
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1040–1051

August 1–6, 2021. ©2021 Association for Computational Linguistics

1040

The Art of Abstention: Selective Prediction and Error Regularization
for Natural Language Processing

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin
David R. Cheriton School of Computer Science, University of Waterloo

Vector Institute for Artificial Intelligence

{ji.xin,r33tang,yaoliang.yu,jimmylin}@uwaterloo.ca

Abstract

In selective prediction, a classifier is allowed
to abstain from making predictions on low-
confidence examples. Though this setting is
interesting and important, selective prediction
has rarely been examined in natural language
processing (NLP) tasks. To fill this void in
the literature, we study in this paper selec-
tive prediction for NLP, comparing different
models and confidence estimators. We fur-
ther propose a simple error regularization trick
that improves confidence estimation without
substantially increasing the computation bud-
get. We show that recent pre-trained trans-
former models simultaneously improve both
model accuracy and confidence estimation ef-
fectiveness. We also find that our proposed
regularization improves confidence estimation
and can be applied to other relevant scenarios,
such as using classifier cascades for accuracy–
efficiency trade-offs. Source code for this pa-
per can be found at https://github.com/
castorini/transformers-selective.

1 Introduction

Recent advances in deep learning models have
pushed the frontier of natural language process-
ing (NLP). Pre-trained language models based on
the transformer architecture (Vaswani et al., 2017)
have improved the state-of-the-art results on many
NLP applications. Naturally, these models are de-
ployed in various real-world applications. However,
one may wonder whether they are always reliable,
as pointed out by Guo et al. (2017) that modern
neural networks, while having better accuracy, tend
to be overconfident compared to simple networks
from 20 years ago.

In this paper, we study the problem of selective
prediction (Geifman and El-Yaniv, 2017) in NLP.
Under the setting of selective prediction, a model
is allowed to abstain from making predictions on
uncertain examples (Figure 1) and thereby reduce

I enjoyed movies.

Positive

Selective Classi�er Selective Classi�er

I enjoyed movies
before watching this.

Abstain

?

Figure 1: Example of a selective classifier that makes
a prediction for a confident example (left) and abstains
for an uncertain one (right).

the error rate. This is a practical setting in a lot
of realistic scenarios, such as making entailment
judgments for breaking news articles in search en-
gines (Carlebach et al., 2020) and making critical
predictions in medical and legal documents (Zhang
et al., 2019). In these cases, it is totally acceptable,
if not desirable, for the models to admit their un-
certainty and call for help from humans or better
(but more costly) models.

Under the selective prediction setting, we con-
struct a selective classifier by pairing a standard
classifier with a confidence estimator. The confi-
dence estimator measures how confident the model
is for a certain example, and instructs the classifier
to abstain on uncertain ones. Naturally, a good con-
fidence estimator should have higher confidence for
correctly classified examples than incorrect ones.
We consider two choices of confidence estima-
tors, softmax response (SR; Hendrycks and Gimpel,
2017), and Monte-Carlo dropout (MC-dropout; Gal
and Ghahramani, 2016). SR interprets the output
of the final softmax layer as a probability distri-
bution and the highest probability as confidence.
MC-dropout repeats the inference process multiple
times, each time with a different dropout mask, and
treats the negative variance of maximum probabil-
ity as confidence. Confidence estimation is critical
to selective prediction, and therefore studying this
problem also helps relevant tasks such as active

https://github.com/castorini/transformers-selective
https://github.com/castorini/transformers-selective

1041

learning (Cohn et al., 1995; Shen et al., 2018) and
early exiting (Schwartz et al., 2020; Xin et al., 2020;
Zhou et al., 2020; Xin et al., 2021).

In this paper, we compare selective prediction
performance of different NLP models and confi-
dence estimators. We also propose a simple trick,
error regularization, which can be applied to any
of these models and confidence estimators, and im-
prove their selective prediction performance. We
further study the application of selective predic-
tion on a variety of interesting applications, such as
classification with no valid labels (no-answer prob-
lem) and using classifier cascades for accuracy–
efficiency trade-offs. Experiments show that recent
powerful NLP models such as BERT (Devlin et al.,
2019) and ALBERT (Lan et al., 2020) improve
not only accuracy but also selective prediction per-
formance; they also demonstrate the effectiveness
of the proposed error regularization by producing
better confidence estimators which reduce the area
under the risk–coverage curve by 10%.

2 Related Work

Selective prediction has been studied by the ma-
chine learning community for a long time (Chow,
1957; El-Yaniv and Wiener, 2010). More recently,
Geifman and El-Yaniv (2017, 2019) study selec-
tive prediction for modern deep learning models,
though with a focus on computer vision tasks.

