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Abstract

The scarcity of parallel data is a major obsta-
cle for training high-quality machine transla-
tion systems for low-resource languages. For-
tunately, some low-resource languages are lin-
guistically related or similar to high-resource
languages; these related languages may share
many lexical or syntactic structures. In
this work, we exploit this linguistic overlap
to facilitate translating to and from a low-
resource language with only monolingual data,
in addition to any parallel data in the re-
lated high-resource language. Our method,
NMT-Adapt, combines denoising autoencod-
ing, back-translation and adversarial objec-
tives to utilize monolingual data for low-
resource adaptation. We experiment on 7 lan-
guages from three different language families
and show that our technique significantly im-
proves translation into low-resource language
compared to other translation baselines.

1 Introduction

While machine translation (MT) has made incredi-
ble strides due to the advent of deep neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2014) models, this improvement has
been shown to be primarily in well-resourced lan-
guages with large available parallel training data.

However with the growth of internet commu-
nication and the rise of social media, individuals
worldwide have begun communicating and produc-
ing content in their native low-resource languages.
Many of these low-resource languages are closely
related to a high-resource language. One such ex-
ample are “dialects”: variants of a language tradi-
tionally considered oral rather than written. Ma-
chine translating dialects using models trained on

∗This work was conducted while author was working at
Facebook AI

the formal variant of a language (typically the high-
resource variant which is sometimes considered the
“standardized form”) can pose a challenge due to
the prevalence of non standardized spelling as well
significant slang vocabulary in the dialectal variant.
Similar issues arise from translating a low-resource
language using a related high-resource model (e.g.,
translating Catalan with a Spanish MT model).

While an intuitive approach to better translating
low-resource related languages could be to obtain
high-quality parallel data. This approach is often
infeasible due to lack specialized expertise or bilin-
gual translators. The problems are exacerbated by
issues that arise in quality control for low-resource
languages (Guzmán et al., 2019). This scarcity
motivates our task of learning machine translation
models for low-resource languages while leverag-
ing readily available data such as parallel data from
a closely related language or monolingual data in
the low-resource language.1

The use of monolingual data when little to no
parallel data is available has been investigated for
machine translation. A few approaches involve
synthesising more parallel data from monolingual
data using backtranslation (Sennrich et al., 2015)
or mining parallel data from large multilingual cor-
pora (Tran et al., 2020; El-Kishky et al., 2020b,a;
Schwenk et al., 2019). We introduce NMT-Adapt, a
zero resource technique that does not need parallel
data of any kind on the low resource language.

We investigate the performance of NMT-Adapt
at translating two directions for each low-resource
language: (1) low-resource to English and (2) En-
glish to low-resource. We claim that translating
into English can be formulated as a typical unsu-
pervised domain adaptation task, with the high-
resource language as the source domain and the

1We use low-resource language and dialect or variant in-
terchangeably.
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related low-resource, the target domain. We then
show that adversarial domain adaptation can be
applied to this related language translation task.
For the second scenario, translating into the low-
resource language, the task is more challenging
as it involves unsupervised adaptation of the gen-
erated output to a new domain. To approach this
task, NMT-Adapt jointly optimizes four tasks to
perform low-resource translation: (1) denoising au-
toencoder (2) adversarial training (3) high-resource
translation and (4) low-resource backtranslation.

We test our proposed method and demonstrate its
effectiveness in improving low-resource translation
from three distinct families: (1) Iberian languages,
(2) Indic languages, and (3) Semitic languages,
specifically Arabic dialects. We make our code and
resources publicly available.2

2 Related Work

Zero-shot translation Our work is closely re-
lated to that of zero-shot translation (Johnson et al.,
2017; Chen et al., 2017; Al-Shedivat and Parikh,
2019). However, while zero-shot translation trans-
lates between a language pair with no parallel data,
there is an assumption that both languages in the
target pair have some parallel data with other lan-
guages. As such, the system can learn to process
both languages. In one work, Currey and Heafield
(2019) improved zero-shot translation using mono-
lingual data on the pivot language. However, in
our scenario, there is no parallel data between the
low-resource language and any other language. In
other work, Arivazhagan et al. (2019) showed that
adding adversarial training to the encoder output
could help zero shot training. We adopt a similar
philosophy in our multi-task training to ensure our
low-resource target is in the same latent space as
the higher-resource language.

