to generate a de-sized vector. For the identifiable
variant of the Transformer encoder, dv = de = 512,
this is equal to ds-max to keep it identifiable up to
the maximum permissible number of tokens. The
outputs of all the heads are then added. Each to-
ken’s contextualized representations (added head
outputs) are then passed through the feed-forward
network (§2.2). For classification, we use the en-
coder layer’s output for the first token and pass it
through a linear classification layer. In datasets
with more than two classes, the classifier output
is softmaxed. In the case of SNLI, we use the
shared encoder for both premise and hypothesis;
the output of their first tokens is then concatenated
just before the final classification layer. We use
Adam optimizer, with learning rate =0.001, to min-
imize the cross-entropy loss between the target and
predicted label. For all the experiments, we keep
the batch size as 256 and train for 20 epochs. We
report the test accuracy obtained at the epoch with
the best validation accuracy.

Numerical rank. To generate the numerical rank
plot on IMDB dataset as shown in fig. 2, we train a
separate Transformer encoder-based classifier. For
a particular ds value, we sample 100 reviews from
the dataset with token length ≥ ds and clip each re-
view to the maximum length ds. The clipping will
ensure the number of tokens is ds before feeding
it to the encoder. The numerical rank is calculated
for T’s obtained from the first head of the encoder.

7 Results and Discussion

For the identifiable variant, similar to §3.1, we
plot the numerical rank of T with input sequence
length as shown in fig. 6. Unlike fig. 2, where
dim

(
LN(T)

)
linearly increases after ds = 64, we

find the dimension is zero for a larger ds (∼ 380).
The zero dimensional (left) null space of T con-

firms there exist no nontrivial solution to the con-
straint constraint-R2, i.e., Ã = {0}. Thus, the
attention weights A are identifiable for a larger
range of length of the input sequence.

Figure 6: Scatter plots in red and blue show rank(T)
and dim

(
LN(T)

)
, respectively, for matrices T ob-

tained from the second phase of attention by feeding
IMDB samples to the encoder. The green line shows
the desired rank(T) for which dim

(
LN(T)

)
= 0 and

thus attention weights are identifiable.

It is important that the identifiability of attention
weights should not come at the cost of reduced
performance of the model. To investigate this issue,
we compare the performance of the identifiable
Transformer encoder against its regular settings
(§6) on varied text classification tasks.

For the regular setting, as discussed in §4 as one
of the solutions, the Transformer can be made iden-
tifiable by decreasing the size of the key vector
dk. The rows of the Table 1 corresponding to Con
denotes regular Transformer setting with varying
size of key vector. We observe the classification
accuracy at the lower dk is comparable or higher
than large dk values, thus, the enhanced identifia-
bility does not compromise with the model’s clas-
sification accuracy. However, we notice a general
performance decline with an increase in the size of
the key vector. We speculate that for simple clas-
sification tasks, the lower-dimensional projection
for key and query vector works well. However, as
the task becomes more involved, a higher dimen-
sion for the projected subspace could be essential.
Nonetheless, as we do not have strong theoretical
findings, we leave this observation for future work.

Another solution to identifiability is to increase
dv to de and add the heads’ outputs. This setting
corresponds to the Add rows in the Table 1. For
key vector size dk= 1, 2, and 4, We find the iden-
tifiable Transformer’s performance is comparable

1180

Dataset Version Size of key vector (dk)
1 2 4 8 16 32 64 128 256

IMDB Con 0.884 0.888 0.886 0.888 0.846 0.824 0.803 0.788 0.755
Add 0.888 0.885 0.887 0.884 0.886 0.882 0.877 0.832 0.825

TREC Con 0.836 0.836 0.840 0.822 0.823 0.764 0.786 0.706 0.737
Add 0.841 0.842 0.835 0.842 0.841 0.836 0.809 0.809 0.771

SST Con 0.643 0.625 0.627 0.609 0.603 0.582 0.574 0.573 0.554
Add 0.599 0.618 0.628 0.633 0.628 0.629 0.592 0.581 0.586

SNLI Con 0.675 0.674 0.673 0.672 0.662 0.659 0.659 0.655 0.648
Add 0.683 0.677 0.674 0.676 0.673 0.669 0.663 0.664 0.655

Yelp Con 0.913 0.911 0.907 0.898 0.879 0.862 0.857 0.849 0.837
Add 0.914 0.915 0.916 0.914 0.915 0.916 0.910 0.909 0.891

DBPedia Con 0.979 0.977 0.977 0.971 0.966 0.961 0.957 0.951 0.949
Add 0.979 0.978 0.979 0.977 0.978 0.973 0.970 0.969 0.964

Sogou Con 0.915 0.907 0.898 0.900 0.893 0.888 0.868 0.858 0.838
Add 0.915 0.908 0.906 0.904 0.913 0.914 0.910 0.906 0.899

AG News Con 0.906 0.903 0.904 0.904 0.886 0.877 0.870 0.870 0.869
Add 0.902 0.908 0.907 0.906 0.897 0.899 0.901 0.897 0.893

Yahoo Con 0.695 0.690 0.684 0.664 0.644 0.627 0.616 0.597 0.574
Add 0.697 0.695 0.696 0.693 0.693 0.694 0.688 0.649 0.683

Amazon Con 0.924 0.925 0.923 0.922 0.900 0.892 0.887 0.882 0.873
Add 0.925 0.923 0.925 0.924 0.924 0.920 0.907 0.896 0.889