Selective prediction is closely related to confi-
dence estimation, as well as out-of-domain (OOD)
detection (Schölkopf et al., 2000; Liang et al., 2018)
and prediction error detection (Hendrycks and Gim-
pel, 2017), albeit more remotely. There have been
many different methods for confidence estimation.
Bayesian methods such as Markov Chain Monte
Carlo (Geyer, 1992) and Variational Inference (Hin-
ton and Van Camp, 1993; Graves, 2011) assume
a prior distribution over model parameters and ob-
tain confidence estimates through the posterior.
Ensemble-based methods (Gal and Ghahramani,
2016; Lakshminarayanan et al., 2017; Geifman
et al., 2019) estimate confidence based on statistics
of the ensemble model’s output. These methods,
however, are computationally practical for small
models only. Current large-scale pre-trained NLP
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), are too expensive to
run multiple times of inference, and therefore re-
quire lightweight confidence estimation.

Previously, selective prediction and confidence

estimation have been studied in limited NLP scenar-
ios. Dong et al. (2018) train a separate confidence
scoring model to explicitly estimate confidence in
semantic parsing. Kamath et al. (2020) introduce
selective prediction for OOD question answering,
where abstention is allowed for OOD and diffi-
cult questions. However, selective prediction for
broader NLP applications has yet to be explored,
and we hope to draw the attention of the NLP com-
munity to this problem.

There are two notable related topics, confidence
calibration and unanswerable questions, but the dif-
ference between them and selective prediction is
still nontrivial. Calibration (Guo et al., 2017; Jiang
et al., 2018; Kumar et al., 2018; Wang et al., 2020;
Desai and Durrett, 2020) focuses on adjusting the
overall confidence level of a model, while selective
prediction is based on relative confidence among
the examples. For example, the most widely used
calibration technique, temperature scaling (Platt,
1999), globally increases or decreases the model’s
confidence on all examples, but the ranking of all
examples’ confidence is unchanged. Unanswer-
able questions are considered in previous datasets,
e.g., SQuAD2.0 (Rajpurkar et al., 2018). The unan-
swerable questions are impossible to answer even
for humans, while abstention in selective predic-
tion is due to model uncertainty rather than model-
agnostic data uncertainty.

3 Background

We introduce relevant concepts about selective
prediction and confidence estimators, using multi-
class classification as an example.

3.1 Selective Prediction
Given a feature space X and a set of labels Y , a
standard classifier f is a function f : X → Y . A
selective classifier is another function h : X →
Y ∪ {⊥}, where ⊥ is a special label indicating the
abstention of prediction. Normally, the selective
classifier is composed of a pair of functions h =
(f, g), where f is a standard classifier and g is the
selective function g : X → {0, 1}. Given an input
x ∈ X , the output of the selective classifier is as
follows:

h(x) =

{
f(x), if g(x) = 1,

⊥, if g(x) = 0,
(1)

and we can see that the output of g controls predic-
tion or abstention. In most cases, g consists of a

1042

confidence estimator g̃ : X → R, and a confidence
threshold θ:

g(x) = 1[g̃(x) > θ]. (2)

g̃(x) indicates how confident the classifier f is on
the example x, and θ controls the overall prediction
versus abstention level.

A selective classifier makes trade-offs between
coverage and risk. Given a labeled dataset S =
{(xi, yi)}ni=1 ⊂ X × Y and an error function L to
calculate each example’s error li = L(f(xi), yi),
the coverage and the selective risk of a classifier
h = (f, g) on S are, respectively,

γ(h) =
1

|S|
∑

(xi,yi)∈S

g(xi), (3)

r(h) =

∑
(xi,yi)∈S g(xi)li∑
(xi,yi)∈S g(xi)

. (4)

The selective classifier aims to minimize the selec-
tive risk at a given coverage.

The performance of a selective classifier h =
(f, g) can be evaluated by the risk–coverage
curve (RCC; El-Yaniv and Wiener, 2010), which is
drawn by varying the confidence threshold θ (see
Figure 2 for an example). Quantitatively, the area
under curve (AUC) of RCC measures the effective-
ness of a selective classifier.1

In order to minimize the AUC of RCC, the selec-
tive classifier should, intuitively, output g(x) = 1
for correctly classified examples and g(x) = 0
for incorrect ones. Therefore, an ideal g̃ has
the following property: ∀(xi, yi), (xj , yj) ∈ S,
g̃(xi) ≤ g̃(xj) iff li ≥ lj . We propose the follow-
ing metric, reversed pair proportion (RPP), to eval-
uate how far the confidence estimator g̃ is to ideal,
given the labeled dataset S of size n:

RPP =

n∑
1≤i,j≤n

1[g̃(xi) < g̃(xj), li < lj]

n2
. (5)

RPP measures the proportion of example pairs with
a reversed confidence–error relationship, and the
n2 in the denominator is used to normalize the
value. An ideal confidence estimator has an RPP
value of 0.

3.2 Confidence Estimators
In most cases for multi-class classification, the last
layer of the classifier is a softmax activation, which

1AUC in this paper always corresponds to RCCs.

outputs a probability distribution P (y) over the set
of labels Y , where y ∈ Y is a label. In this case,
the classifier can be written as

f(x) = ŷ = arg max
y∈Y

P (y), (6)

where ŷ is the label with highest probability.
Perhaps the most straightforward and popular

choice for the confidence estimator is softmax re-
sponse (Hendrycks and Gimpel, 2017):

g̃SR(x) = P (ŷ) = max
y∈Y

P (y). (7)

Alternatively, we can use the difference between
probabilities of the top two classes for confidence
estimation. We refer to this method as PD (proba-
bility difference).