Unsupervised translation A related set of work
is the family of unsupervised translation tech-
niques; these approaches translate between lan-
guage pairs with no parallel corpus of any kind. In
work by Artetxe et al. (2018); Lample et al. (2018a),
unsupervised translation is performed by training
denoising autoencoding and backtranslation tasks
concurrently. In these approaches, multiple pre-
training methods were proposed to better initialize
the model (Lample et al., 2018b; Lample and Con-
neau, 2019; Liu et al., 2020; Song et al., 2019).

2https://github.com/wjko2/NMT-Adapt

Different approaches were proposed that used
parallel data between X-Y to improve unsupervised
translation between X-Z (Garcia et al., 2020a; Li
et al., 2020; Wang et al., 2020). This scenario dif-
fers from our setting as it does not assume that Y
and Z are similar languages. These approaches
leverage a cross-translation method on a multilin-
gual NMT model where for a parallel data pair
(Sx,Sy), they translate Sx into language Z with the
current model to get S′z . Then use (Sy,S′z) as an
additional synthesized data pair to further improve
the model. Garcia et al. (2020b) experiment using
multilingual cross-translation on low-resource lan-
guages with some success. While these approaches
view the parallel data as auxiliary, to supplement
unsupervised NMT, our work looks at the problem
from a domain adaptation perspective. We attempt
to use monolingual data in Z to make the super-
vised model trained on X-Y generalize to Z.

Leveraging High-resource Languages to Im-
prove Low-resource Translation Several
works have leveraged data in high-resource
languages to improve the translation of similar
low-resource languages. Neubig and Hu (2018)
showed that it is beneficial to mix the limited
parallel data pairs of low-resource languages with
high-resource language data. Lakew et al. (2019)
proposed selecting high-resource language data
with lower perplexity in the low-resource language
model. Xia et al. (2019) created synthetic sentence
pairs by unsupervised machine translation, using
the high-resource language as a pivot. However
these previous approaches emphasize translating
from the low-resource language to English, while
the opposite direction is either unconsidered or
shows poor translation performance. Siddhant
et al. (2020) trained multilingual translation
and denoising simultaneously, and showed that
the model could translate languages without
parallel data into English near the performance of
supervised multilingual NMT.

Similar language translation Similar to our
work, there have been methods proposed that lever-
age similar languages to improve translation. Has-
san et al. (2017) generated synthetic English-dialect
parallel data from English-main language corpus.
However, this method assumes that the vocabulary
in the main language could be mapped word by
word into the dialect vocabulary, and they calcu-
late the corresponding word for substitution using

https://github.com/wjko2/NMT-Adapt
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localized projection. This approach differs from
our work in that it relies on the existence of a seed
bilingual lexicon to the dialect/similar language.
Additionally, the approach only considers translat-
ing from a dialect to English and not the reverse
direction. Other work trains a massively multilin-
gual many-to-many model and demonstrates that
high-resource training data improves related low-
resource language translation (Fan et al., 2020). In
other work, Lakew et al. (2018) compared ways
to model translations of different language vari-
eties, in the setting that parallel data for both va-
rieties is available, the variety for some pairs may
not be labeled. Another line of work focus on
translating between similar languages. In one such
work, Pourdamghani and Knight (2017) learned a
character-based cipher model. In other work, Wan
et al. (2020) improved unsupervised translation
between the main language and the dialect by sepa-
rating the token embeddings into pivot and private
parts while performing layer coordination.

