
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 7142–7157

August 1–6, 2021. ©2021 Association for Computational Linguistics

7142

Conditional Generation of Temporally-ordered Event Sequences

Shih-Ting Lin♠ Nathanael Chambers♦ Greg Durrett♠
♠ The University of Texas at Austin
♦ United States Naval Academy

j0717lin@cs.utexas.edu, nchamber@usna.edu, gdurrett@cs.utexas.edu

Abstract
Models of narrative schema knowledge have
proven useful for a range of event-related tasks,
but they typically do not capture the tempo-
ral relationships between events. We pro-
pose a single model that addresses both tem-
poral ordering, sorting given events into the
order they occurred, and event infilling, pre-
dicting new events which fit into an existing
temporally-ordered sequence. We use a BART-
based conditional generation model that can
capture both temporality and common event
co-occurrence, meaning it can be flexibly ap-
plied to different tasks in this space. Our
model is trained as a denoising autoencoder:
we take temporally-ordered event sequences,
shuffle them, delete some events, and then at-
tempt to recover the original event sequence.
This task teaches the model to make infer-
ences given incomplete knowledge about the
events in an underlying scenario. On the tem-
poral ordering task, we show that our model
is able to unscramble event sequences from
existing datasets without access to explicitly
labeled temporal training data, outperform-
ing both a BERT-based pairwise model and a
BERT-based pointer network. On event infill-
ing, human evaluation shows that our model
is able to generate events that fit better tempo-
rally into the input events when compared to
GPT-2 story completion models.

1 Introduction

This paper proposes a single model of events to
support inferences in two seemingly different tasks:
(1) temporal event ordering and (2) event infilling,
or inferring unseen or unmentioned events occur-
ring as part of a larger scenario. Figure 1 shows an
example illustrating these two goals. Unlike prior
approaches, we aim to address both with the same
model architecture, rather than having to annotate
data and build ad-hoc models for each task sepa-
rately; our goal is to work towards models that cap-

Temporal 
BART I opened a present

She gave me the present
She bought the present

Complete ordered
event sequence

She bought the present
I opened a present

Scrambled input events

Figure 1: Diagram of our modeling setup: Temporal-
BART captures both temporal ordering and event cooc-
currence to make various event-related inferences.

ture temporal event knowledge broadly and support
a wide range of inferences. We thus need a suitably
general modeling framework to capture temporal
knowledge about events, which in our case will be
a BART-based (Lewis et al., 2020) model we call
TemporalBART. Note that classic temporal relation
extraction models, which model temporal ordering
in context for a particular document, may chiefly
learn how to use local discourse cues rather than
generalizable event knowledge (Chambers et al.,
2014; Ning et al., 2018b).

The goals in this work relate to past work on
learning narrative schemas (Mooney and DeJong,
1985; Chambers, 2013; Peng and Roth, 2016; Peng
et al., 2017). Our approach particularly follows
a recent line of work using distributed representa-
tions of schemas (Pichotta and Mooney, 2016; We-
ber et al., 2018b), which support inferences about
events without explicitly materializing a discrete
schema library. The target tasks in this work are
directly motivated by downstream applications of
schema learning. Text generation tasks like story
completion rely on understanding what makes nar-
ratives plausible and what events might be likely
to happen before, after, and between other events
(Jain et al., 2017; Yao et al., 2019), motivating our
event infilling task. Answering questions about
causes, effects, or what might happen next in a
scenario requires knowing typical temporal orders
of event sequences (Zhou et al., 2019, 2020; Ning
et al., 2020), motivating our temporal ordering task.

7143

Prior work has not combined traditional event cooc-
currence with event temporality as we do.