Gal and Ghahramani (2016) argue that “softmax
outputs are often erroneously interpreted as model
confidence”, and propose to use MC-dropout as
the confidence estimator. In MC-dropout, P (ŷ)
is computed for a total of R times, using a
different dropout mask at each time, producing
P1(ŷ), P2(ŷ), · · · , PR(ŷ). The variance of them is
used to estimate the confidence:

g̃MC(x) = −Var[P1(ŷ), · · · , PR(ŷ)]. (8)

We use the negative sign here because a larger vari-
ance indicates a greater uncertainty, i.e., a lower
confidence (Geifman and El-Yaniv, 2017; Kamath
et al., 2020). By using different dropout masks,
MC-dropout is equivalent to using an ensemble for
confidence estimation, but does not require actually
training and storing multiple models. Nevertheless,
compared to SR, the inference cost of MC-dropout
is multiplied by R, which can be a problem when
model inference is expensive.

4 Error Regularization

4.1 Regularizers

SR and MC-dropout are often used directly out
of the box as the confidence estimator. We pro-
pose a simple regularization trick that can be easily
applied at training (or fine-tuning for pre-trained
models) time and can improve the effectiveness of
the induced confidence estimators.

Considering that a good confidence estimator
should minimize RPP defined in Equation 5, we

1043

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

MRPC

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

QNLI

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

MNLI
BERT-base-MC
BERT-large-MC
BERT-base-SR
BERT-large-SR

Coverage

Ri
sk

Figure 2: Risk–coverage curves of BERT-base and BERT-large models with SR and MC confidence estimators.
The legend applies to all sub-plots.

add the following regularizer to the original train-
ing loss function:

Ltotal =
n∑

i=1

H(f(xi), yi) + λLreg, (9)

Lreg =
∑

1≤i,j≤n
∆i,j 1[ei > ej], (10)

∆i,j = max{0, g̃SR(xi)− g̃SR(xj)}2. (11)

Here, H(·, ·) is the task-specific loss function such
as cross entropy (H is not the same with the error
function L), λ is the hyperparameter for regulariza-
tion, g̃SR is the maximum softmax probability de-
fined in Equation 7, and ei is the error of example i
at the current iteration—details to calculate it will
be explained in the next paragraph. We use SR
confidence here because it is easily accessible at
training time, while MC-dropout confidence is not.
The intuition of this regularizer is as follows: if the
model’s error on example i is larger than its error
on example j (i.e., example i is considered more
“difficult” for the model), then the confidence on
example i should not be greater than the confidence
on example j.

In practice, at each iteration of training (fine-
tuning), we can obtain the error ei in one of the two
following ways.

• Current iteration error We simply use the
error function L to calculate the error of the ex-
ample at the current iteration, and use it as ei. In
the case of multi-class classification, L is often
chosen as the 0–1 error.

• History record error Since we intend to
use ei to quantify how difficult an example

is, we draw inspiration from forgettable exam-
ples (Toneva et al., 2019). We calculate example
error with L throughout the training process, and
use the error averaged from the beginning to the
current iteration as ei. In this case, ei takes value
from [0, 1].

4.2 Practical Approximations
In practice, it is computationally prohibitive to
either strictly compute Lreg from Equation 10 for
all example pairs, or to calculate history record
error after every iteration. We therefore make the
following two approximations.

For Lreg from Equation 10, we only consider ex-
amples from the mini-batch of the current iteration.
For current iteration error, where ei takes value
from {0, 1}, we consider all pairs where ei = 1
and ej = 0. For history record error, where ei
takes value from [0, 1], we sort all examples in
the mini-batch by their errors, and divide the mini-
batch into 20% of examples with high error values
and 80% of examples with low error values;2 then
we consider all pairs where example i is from the
former 20% and j from the latter 80%.

For calculating history record error, we compute
and record the error values for the entire training set
10 times per epoch (once after each 10% iterations).
At each training iteration, we use the average of
error values recorded so far as ei.

5 Experiments

We conduct experiments of selective prediction
on NLP tasks. Since the formulation of selec-
tive prediction is model agnostic, we choose the

2We choose this 20–80 division to mimic the current itera-
tion error case, where roughly 20% of training examples have
an error of 1 and 80% have an error of 0.

1044

Model Confidence
Estimator

MRPC QNLI MNLI-(m/mm)
F1(↑) AUC(↓) RPP(↓) Acc(↑) AUC(↓) RPP(↓) Acc(↑) AUC(↓) RPP(↓)

LSTM
SR

81.8
101.5 9.0

62.7
1539.1 9.0

65.4/64.3
1984.0/1990.0 6.8/6.6

MC 137.0 11.3 2039.8 11.6 3554.1/3548.1 11.7/11.7

BERT
base

SR
87.7

33.8 3.7
91.6

111.9 1.2
84.9/84.6

514.8/491.7 2.6/2.4
MC 38.3 4.5 130.1 1.3 639.0/677.5 3.4/3.5

BERT
large

SR
89.0

27.0 3.2
92.0

105.6 1.1
86.4/86.0

486.1/470.0 2.5/2.4
MC 35.9 4.3 114.6 1.2 482.0/510.2 2.5/2.6

ALBERT
base

SR
90.9

16.0 2.1
90.9

122.8 1.2
84.7/85.4

469.3/453.5 2.3/2.3
MC 43.9 5.6 160.0 1.6 921.1/878.3 5.0/4.7

Table 1: Comparing selective prediction performance of different models and confidence estimators. All metrics
except AUC are in percentages.