3 Method

We describe the NMT-Adapt approach to translat-
ing a low-resource language into and out of En-
glish without utilizing any low-resource language
parallel data. In Section 3.1, we describe how
NMT-Adapt leverages a novel multi-task domain
adaptation approach to translating English into a
low-resource language. In Section 3.2, we then de-
scribe how we perform source-domain adaptation
to translate a low-resource language into English.
Finally, in Section 3.3, we demonstrate how we
can leverage these two domain adaptations, to per-
form iterative backtranslation – further improving
translation quality in both directions.

3.1 English to Low-resource

To translate from English into a low-resource lan-
guage, NMT-Adapt is initialized with a pretrained
mBART model whose pretraining is described
in (Liu et al., 2020). Then, as shown in Figure 1,
we continue to train the model simultaneously with
four tasks inspired by (Lample et al., 2018a) and
update the model with a weighted sum of the gra-
dients from different tasks.

The language identifying tokens are placed at
the same position as in mBART. For the encoder,
both high and low-resource language source text,
with and without noise, use the language token
of the high-resource language [HRL] in the pre-

trained mBART. For the decoder, the related high
and low-resource languages use their own, differ-
ent, language tokens. We initialize the language to-
ken embedding of the low-resource language with
the embedding from the high-resource language
token.
Task 1: Translation The first task is transla-
tion from English into the high-resource language
(HRL) which is trained using readily available high-
resource parallel data. This task aims to transfer
high-resource translation knowledge to aid in trans-
lating into the low-resource language. We use the
cross entropy loss formulated as follows:

Lt = LCE(D(ZEn, [HRL]), XHRL) (1)

, where ZEn = E(XEn, [En]). (XEn, XHRL) is
a parallel sentence pair. E ,D denotes the encoder
and decoder functions, which take (input, language
token) as parameters. LCE denotes the cross en-
tropy loss.

Task 2: Denoising Autoencoding For this task,
we leverage monolingual text by introducing noise
to each sentence, feeding the noised sentence into
the encoder, and training the model to generate the
original sentence. The noise we use is similar to
(Lample et al., 2018a), which includes a random
shuffling and masking of words. The shuffling is a
random permutation of words, where the position
of words is constrained to shift at most 3 words
from the original position. Each word is masked
with a uniform probability of 0.1. This task aims
to learn a feature space for the languages, so that
the encoder and decoder could transform between
the features and the sentences. This is especially
necessary for the low-resource language if it is
not already pretrained in mBART. Adding noise
was shown to be crucial to translation performance
in (Lample et al., 2018a), as it forces the learned
feature space to be more robust and contain high-
level semantic knowledge.

We train the denoising autoencoding on both the
low-resource and related high-resource languages
and compute the loss as follows:

Lda =
∑

i=LRL,HRL

LCE(D(Zi, [i]), Xi) (2)

, where Zi = E(N (Xi), [HRL]). Xi is from the
monolingual corpus.

Task 3: Backtranslation For this task, we train on
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Figure 1: Illustration of the training tasks for translating from English into a low-resource language (LRL) and
from an LRL to English.

English to low-resource backtranslation data. The
aim of this task is to capture a language-modeling
effect in the low-resource language. We describe
how we obtain this data using the high-resource
translation model to bootstrap backtranslation in
Section 3.3.

The objective used is,

Lbt = LCE(D(Z ′En, [LRL]), XLRL) (3)

, where Z ′En = E(YEn, [En]). (YEn, XLRL) is an
English to low-resource backtranslation pair.

Task 4: Adversarial Training The final task aims
to make the encoder output language-agnostic fea-
tures. The representation is language agnostic to
the noised high and low-resource languages as well
as English. Ideally, the encoder output should con-
tain the semantic information of the sentence and
little to no language-specific information. This
way, any knowledge learned from the English to
high-resource parallel data can be directly applied
to generating the low-resource language by sim-
ply switching the language token during inference,
without capturing spurious correlations (Gu et al.,
2019a).