We propose a conditional generation model to
tackle temporal event ordering and event infilling,
and train it as a denoising autoencoder over out-
of-context temporal event sequences. As shown
in Figure 1, the encoder of our TemporalBART
model reads a temporally scrambled sequence of
a subset of input events, obtained by corrupting
a temporally-ordered sequence of events from a
corpus. The decoder, which can be viewed as a
conditional event language model (Kiyomaru et al.,
2019; Bosselut et al., 2019; Madaan et al., 2020),
then reconstructs the complete, temporally-ordered
event sequence. Such denoising training has been
successful exploited in many applications (Vincent
et al., 2010; Lu et al., 2013; Lample et al., 2018;
Lewis et al., 2020), and using seq2seq models to re-
order and smooth inputs has been explored before
(Goyal and Durrett, 2020), but to our knowledge
we are the first to apply this in this temporal model-
ing setting. The conditional generation architecture
of our model is flexible enough to address a variety
of tasks, including our temporal ordering and event
infilling tasks, by either sampling from the model
or using it to score sequences. Capitalizing on the
success of recent pre-trained encoder-decoder trans-
formers (Lewis et al., 2020; Raffel et al., 2020), our
model itself is based on BART, consuming and pro-
ducing predicate-argument structures rendered in
surface order.

Gathering large-scale high-quality labeled data
with temporal annotations is often expensive and
requires specially designed annotation schemes
(Pustejovsky et al., 2003a; Cassidy et al., 2014;
Ning et al., 2018b; Zhao et al., 2021). Here,
we instead turn to a narrative documents corpus,
EventsNarratives (Yao and Huang, 2018) and de-
sign an automatic method to extract the training
data we need. In these documents, discourse or-
der is loosely assumed to reflect temporal order, so
events extracted from this text can directly provide
training data for our models. This use of auto-
matic annotation allows us to use broad-domain
data, giving us a strong domain-independent tem-
poral model (Zhao et al., 2021).

To evaluate how well our proposed models cap-
ture temporal knowledge and solve the two targeted
tasks, we apply them on out-of domain test sets in a
zero-shot manner. Specifically, for event ordering,
we first extract test temporal event sequences from

the CaTeRS (Mostafazadeh et al., 2016b) and MC-
Taco (Zhou et al., 2019) datasets, which include the
annotations on temporal relations between events.
We then compare the performance of our models
with two baselines: a BERT-based pairwise model
and a BERT-based pointer network. For event infill-
ing, we use the test event sequences from CaTeRS
and examine the ability of our models to order un-
seen events and generate infilled events in compar-
ison with GPT-2 baselines from story generation.
Our BART-based models significantly outperform
the baseline models on the ordering settings we
consider, and human evaluation verifies that our
models can generate infilled events that are better
temporally-ordered with respect to the input.

2 Background and Related Work

Learning temporal knowledge to order events and
generate new events as part of schemas or stories
are two problems that have received significant
attention, but in contrast to our work, previous work
typically focuses on each in isolation.

2.1 Temporal Event Ordering

Closely related to the temporal ordering aspect of
this paper is temporal relation extraction, which
orders pairs of events in text in document context
(Pustejovsky et al., 2003b; Cassidy et al., 2014;
Ning et al., 2018b). This problem has been ad-
dressed as pairwise classification (Mani et al., 2006;
Verhagen et al., 2007; Chambers et al., 2007; Ver-
hagen and Pustejovsky, 2008; Cheng and Miyao,
2017; Tourille et al., 2017; Goyal and Durrett,
2019) or as a structured learning problem to en-
force constraints on the output (Do et al., 2012;
Ning et al., 2017, 2018a; Leeuwenberg and Moens,
2017; Han et al., 2019a,b). However, even in these
latter works, the models focus on pairwise relations.
In contrast, our work here views temporal event or-
dering as a sequence generation problem, which
provides models a stronger inductive bias to cap-
ture global temporal relations between events. One
recent effort (Madaan and Yang, 2020) treats this
task as a graph generation problem, and so is able
to predict more complex structures, but it focuses
solely on ordering and is not suitable for our event
infilling goals.