Dataset #Train #Dev (m/mm) #Labels

MRPC 3.7k 0.4k 2
QNLI 104.7k 5.5k 2
MNLI 392.7k 9.8k/9.8k 3
SST-5 8.5k 1.1k 5
bMNLI 261.8k 9.8k/9.8k 2+1
bSST-5 6.9k 1.1k 2+1

Table 2: Dataset statistics. bMNLI/bSST-5 are bina-
rized version of MNLI/SST-5, with two normal labels
and a special no-answer label.

following representative models: (1) BERT-base
and BERT-large (Devlin et al., 2019), the dom-
inant transformer-based models of recent years;
(2) ALBERT-base (Lan et al., 2020), a variant of
BERT featuring parameter sharing and memory ef-
ficiency; (3) Long Short-Term Memory (LSTM;
Hochreiter and Schmidhuber, 1997), the popular
pre-transformer model that is lightweight and fast.

In this section, we compare the performance of
selective prediction of these models, demonstrate
the effectiveness of the proposed error regulariza-
tion, and show the application of selective predic-
tion in two interesting scenarios—the no-answer
problem and the classifier cascades.

5.1 Experiment Setups

We conduct experiments mainly on three datasets:
MRPC (Dolan and Brockett, 2005), QNLI (Wang
et al., 2018), and MNLI (Williams et al., 2018). In
Section 5.4, we will need an additional non-binary
dataset SST-5 (Socher et al., 2013). Statistics of
these datasets can be found in Table 2. Following
the setting of the GLUE benchmark (Wang et al.,
2018), we use the training set for training/fine-
tuning and the development set for evaluation (the

test set’s labels are not publicly available); MNLI’s
development set has two parts, matched and mis-
matched (m/mm). These datasets include semantic
equivalence judgments, entailment classification,
and sentiment analysis, which are important ap-
plication scenarios for selective prediction as dis-
cussed in Section 1.

The implementation is based on PyTorch (Paszke
et al., 2019) and the Huggingface Transformers Li-
brary (Wolf et al., 2020). Training/fine-tuning and
inference are done on a single NVIDIA Tesla V100
GPU. Since we are evaluating the selective predic-
tion performance of different models instead of pur-
suing state-of-the-art results, we do not extensively
tune hyperparameters; instead, most experiment
settings such as hidden sizes, learning rates, and
batch sizes are kept unchanged from the Hugging-
face Library. Further setup details can be found in
Appendix A.

5.2 Comparing Different Models
We compare selective prediction performance of
different models in Table 1. For each model, we
report the performance given by the two confidence
estimators, softmax response (SR) and MC-dropout
(MC); the results of using PD for confidence es-
timation are very similar to those of SR, and we
report them in Appendix B due to space limita-
tions. The accuracy and the F1 score3 measure
the effectiveness of the classifier f , RPP measures
the reliability of the confidence estimator g̃, and
AUC is a comprehensive metric for both the clas-
sifier and the confidence estimator. The choice of
confidence estimator does not affect the model’s
accuracy. We also provide risk–coverage curves
(RCCs) of different models and confidence estima-

3We henceforth refer to both accuracy and F1 scores simply
as accuracy for the sake of conciseness.

1045

0 20 40 60 80 100
30

40

50

60

70

MRPC

0 20 40 60 80 100
100

150

200

250

300

350

QNLI

0 20 40 60 80 100
500

600

700

800

900

1000

1100

1200

MNLI
MC-0.2
MC-0.1
MC-0.01
MC-0.001
SR

Repetitive Runs (R)

AU
C

Figure 3: Selective prediction performance of MC-dropout with different numbers of repetitive runs (x-axis) and
dropout rates (marked in the legend). BERT-base is used here. The legend applies to all sub-plots.