To adversarially mix the latent space of the en-
coder among the three languages, we use two critics

(discriminators). The critics are recurrent networks
to ensure that they can handle variable-length text
input. Similar to Gu et al. (2019b), the adversar-
ial component is trained using a Wasserstein loss,
which is the difference of expectations between the
two types of data. This loss minimizes the earth
mover’s distance between the distributions of dif-
ferent languages. We compute the loss function as
follows:

Ladv1 = E[Disc(ZHRL)]−E[Disc(ZLRL)] (4)

Ladv2 = E[Disc(ZHRL ∪ ZLRL)]

−E[Disc(ZEn ∪ Z ′En)] (5)

As shown in Equation 4, the first critic is trained to
distinguish between the high and low-resource lan-
guages. Similarly, in Equation 5, the second critic
is trained to distinguish between English and non-
English (both high, and low-resource languages).

Fine-tuning with Backtranslation: Finally, we
found that after training with the four tasks con-
currently, it is beneficial to fine-tune solely using
backtranslation for one pass before inference. We
posit that this is because while spurious correla-
tions are reduced by the adversarial training, they
are not completely eliminated and using solely the
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language tokens to control the output language
is not sufficient. By fine-tuning on backtransla-
tion, we are further adapting to the target side and
encouraging the output probability distribution of
the decoder to better match the desired output lan-
guage.

3.2 Low-resource to English
We propose to model translating from the low-
resource language to English as a domain adap-
tation task and design our model based on insights
from domain-adversarial neural network (DANN)
(Ganin et al., 2017), a domain adaptation technique
widely used in many NLP tasks. This time, we
train three tasks simultaneously:

Task 1: Translation We train high-resource to En-
glish translation on parallel data with the goal of
adapting this knowledge to translate low-resource
sentences. We compute this loss as follows:

Lt = LCE(D(ZHRL, [En]), XEn) (6)

, where ZHRL = E(XHRL, [HRL]).

Task 2: Backtranslation Low-resource to English
backtranslation translation, which we describe in
Section 3.3. The objective is as follows:

Lt = LCE(D(Z ′LRL, [En]), XEn) (7)

, where Z ′LRL = E(YLRL, [HRL]).

Task 3: Adversarial Training We feed the sen-
tences from the monolingual corpora of the high-
and low-resource corpora into the encoder, and the
encoder output is trained so that its input language
cannot be distinguished by a critic. The goal is to
encode the low-resource data into a shared space
with the high-resource, so that the decoder trained
on the translation task can be directly used. No
noise was added to the input, since we did not ob-
serve an improvement. There is only one recurrent
critic, which uses the Wasserstein loss and is com-
puted as follows:

Ladv = E[Disc(ZHRL)]− E[Disc(ZLRL)] (8)

, where ZLRL = E(XLRL, [HRL]).
Similar to the reverse direction, we initialize

NMT-Adapt with a pretrained mBART, and use the
same language token for high-resource and low-
resource in the encoder.

3.3 Iterative Training
We describe how we can alternate training into/out-
of English models to create better backtranslation
data improving overall quality.

Algorithm 1 Iterative training

1: MLRL→En
0 ← Train HRL to En model

2: Xmono ← Monolingual LRL corpus
3: XEn ← English sentences in the En-HRL parallel corpus
4: for k in 1,2... do
5: // Generate backtranslation pairs
6: ComputeMLRL→En

k−1 (Xmono)
7:
8: // Train model as in Sec 3.1
9: MEn→LRL

k ← trained En to LRL model
10:
11: // Generate backtranslation pairs
12: ComputeMEn→LRL

k (XEn)
13:
14: // Train model as in Sec 3.2
15: MLRL→En

k ← trained LRL to En model
16:
17: if Converged then break;

The iterative training process is described in Al-
gorithm 1. We first create English to low-resource
backtranslation data by fine-tuning mBART on the
high-resource to English parallel data. Using this
model, we translate monolingual low-resource text
into English treating the low-resource sentences as
if they were in the high-resource language. The
resulting sentence pairs are used as backtranslation
data to train the first iteration of our English to
low-resource model.