2.2 Schema Induction

Schema learning systems are often evaluated on
their ability to predict unseen events. Initial work

7144

e1 e2 e3 e4 e5

Event Deletion

Event Shuffling

Input events

Autoencoder (reconstruct 
original sequence)

Encoder Decoder

e1 e2 e3 e4 e5

e4 e5 e2 e1 e3

e4 e2 e1

e1 e2 e3 e4 e5

Figure 2: Our event-based denoising autoencoding
training scheme used to encourage our model to learn
temporal event knowledge. The input is corrupted by
shuffling and deletion.

attempted to use statistical methods to derive a
library of schematic information (Mooney and De-
Jong, 1985; Chambers and Jurafsky, 2008; Jans
et al., 2012). Another thread exploits event lan-
guage modeling to learn the distributions over
events (Pichotta and Mooney, 2016; Peng and Roth,
2016; Weber et al., 2018b), or focuses on learning
event representations (Modi, 2016; Weber et al.,
2018a) rather than writing down discrete schemas.
However, most of this work only models the co-
occurrence between events instead of directly con-
sidering temporal information, and only represent
events as a small tuple of S-V-O headwords.

Another line of work instead directly focuses on
extracting coherent narratives from “story salads”
(Wang et al., 2018) or more broadly generating
narratives given predefined scenarios (Wang et al.,
2019; Qin et al., 2020). However, without consid-
ering temporal ordering, these systems are prone
to learn discourse ordering of events instead of a
strong representation of temporal knowledge.

3 Method

3.1 Task Formulation and Model
Our framework involves modeling a conditional
distribution P (y | x) over temporal event se-
quences y = {e1, · · · , el}, which are sequences
of events taken out of context (i.e., not repre-
sented as spans in a document) which are part
of the same scenario, involve shared actors, and
are temporally ordered. The input of the model
is a (not necessarily temporal) sequence of events
x = {e1, · · · , em} that represents incomplete in-
formation abut the scenario y: a partial set of un-
ordered events. Our model should learn distribu-

tions over a true underlying order of events, with-
out obvious gaps in the event sequence, given this
incomplete information. By taking events out of
context rather than in the context of a document,
we are encouraging the model to encode temporal
knowledge between events rather than superficial
cues like surface textual order or discourse connec-
tives that might determine their order.

For the definition of events, we follow Chambers
and Jurafsky (2008) where an event e is a predicate
ve along with its arguments (Palmer et al., 2005).

Our model can be formulated as a denoising
autoencoder if x is created as a noised version of
y. Specifically, given a temporal event sequence
y as defined above, we first corrupt it to get the
required input x by performing two transformation
functions consecutively (see Figure 2):

Event Shuffling We first perform a random shuf-
fling of the events in y to produce x. To perfectly
reconstruct the original sequence y, the model must
capture the temporal relations between events.

Event Deletion We randomly delete each event
in y with probability p to produce x. This denois-
ing scheme is similar to the token deletion trans-
formation in Lewis et al. (2020). To perfectly re-
construct the original event sequence, the model
needs to encode schema-like event knowledge so as
to generate events not included in the input x and
insert them at correct positions. As a result, this
denoising can help the model learn event infilling.

We train our model to maximize logP (y | x)
on this automatically-constructed data.

3.2 Model Architecture
To leverage the power of pretrained transformers,
we adopt BART (Lewis et al., 2020) as the under-
lying architecture for our model, and initialize our
model with its pretrained weights.

The overall model, shown in Figure 3, takes a
corrupted event sequence x = {ei} as input, and
outputs the true event sequence y = {ej}. To
feed the event-based inputs and outputs to BART,
we need to represent each event e in a textual for-
mat Repr(e). We represent e with the concate-
nation of its predicate and all arguments. Unlike
previous work which only uses the syntactic heads
of the predicate and certain arguments (Pichotta
and Mooney, 2016; Weber et al., 2018a,b), our ap-
proach preserves complex noun phrase arguments
and exposes to the model arguments like tempo-
ral modifiers. We strike a balance between using

7145

ARG0 V ARG1 ARGM-TMP
e2 She bought it yesterday

[E2] bought [A] She bought it yesterday [E] gave [A] She gave me a present [E1] opened [A] I opened the present

ARG0 V ARG1
e1 I opened the present

BART Encoder BART Decoder

New event generated Event copied from input Event copied from inputDecoder Output