Model Reg. MRPC QNLI MNLI-(m/mm)
F1(↑) AUC(↓) RPP(↓) Acc(↑) AUC(↓) RPP(↓) Acc(↑) AUC(↓) RPP(↓)

LSTM
none 81.8 101.5 9.04 62.7 1539.1 8.99 65.4/64.3 1984.0/1990.0 6.81/6.60
curr. 81.2 94.0 7.70 64.7 1376.2 8.51 65.5/64.4 1976.0/1990.5 6.80/6.64
hist. 81.2 92.3 7.58 64.7 1368.0 8.42 65.3/64.6 1974.4/1987.4 6.74/6.71

BERT
base

none 87.7 33.8 3.70 91.6 111.9 1.16 84.9/84.6 514.8/491.7 2.55/2.41
curr. 88.1 31.2 3.49 91.9 100.1 1.08 84.6/84.6 479.1/461.8 2.39/2.27
hist. 87.9 30.3 3.51 91.4 113.9 1.20 84.4/84.5 490.7/472.5 2.42/2.32

BERT
large

none 89.0 27.0 3.17 92.0 105.6 1.06 86.4/86.0 486.1/470.0 2.45/2.39
curr. 89.7 20.6 3.05 91.2 98.2 1.04 86.5/85.5 417.7/434.4 2.17/2.17
hist. 89.0 24.4 3.30 92.1 99.4 0.94 85.5/85.9 404.9/400.6 2.25/2.25

ALBERT
base

none 90.9 16.0 2.13 90.9 122.8 1.21 84.7/85.4 469.3/453.5 2.32/2.30
curr. 91.4 13.2 1.82 90.9 104.3 1.23 84.7/85.2 451.2/463.9 2.25/2.23
hist. 91.0 16.2 2.18 91.2 117.5 1.12 84.6/85.2 461.1/429.8 2.26/2.30

Table 3: Comparing different regularizers (Reg.) for different models and datasets. Selective prediction perfor-
mance is measured by AUC and RPP. All metrics except AUC are in percentages.

tors in Figure 2. MC in the table and the figure uses
a dropout rate of 0.01 and repetitive runs R = 10.

We first notice that models with overall higher ac-
curacy also have better selective prediction perfor-
mance (lower AUC and RPP). For example, com-
pared with LSTM, BERT-base has higher accuracy
and lower AUC/RPP on all datasets, and the same
applies to the comparison between BERT-base and
BERT-large. Since the classifier’s effectiveness
does not directly affect RPP, the consistency of
RPP’s and accuracy’s improvement indicates that
sophisticated models simultaneously improve both
model accuracy and confidence estimation. This
is in contrast to the discovery by Guo et al. (2017)
that sophisticated neural networks, despite having
better accuracy, are more easily overconfident and
worse calibrated than simple ones.

We also notice that MC-dropout performs con-
sistently worse than softmax response, shown by

both AUC and RPP. This shows that for NLP tasks
and models, model confidence estimated by MC-
dropout fails to align well with real example diffi-
culty. We further study and visualize in Figure 3
the effect of different dropout rates and different
numbers of repetitive runs R on MC-dropout’s se-
lective prediction performance. We can see that (1)
a dropout rate of 0.01 is a favorable choice: larger
dropout rates lead to worse performance while
smaller ones do not improve it; (2) MC-dropout
needs at least 20 repetitions to obtain results com-
parable to SR, which is extremely expensive. Al-
though MC-dropout has a sound theoretical foun-
dation, its practical application to NLP tasks needs
further improvements.

5.3 Effect of Error Regularization

In this part, we show that our simple regularization
trick improves selective prediction performance. In

1046

Model Reg. bSST5 bMNLI-(m/mm)
Acc(↑) Acc*(↑) AUC(↓) RPP(↓) Acc(↑) Acc*(↑) AUC(↓) RPP(↓)

BERT
base

none 71.7 74.0 174.7 5.34 63.9/64.2 70.6/70.9 1645.4/1630.7 4.74/4.72
curr. 72.0 73.8 173.5 5.35 63.8/64.2 71.1/71.4 1562.2/1562.1 4.41/4.45
hist. 72.6 74.7 157.4 5.17 63.8/64.1 70.7/71.6 1630.5/1583.2 4.62/4.51

BERT
large

none 73.2 73.7 158.4 5.58 64.8/64.8 72.9/72.5 1861.0/1852.3 5.18/5.16
curr. 73.3 74.2 137.1 4.82 64.5/65.1 72.7/73.2 1476.8/1629.7 4.91/4.68
hist. 73.5 73.7 148.8 4.53 65.0/64.8 73.1/73.2 1695.9/1460.6 4.14/4.11

ALBERT
base

none 72.3 73.5 172.4 5.61 64.0/64.3 71.6/72.4 1579.1/1534.4 4.44/4.34
curr. 72.4 73.2 168.0 5.32 63.8/64.2 72.9/72.3 1563.8/1550.9 4.45/4.32
hist. 72.5 73.2 161.0 5.63 63.9/64.4 71.6/73.5 1601.8/1496.3 4.20/4.10

Table 4: Selective prediction performance of different models and regularization methods (Reg.) on two datasets
with the no-answer label. All metrics except AUC are in percentages.

Table 3, we report the accuracy, AUC, and RPP for
each model, paired with three different regularizers:
no regularization (none), current error regularizer
(curr.), and history error regularizer (hist.), as de-
scribed in Section 4.

We first see that applying error regularization
(either current or history) does not harm model
accuracy. There are minor fluctuations, but gener-
ally speaking, error regularization has no negative
effect on the models’ effectiveness.