After training English to low-resource, we use
the model to translate the English sentences in the
English-HRL parallel data into the low-resource
language, and use those sentence pairs as back-
translation data to train the first iteration of our
low-resource to English model.

We then use the first low-resource to English
model to generate backtranslation pairs for the sec-
ond English to low-resource model. We iteratively
repeat this process of using our model of one direc-
tion to improve the other direction.

4 Experiments

4.1 Datasets
We experiment on three groups of languages. In
each group, we have a large quantity of parallel
training data for one language(high-resource) and
no parallel for the related languages to simulate a
low-resource scenario.

Our three groupings include (i) Iberian lan-
guages, where we treat Spanish as the high-
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Language Group Training Set Train-Size Test Set Test-size Monolingual Mono-Size

Spanish Iberian QED (Guzman et al., 2013) 694k N/A - CC-100 1M
Catalan Iberian N/A - Global Voices (Tiedemann, 2012) 15k CC-100 1M
Portuguese Iberian N/A - TED (Qi et al., 2018) 8k CC-100 1M

Hindi Indic IIT Bombay (Kunchukuttan et al., 2018) 769k N/A - CC-100 1M
Marathi Indic N/A - TICO-19 (Anastasopoulos et al., 2020) 2k CC-100 1M
Nepali Indic N/A - FLoRes (Guzmán et al., 2019) 3k CC-100 1M
Urdu Indic N/A - TICO-19 (Anastasopoulos et al., 2020) 2k CC-100 1M

MSA Arabic QED (Guzman et al., 2013) 465k N/A - CC-100 1M
Egyptian Ar. Arabic N/A - Forum (Chen et al., 2018) 11k CC-100 1.2M
Levantine Ar. Arabic N/A - Web text (Raytheon, 2012) 11k CC-100 1M

Table 1: The sources and size of the datasets we use for each language. The HRLs are used for training and the
LRLs are used for testing.

resource and Portuguese and Catalan as related
lower-resource languages. (ii) Indic languages
where we treat Hindi as the high-resource language,
and Marathi, Nepali, and Urdu as lower-resource
related languages (iii) Arabic, where we treat Mod-
ern Standard Arabic (MSA) as the high-resource,
and Egyptian and Levantine Arabic dialects as low-
resource. Among the languages, the relationship
between Urdu and Hindi is a special setting; while
the two languages are mutually intelligible as spo-
ken languages, they are written using different
scripts. Additionally, in our experimental setting,
all low-resource languages except for Nepali were
not included in the original mBART pretraining.

The parallel corpus for each language is de-
scribed in Table 1. Due to the scarcity of any paral-
lel data for a few low-resource languages, we are
not able to match the training and testing domains.
For monolingual data, we randomly sample 1M
sentences for each language from the CC-100 cor-
pus3 (Conneau et al., 2020; Wenzek et al., 2020).
For quality control, we filter out sentences if more
than 40% of characters in the sentence do not be-
long to the alphabet set of the language. For quality
and memory constraints, we only use sentences
with length between 30 and 200 characters.