Table 1: The test accuracy on varied text classification tasks spread over ten datasets. Con means the regular
concatenation of heads with dv = de/h, Add denotes encoder variant where dv = de and outputs of heads are
added. In the regular Transformer encoder Con, the concatenation of dv-sized output of h heads followed by
de × de linear transformation can be understood as first doing linear dv × de linear transform of each head and
then addition of the transformed output (fig. 1). In the Add variant, we first add h dv-sized head outputs followed
by de × de linear transformation.

to the regular settings. For dk ≥ 8, as a general
observation, we find the performance of Add does
not drop as drastically as Con with an increase in
dk. This could be due to the larger size of value
vector leading to the more number of parameters in
Add that compensate for the significant reduction
in the model’s accuracy.

On the large-scale datasets, we observe that Add
performs slightly better than Con. Intuitively, as
shown in fig. 1, we can increase the size of value
vector to increase the dimension of the space on
which each token is projected. A higher dimen-
sional subspace can contain more semantic infor-
mation to perform the specific task.

Even though the theoretical analysis shows the
possibility of a full row rank of T and identifiable
attention weights, the T obtained from a trained
model might not contain all the rows linearly in-
dependent as ds increases. We can explain this
from the semantic similarities between words co-
occurring together (Harris, 1954). The similarity is
captured as the semantic relationship, such as dot
product, between vectors in a linear space. As the
number of tokens in a sentence, i.e., ds increases, it
becomes more likely to obtain a token vector from
the linear combination of other tokens.

8 Conclusion

This work probed Transformer for identifiability
of self-attention, i.e., the attention weights can be
uniquely identified from the head’s output. With
theoretical analysis and supporting empirical evi-
dence, we were able to identify the limitations of
the existing study by Brunner et al. (2019). We
found the study largely ignored the constraint com-
ing from the first phase of self-attention in the en-
coder, i.e., the size of the key vector. Later, we
proved how we can utilize dk to make the attention
weights more identifiable. To give a more concrete
solution, we propose encoder variants that are more
identifiable, theoretically as well as experimentally,
for a large range of input sequence lengths. The
identifiable variants do not show any performance
drop when experiments are done on varied text
classification tasks. Future works may analyse the
critical impact of identifiability on the explainabil-
ity and interpretability of the Transformer.

Acknowledgments

This research is supported by A*STAR under its
RIE 2020 Advanced Manufacturing and Engineer-
ing programmatic grant, Award No.– A19E2b0098.

1181

References
Ror Bellman and Karl Johan Åström. 1970. On struc-

tural identifiability. Mathematical biosciences, 7(3-
4):329–339.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Wat-
tenhofer. 2019. On identifiability in transformers.
arXiv preprint arXiv:1908.04211.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. arXiv preprint arXiv:1902.10186.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13–23.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Andreas Raue, Clemens Kreutz, Thomas Mai-
wald, Julie Bachmann, Marcel Schilling, Ursula
Klingmüller, and Jens Timmer. 2009. Structural and
practical identifiability analysis of partially observed
dynamical models by exploiting the profile likeli-
hood. Bioinformatics, 25(15):1923–1929.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ellen M. Voorhees and Dawn M. Tice. 2000. The
TREC-8 question answering track. In Proceed-
ings of the Second International Conference on
Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. arXiv preprint arXiv:1509.01626.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf

1182

A Background on Matrices

A.1 Span, Column space and Row space
Given a set of vectors V := {v1, v2, . . . , vn}, the
span of V, span(V), is defined as the set obtained
from all the possible linear combination of vectors
in V, i.e.,

span(V) := {
n∑

i=1

λivi | λi ∈ R, i ∈ {1, 2, . . . , n}}.

The span(V) can also be seen as the smallest vector
space that contains the set V.

Given a matrix A ∈ Rm×n, the column space
of A, Cs(A), is defined as space spanned by its
column vectors. Similarly, the row space of A,
Rs(A), is the space spanned by the row vectors of
A. Cs(A) and Rs(A) are the subspaces of the real
spaces Rm and Rn, respectively. If the row vectors
of A are linearly independent, the Rs(A) will span
Rm. A similar argument holds between Cs(A) and
Rn.

A.2 Matrix Rank
The rank of a matrix P (denoted as rank(P)) tells
about the dimensions of the space spanned by the
row vectors or column vectors. It can also be
seen as the number of linearly independent rows or
columns. The following properties hold

rank
(

P
)
≤ min

(
mp, np

)
rank

(
P Q

)
≤ min

(
rank(P), rank(Q)

)
.

Where, P and Q are mp × np and mq × nq dimen-
sional matrices, respectively.

A.3 Null Space
The left null space of a mp × np matrix P can be
defined as the set of vectors v -

LN
(

P
)
= {vT ∈ R1×mp | vT P = 0} (10)

If the rows of P are linearly independent (P is
full-row rank) the left null space of P is zero dimen-
sional. The only solution to the system of equations
v P = 0 is trivial, i.e., v=0. The dimensions of the
null space, known as nullity, of P can be calculated
as

dim
(
LN(P)

)
= mp − rank(P). (11)

The nullity of P sets the dimensions of the space
v lies in. In §3, we utilize our knowledge of ap-
pendix A.2 and appendix A.3 to analyse identifia-
bility in a Transformer.