We can also see that error regularization im-
proves models’ selective prediction performance,
reducing AUC and RPP. As we mention in the pre-
vious section, AUC is a comprehensive metric for
both the classifier f and the confidence estimator
g̃. We therefore focus on this metric in this section,
and we bold the lowest AUC in Table 3. We see that
error regularization consistently achieve the lowest
AUC values, and on average, the best scores are
approximately 10% lower than the scores without
regularization. This shows that error regulariza-
tion produces confidence estimators that give better
confidence rankings.

The two regularization methods, current error
and history error, are similar in quality, with nei-
ther outperforming the other across all models and
datasets. Therefore, we can conclude only that the
error regularization trick improves selective predic-
tion, but the best specific method varies. We leave
this exploration for future work.

5.4 The No-Answer Problem

In this section, we conduct experiments to see how
selective classifiers perform on datasets that ei-
ther allow abstention or, equivalently, provide the
no-answer label. This no-answer problem occurs

whenever a trained classifier encounters an example
whose label is unseen in training, which is common
in practice. For example, in the setting of ultrafine
entity typing with more than 10,000 labels (Choi
et al., 2018), it is unsurprising to encounter exam-
ples with unseen types. Ideally, in this case, the
classifier should choose the no-answer label. This
setting is important yet often neglected, and there
exist few classification datasets with the no-answer
label. We therefore build our own datasets, bina-
rized MNLI and SST-5 (bMNLI and bSST-5), to
evaluate different models in this setting (Table 2).

The MNLI dataset is for sentence entailment
classification. Given a pair of sentences, the goal
is to predict the relationship between them, among
three labels: entailment, contradiction, and neutral.
The SST-5 dataset is for fine-grained sentence sen-
timent classification. Given a sentence, the goal
is to predict the sentiment of it, among five labels:
strongly positive, mildly positive, strongly negative,
mildly negative, and neutral. To convert the orig-
inal MNLI and SST-5 datasets into our binarized
versions bMNLI and bSST-5, we modify the fol-
lowing: for SST-5, we merge strongly and mildly
positive/negative into one positive/negative class;
for MNLI, we simply regard entailment as positive
and contradictory as negative. We then remove
all neutral instances from the training set but keep
those in the development and test sets. This way,
neutral instances in the development and test sets
should be classified as no-answer by the model.
A good model is expected to assign neutral exam-
ples in the development and test sets with low con-
fidence scores, thereby predicting the no-answer
label for them.

We report results for these two datasets with

1047

0 5 10 15 20
GFLOPs

0.82

0.84

0.86

0.88
F1

MRPC

0 5 10 15 20
GFLOPs

0.65

0.70

0.75

0.80

0.85

0.90

Ac
c.

QNLI

0 5 10 15 20
GFLOPs

0.65

0.70

0.75

0.80

0.85

Ac
c.

MNLI

Random
SR
SR-hist.

Figure 4: Accuracy–efficiency trade-offs by using classifier cascades. All examples are first evaluated by LSTM,
and then we compare three ways of choosing examples to send to the more sophisticated model (BERT-base):
random selection (Random), SR without regularization (SR), and SR with history error regularization (SR-hist.).
The legend applies to all sub-plots.

the no-answer label in Table 4. Accuracy (Acc),
AUC, and RPP have the same meaning from the
previous sections. We also consider a new metric
specifically for the no-answer setting, augmented
accuracy (Acc*), which is calculated as follows:
(1) we make a number of attempts by searching a
threshold α from 0.7 to 1.0 in increments of 0.01;
(2) for each attempt, we regard all examples with
predicted confidence lower than α as neutral, and
then calculate the accuracy; (3) among all attempts,
we take the highest accuracy as Acc*. Choosing
the optimal α requires knowing the ground-truth
answers in advance and is not practical in reality.4

Instead, Acc* indicates how well a model recog-
nizes examples whose label is likely unseen in the
training set.

We first see that Acc* is consistently higher than
Acc in all cases. This is unsurprising, but it demon-
strates that unseen samples indeed have lower con-
fidence and shows that introducing the abstention
option is beneficial in the no-answer scenario. Also,
we observe that error regularization improves the
models’ selective prediction performance, produc-
ing lower AUC/RPP and higher Acc* in most cases.
This further demonstrates the effectiveness of the
simple error regularization trick.

Secondly, we can see that the improvement of
Acc* over Acc is larger in bMNLI than in bSST-5.
The reason is that in bMNLI, neutral examples con-
stitute about a third of the entire development set,
while in bSST-5 they constitute only a fifth. The

4Alternatively, one may use a validation set to choose the
optimal α. In our experiments, however, we use the develop-
ment set for evaluation, since the labels of the test set itself
are not publicly available. Holding out a part of the training
set for validation is left for future exploration.

improvement is positively correlated with the pro-
portion of neutral examples, since they are assigned
lower confidence scores and provide the potential
for abstention-based improvements.

5.5 Classifier Cascades

In this section, we show how confidence estimation
and abstention can be used for accuracy–efficiency
trade-offs. We use classifier cascades: we first use
a less accurate classifier for prediction, abstain on
examples with low confidence, then send them to
more accurate but more costly classifiers. Here
we choose LSTM and BERT-base to constitute the
cascade, but one can also choose other models and
more levels of classifiers.