Collecting Dialectical Arabic Data While obtain-
ing low-resource monolingual data is relatively
straightforward, as language identifiers are often
readily available for even low-resource text (Jauhi-
ainen et al., 2019), identifying dialectical data is
often less straightforward. This is because many di-
alects have been traditionally considered oral rather
than written, and often lack standardized spelling,
significant slang, or even lack of mutual intelligibil-
ity from the main language. In general, dialectical
data has often been grouped in with the main lan-

3http://data.statmt.org/cc-100/

guage in language classifiers.
We describe the steps we took to obtain reliable

dialectical Arabic monolingual data. As the CC-
100 corpus does not distinguish between Modern
Standard Arabic (MSA) and its dialectical variants,
we train a finer-grained classifier that distinguishes
between MSA and specific colloquial dialects. We
base our language classifier on a BERT model pre-
trained for Arabic (Safaya et al., 2020) and fine-
tune it for six-way classification: (i) Egyptian, (ii)
Levantine, (iii) Gulf, (iv) Maghrebi, (v) Iraqi di-
alects as well as (vi) the literary Modern Standard
Arabic (MSA). We use the data from (Bouamor
et al., 2018) and (Zaidan and Callison-Burch, 2011)
as training data, and the resulting classifier has an
accuracy of 91% on a held-out set. We take our
trained Arabic dialect classifier and further classify
Arabic monolingual data from CC-100 and select
MSA, Levantine and Egyptian sentences as Arabic
monolingual data for our experiments.

4.2 Training Details

We use the RMSprop optimizer with learning rate
0.01 for the critics and the Adam optimizer for the
rest of the model. We train our model using eight
GPUs and a batch size of 1024 tokens per GPU. We
update the parameters once per eight batches. For
the adversarial task, the generator is trained once
per three updates, and the critic is trained every
update.

Each of the tasks of (i) translation, (ii) backtrans-
lation as well as (iii) LRL and HRL denoising (only
for En→LRL direction), have the same number
of samples and their cross entropy loss has equal
weight. The adversarial loss, Ladv, has the same
weight on the critic, while it has a multiplier of
−60 on the generator (encoder). This multiplier
was tuned to ensure convergence and is negative as
it’s opposite to the discriminator loss.

For the first iteration, we train 128 epochs from

http://data.statmt.org/cc-100/
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En→ LRL Un-adapted Model Adapted Models

LRL HRL En→HRL Adv BT BT+Adv BT+Adv+fine-tune

Portuguese Spanish 3.8 10.1 14.8 18.0 21.2
Catalan Spanish 6.8 9.1 21.2 22.5 23.6
Marathi Hindi 7.3 8.4 9.5 15.6 16.1
Nepali Hindi 11.2 17.6 16.7 25.3 26.3
Urdu Hindi 0.3 3.4 0.2 7.2 -
Egyptian Arabic MSA 3.5 3.8 8.0 8.0 8.0
Levantine Arabic MSA 2.1 2.1 4.8 5.1 4.7

Table 2: BLEU score of the first iteration on the English to low-resource direction. Both the adversarial (Adv) and
backtranslation (BT) components contribute to improving the results. The fine-tuning step is omitted for Urdu as
decoding is already restricted to a different script-set from the related high-resource language.

LRL→En Un-adapted Model Adapted Models

LRL HRL HRL→En Adv BT BT+Adv

Portuguese Spanish 12.3 21.7 32.7 36.0
Catalan Spanish 12.2 13.9 25.3 24.6
Marathi Hindi 3.9 7.0 8.1 12.7
Nepali Hindi 14.8 16.9 14.1 18.2
Urdu Hindi 0.3 1.0 10.5 10.5
Egyptian Arabic MSA 14.9 14.0 15.2 15.8
Levantine Arabic MSA 9.3 6.7 9.3 9.0

Table 3: BLEU score of the first iteration on the LRL to English direction. Both the adversarial(Adv) and back-
translation (BT) components contribute to improving the results.

English to the low-resource language and 64 itera-
tions from low-resource language to English. For
the second iteration we train 55 epochs for both di-
rections. We follow the setting of (Liu et al., 2020)
for all other settings and training parameters.

The critics consist of four layers: the third layer
is a bidirectional GRU and the remaining three are
fully connected layers. The hidden layer sizes are
512, 512 and 128 and we use an SELU activation
function.

We ran experiments on 8-GPUs. Each iteration
took less than 3 days and we used publicly available
mBART-checkpoints for initialization. GPU mem-
ory usage of our method is only slightly larger than
mBART. While we introduce additional parameters
in discriminators, these additional parameters are
insignificant compared to the size of the mBART
model.

4.3 Results

We present results of applying NMT-Adapt to low-
resource language translation.

4.3.1 English to Low-Resource
We first evaluate performance of translating into
the low-resource language. We compare the first
iteration of NMT-Adapt to the following baseline
systems: (i) En→HRL Model: directly using the
model trained for En→HRL translation. (ii) Adver-
sarial: Our full model without using the backtrans-
lation objective and without the final fine-tuning.

(iii) Backtranslation: mBART fine-tuned on back-
translation data created using the HRL→En model.
(iv) BT+Adv: Our full model without the final fine-
tuning. (v) BT+Adv+fine-tune: Our full model
(NMT-Adapt) as described in Section 3.

As seen in Table 2, using solely the adversarial
component only, we generally see improvement
in the BLEU scores over using the high-resource
translate model. This suggests that our proposed
method of combining denoising autoencoding with
adversarial loss is effective in adapting to a new
target output domain.

Additionally, we observe a large improvement
using only backtranslation data. This demonstrates
that using the high-resource translation model to
create LRL-En backtranslation data is highly effec-
tive for adapting to the low-resource target.

We further see that combining adversarial and
backtranslation tasks further improve over each in-
dividually, showing that the two components are
complementary. We also experimented on En-HRL
translation with backtranslation but without adver-
sarial loss. However, this yielded much worse re-
sults, showing that the improvement is not simply
due to multitask learning.

For Arabic, backtranslation provides most of the
gain, while for Portuguese and Nepali, the adver-
sarial component is more important. For some
languages like Marathi, the two components pro-
vides small gains individually, but shows a large
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improvement while combined.
For Urdu, we found that backtranslation only

using the Hindi model completely fails; this is in-
tuitive as Hindi and Urdu are in completely dif-
ferent scripts and using a Hindi model to translate
Urdu results in effectively random backtranslation
data. When we attempt to apply models trained
with the adversarial task, the model generates sen-
tences with mixed Hindi, Urdu, and English. To
ensure our model solely outputs Urdu, we restricted
the output tokens by banning all tokens containing
English or Devanagari (Hindi) characters. This al-
lowed our model to output valid and semantically
meaningful translations. This is an interesting re-
sult as it shows that our adversarial mixing allows
translating similar languages even if they’re writ-
ten in different scripts. We report the BLEU score
with the restriction. Since the tokens are already
restricted, we skip the final fine-tuning step.

4.3.2 Low-resource to English
Table 3 shows the results of the first iteration
from translating from a low-resource language into
English. We compare the following systems (i)
HRL→En model: directly using the model trained
for HRL→En translation. (ii) Adversarial: similar
to our full model, but without using the backtransla-
tion objective. (iii) Backtranslation: mBART fine-
tuned on backtranslation data from our full model
in the English-LRL direction. (iv) BT+Adv: Our
full model.

For this direction, we can see that both the back-
translation and the adversarial domain adaptation
components are generally effective. The exception
is Arabic which may be due to noisiness of our
dialect classification compared to low-resource lan-
guage classification. Another reason could be due
to the lack of written standardization for spoken
dialects in comparison to low-resource, but stan-
dardized languages.

For these experiments, we did not apply any spe-
cial precautions for Urdu on this direction despite
it being in a different script from Hindi.

4.3.3 Iterative Training
Table 4 shows the results of two iterations of train-
ing. For languages other than Arabic dialects, the
second iteration generally shows improvement over
the first iteration, showing that we can leverage an
improved model in one direction to further improve
the reverse direction. We found that the improve-
ment after the third iteration is marginal.