We first use an LSTM for all examples’ infer-
ence, and then send “difficult” ones to BERT-base.
Since the computational cost of LSTM is negligi-
ble5 compared to BERT-base, the key to efficiency
here is correctly picking the “difficult” examples.

In Figure 4, we show the results of accuracy/F1
score versus average FLOPs6 per inference exam-
ple. Each curve represents a method to choose
difficult examples: The blue curves are obtained by
randomly selecting examples, as a simple baseline.
The orange and green curves are obtained by using
SR of LSTM as the indicator of example difficulty;
the orange curves represent the LSTM trained with
no regularization while the green curves are with
history error regularization. Different points on
the curves are chosen by varying the proportion of
examples sent to the more accurate model, BERT-

5BERT-base’s cost is ∼ 105 times larger than LSTM here.
6We use the torchprofile toolkit to measure multiply–

accumulate operations (MACs), and then double the number
to obtain floating point operations (FLOPs).

https://github.com/zhijian-liu/torchprofile

1048

base. A curve with a larger area under it indicates
a better accuracy–efficiency trade-off.

We can see that the blue curves are basically
linear interpolations between the LSTM (the lower-
left dot) and BERT-base (the upper-right dot), and
this is expected for random selection. Orange and
green curves are concave, indicating that using SR
for confidence estimation is, unsurprisingly, more
effective than random selection. Between these
two, the green curves (history error regularization)
have larger areas under themselves than orange
ones (no regularization), i.e., green curves have bet-
ter accuracy given the same FLOPs. This demon-
strates the effectiveness of error regularization for
better confidence estimation.

6 Conclusion

In this paper, we introduce the problem of selective
prediction for NLP. We provide theoretical back-
ground and evaluation metrics for the problem, and
also propose a simple error regularization method
that improves selective prediction performance for
NLP models. We conduct experiments to compare
different models under the selective prediction set-
ting, demonstrate the effectiveness of the proposed
regularization trick, and study two scenarios where
selective prediction and the error regularization
method can be helpful.

We summarize interesting experimental observa-
tions as follows:

1. Recent sophisticated NLP models not only im-
prove accuracy over simple models, but also
provide better selective prediction results (better
confidence estimation).

2. MC-dropout, despite having a solid theoretical
foundation, has difficulties matching the effec-
tiveness of simple SR in practice.

3. The simple error regularization helps models
lower their AUC and RPP, i.e., models trained
with it produce better confidence estimators.

4. Selective prediction can be applied to scenarios
where estimating example difficulties is neces-
sary. In these cases, our proposed error reg-
ularization trick can also be helpful, such as
providing better accuracy–efficiency trade-offs.

Future Work (1) Despite the effectiveness of
the proposed error regularization trick, we are not
certain on the best way for computing the error

(current or history); it is important to unify them
into one method that consistently does well. (2) We
have only covered a selection of NLP tasks, and
there are still other unexplored categories: token-
level classification such as named entity recogni-
tion and question answering, sequence generation
such as summarization and translation, and so on;
it would be interesting to extend selective predic-
tion to these problems. (3) There exists another
setting for selective prediction where abstention
induces a fixed cost (Bartlett and Wegkamp, 2008)
and the goal is to minimize the overall cost instead
of AUC; it would also be interesting to investigate
this setting for NLP applications.

Acknowledgements

We thank anonymous reviewers for their construc-
tive suggestions. This research is supported in part
by the Canada First Research Excellence Fund and
the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

References
Peter L. Bartlett and Marten H. Wegkamp. 2008. Clas-

sification with a reject option using a hinge loss.
Journal of Machine Learning Research, 9(59).

Mark Carlebach, Ria Cheruvu, Brandon Walker, Cesar
Ilharco Magalhaes, and Sylvain Jaume. 2020. News
aggregation with diverse viewpoint identification us-
ing neural embeddings and semantic understanding
models. In Proceedings of the 7th Workshop on Ar-
gument Mining, pages 59–66, Online. Association
for Computational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Chi-Keung Chow. 1957. An optimum character recog-
nition system using decision functions. IRE Trans-
actions on Electronic Computers, (4).

David Cohn, Zoubin Ghahramani, and Michael Jordan.
1995. Active learning with statistical models. In
Advances in Neural Information Processing Systems,
volume 7. MIT Press.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295–302, Online.
Association for Computational Linguistics.

1049

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Confi-
dence modeling for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 743–753, Melbourne, Australia. As-
sociation for Computational Linguistics.

Ran El-Yaniv and Yair Wiener. 2010. On the founda-
tions of noise-free selective classification. Journal
of Machine Learning Research, 11(53).

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Yonatan Geifman and Ran El-Yaniv. 2017. Selec-
tive classification for deep neural networks. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Yonatan Geifman and Ran El-Yaniv. 2019. Selec-
tiveNet: A deep neural network with an integrated
reject option. In Proceedings of the 36th Inter-
national Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 2151–2159. PMLR.

Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2019.
Bias-reduced uncertainty estimation for deep neural
classifiers. In International Conference on Learning
Representations.

Charles J. Geyer. 1992. Practical markov chain monte
carlo. Statistical science, pages 473–483.

Alex Graves. 2011. Practical variational inference for
neural networks. In Advances in Neural Information
Processing Systems, volume 24. Curran Associates,
Inc.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages
1321–1330. PMLR.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. In International Con-
ference on Learning Representations.

Geoffrey E. Hinton and Drew Van Camp. 1993. Keep-
ing the neural networks simple by minimizing the
description length of the weights. In Proceedings
of the Sixth Annual Conference on Computational
learning theory, pages 5–13.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Heinrich Jiang, Been Kim, Melody Guan, and Maya
Gupta. 2018. To trust or not to trust a classifier.
In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-
lective question answering under domain shift. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5684–
5696, Online. Association for Computational Lin-
guistics.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018.
Trainable calibration measures for neural networks
from kernel mean embeddings. In Proceedings
of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2805–2814. PMLR.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Sys-
tems, volume 30, pages 6402–6413. Curran Asso-
ciates, Inc.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Shiyu Liang, Yixuan Li, and R. Srikant. 2018. Enhanc-
ing the reliability of out-of-distribution image detec-
tion in neural networks. In International Conference
on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

1050

Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In Advances in Large Margin Clas-
sifiers.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Bernhard Schölkopf, Robert C. Williamson, Alex
Smola, John Shawe-Taylor, and John Platt. 2000.
Support vector method for novelty detection. In Ad-
vances in Neural Information Processing Systems,
volume 12. MIT Press.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 6640–6651, Online.
Association for Computational Linguistics.

Yanyao Shen, Hyokun Yun, Zachary C. Lipton,
Yakov Kronrod, and Animashree Anandkumar.
2018. Deep active learning for named entity recogni-
tion. In International Conference on Learning Rep-
resentations.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J. Gordon. 2019. An empirical study of exam-
ple forgetting during deep neural network learning.
In International Conference on Learning Represen-
tations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-

boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3070–3079, Online. Association for
Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

Xuchao Zhang, Fanglan Chen, Chang-Tien Lu, and
Naren Ramakrishnan. 2019. Mitigating uncertainty
in document classification. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3126–3136, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages
18330–18341. Curran Associates, Inc.

1051

Model Confidence
Estimator

SST-5 MNLI-(m/mm)
Acc AUC RPP Acc AUC RPP

LSTM
SR

37.6
624.8 10.1

65.4/64.3
1984.0/1990.0 6.8/6.6

PD 646.5 10.8 2001.8/2013.8 6.9/6.7
MC 701.2 11.9 3554.1/3548.1 11.7/11.7

BERT
base

SR
51.6

439.9 10.1
84.9/84.6

514.8/491.7 2.6/2.4
PD 438.9 10.2 517.8/494.0 2.6/2.4
MC 493.5 10.9 639.0/677.5 3.4/3.5

BERT
large

SR
53.3

430.5 10.4
86.4/86.0

486.1/470.0 2.5/2.4
PD 434.2 10.5 489.2/473.0 2.5/2.4
MC 474.8 11.2 482.0/510.2 2.5/2.6

ALBERT
base

SR
50.2

474.2 10.5
84.7/85.4

469.3/453.5 2.3/2.3
PD 481.3 10.8 473.1/456.6 2.3/2.3
MC 524.4 11.8 921.1/878.3 5.0/4.7

Table 5: Adding PD as confidence estimation to the comparison between different confidence estimators on SST-5
and MNLI.

A Detailed Experiment Settings

The LSTM is randomly initialized without pre-
training. For models that require pre-trained, we
use the following ones provided by the Hugging-
face Transformer Library (Wolf et al., 2020).

• BERT-BASE-UNCASED

• BERT-LARGE-UNCASED

• ALBERT-BASE-V2

All these models are trained/fine-tuned for 3
epochs without early-stopping or checkpoint se-
lection. Learning rate is 2× 10−5. A batch size of
32 is used for training/fine-tuning. The maximum
input sequence length is 128. Choices for the reg-
ularization hyperparameter λ from Equation 9 are
shown in Table 6.

The numbers of parameters for the two models
BERT and ALBERT can be found in the paper by
Lan et al. (2020).

The LSTM used in the paper is a two-layer bi-
directional LSTM, with a hidden size of 200. On
top of it there is a max-pooling layer and a fully-
connected layer.

B PD Confidence Estimator

Probability difference (PD), the difference between
probabilities of the top two classes, can also be
used as confidence estimation. Among the four
datasets used in the paper, MRPC and QNLI are

Model curr. hist.

LSTM 0.5 0.5
BERT-base 0.05 0.05
BERT-large 0.1 0.1
ALBERT-base 0.01 0.05

Table 6: Choices for λ for different models and regular-
ization methods.

binary classification, and therefore PD’s results
are identical to softmax response (SR). SST-5 and
MNLI have more than two classes, and therefore
PD’s results are different from SR’s. We show them
in Table 5.

We can see that the results of PD are very similar
to those of SR. Of course, MNLI and SST-5 have
only three/five labels respectively, and for datasets
with far more labels, PD will possibly show its
difference from SR.