We compare our results with a baseline using
the HRL language as a pivot. The baseline uses a
fine tuned mBART (Liu et al., 2020) to perform su-
pervised translation between English and the HRL,
and uses MASS (Song et al., 2019) to perform un-
supervised translation between the HRL and the
LRL. The mBART is tuned on the same parallel
data used in our method, and the MASS uses the
same monolingual data as in our method. For all
languages and directions, our method significantly
outperforms the pivot baseline.

4.3.4 Comparison with Other Methods
In table 5, we compare a cross translation method
using parallel corpora with multiple languages as
auxiliary data (Garcia et al., 2020b) as well as re-
sults reported in (Guzmán et al., 2019) and (Liu
et al., 2020). All methods use the same test set,
English-Hindi parallel corpus, and tokenization
for fair comparison. For English to Nepali, NMT-
Adapt outperforms previous unsupervised methods
using Hindi or multilingual parallel data, and is
competitive with supervised methods. For Nepali
to English direction, our method achieves simi-
lar performance to previous unsupervised methods.
Note that we use a different tokenization than in
table 3 and 4, to be consistent with previous work.

4.3.5 Monolingual Data Ablation
Table 6 shows the first iteration English to Marathi
results while varying the amount of monolingual
data used. We see that the BLEU score increased
from 11.3 to 16.1 as the number of sentences in-
creased from 10k to 1M showing additional mono-
lingual data significantly improves performance.

5 Conclusion

We presented NMT-Adapt, a novel approach for
neural machine translation of low-resource lan-
guages which assumes zero parallel data or bilin-
gual lexicon in the low-resource language. Utiliz-
ing parallel data in a similar high resource language
as well as monolingual data in the low-resource
language, we apply unsupervised adaptation to fa-
cilitate translation to and from the low-resource
language. Our approach combines several tasks
including adversarial training, denoising language
modeling, and iterative back translation to facili-
tate the adaptation. Experiments demonstrate that
this combination is more effective than any task
on its own and generalizes across many different
language groups.
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English→LRL LRL→English

Language NMT-Adapt It.1 NMT-Adapt It.2 MBART+MASS NMT-Adapt It.1 NMT-Adapt It.2 MBART+MASS

Portuguese 21.2 30.7 26.6 36.0 39.8 38.1
Catalan 23.6 27.2 23.3 24.6 27.7 22.9
Marathi 16.1 19.2 13.1 12.7 15.0 5.8
Nepali 26.3 26.3 11.9 18.2 18.8 2.1
Urdu 7.2 14.6 5.1 10.5 13.6 4.9
Egyptian Ar. 8.0 6.6 3.3 15.8 - 11.7
Levantine Ar. 5.1 4.5 1.9 9.0 - 6.0

Table 4: BLEU results of iterative training. The second iteration generally improves among the first iteration, and
NMT-Adapt outperforms the MBART+MASS baseline. For Arabic, as iteration 2 into Arabic was worse than
iteration 1, we omit the corresponding iteration 2 into English.

BLEU

En→Ne Ne→En

Unsupervised+
Hi parallel

NMT-Adapt 9.2 18.8
(Guzmán et al., 2019) 8.3 18.8
(Liu et al., 2020) - 17.9

Unsupervised+
Multi. parallel (Garcia et al., 2020b) 8.9 21.7

Sup. with Hi (Guzmán et al., 2019) 8.8 21.5
(Liu et al., 2020) 9.6 21.3

Sup. w/o Hi (Guzmán et al., 2019) 4.3 7.6

Table 5: Comparison with previous work on FLoRes
dataset. NMT-Adapt outperforms previous unsuper-
vised methods on En→Ne, and achieves similar perfor-
mance to unsupervised baselines on Ne→En.

# sentences BLEU

10k 11.3
100k 14.1
1M 16.1

Table 6: First iteration English to Marathi results with
variable amount of monolingual data.
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