Encoder Input

[E1] I opened the present [E2] She bought it yesterday

Figure 3: Model architecture of the proposed BART-based conditional generation models. TemporalBART-indexed
uses indexed event tags [Ei] as shown in this figure. TemporalBART instead uses the single [E] for all events.

enough information to have meaningful event rep-
resentations and not consuming entire documents
(Han et al., 2019a,b), which would result in a model
that overly relies on discourse clues. We then con-
sider two variants for input and output:

TemporalBART This model first encodes each
event ei in x as Repr(ei), and concatenates them
with a special token [E] prepended in front of
each event. This special token can help the model
identify the boundary between the input events;
such placeholder tokens have been used in related
tasks like entity tracking in procedural text (Gupta
and Durrett, 2019). For the output, we instead
prepend [E] vej [A] in front of each Repr(ej).
This setup not only provides an extra supervision
signal that encourages the model to predict ordering
on the basis of predicates, but also allows us to
post-hoc recover an event sequence by checking
the predicate part of the generation.

TemporalBART-indexed This model, depicted
in Figure 3, uses the same input and output format
as TemporalBART, except the prepended special
token [E] is instead [Ei] before each event ei.
For the output, if ej is one of the input events and
ej = ei, then we also change the prepended tokens
ej to [Ei] vej [A]. Otherwise, we still use [E]
as the special event token. Note that the model is
not able to “cheat” using the [Ei] tokens to do the
prediction since the input events are scrambled by
the shuffling denoising training scheme described
in §3.1. Compared to TemporalBART, the use of
[Ei] here provides an extra clue for the model to
associate input events to output events, which can
benefit the event ordering. It also provides a po-
tential way to focus only on modeling the ordering
of the target sequence, rather than also mixing in
generation decisions, many of which are copying
event arguments and often affect the prediction.1

1We experiment with this method, which is denoted as
“TemporalBART-indexed (tags only)”, in Appendix A

Training details of these BART-based models are
described in the Appendix.

3.3 Training Data Collection

For our framework, the training data we need is
event sequences in temporal order. Note that most
text data occurs in discourse order, which is not
the same thing: human annotations of temporal
relation datasets like TimeBank (Pustejovsky et al.,
2003b) show that many events mentioned earlier
in the text occur later in time. Existing datasets of
temporal relations (Cassidy et al., 2014; Vashishtha
et al., 2019) are small-scale, and annotating more
data is expensive and prone to low agreement (Ning
et al., 2018b). To combat this issue, we instead try
to automatically gather the training data we need.

Corpus We use the English-language EventsNar-
ratives corpus (Yao and Huang, 2018), which con-
tains more than 200,000 narrative-structured doc-
uments identified from three different source do-
mains including news articles, novel books, and
blogs. Yao and Huang (2018) use a weakly super-
vised method to identify narrative texts, describing
a sequence of events in such a way that the dis-
course order is very likely to reflect the temporal
order. This gives us an entry point to collect tempo-
ral event sequences automatically from each doc-
ument. Here we focus on documents in the novel
domain as our source for temporal event sequences.

Extracting Temporal Event Sequences To ob-
tain the training event sequences, we first use an
SRL model from AllenNLP (Gardner et al., 2017)
to extract verbs (events) and their arguments. Then,
temporal event sequences are constructed by con-
necting only the events in different sentences, since
the relations between events within the same sen-
tence are unclear even in narrative documents.
Here, to ensure all the events in a sequence have
a strong relation with each other, we only include
chains of events that are associated with a com-

7146

e1 e2 e* e3

e1 e2 e3

e1 e2 e3

e3 e1 e2

(a) Temporal Event Ordering:

(b) Event Infilling:
Decoding Prefix

Encoder Decoder

Encoder Decoder

Figure 4: The two targeted tasks in this work: ordering
rearranges the set of input events, whereas infilling in-
volves hypothesizing a new event at a specified index.

mon entity (Chambers and Jurafsky, 2008), as de-
termined by checking whether the arguments of
two event have some shared non-stopword tokens.
With this procedure, we are able to collect nearly 2
million temporal event sequences to train on, with
nearly 70% of the sequences consisting of three or
more events.

4 Target Task Formulation

Here we describe the two target tasks of our model
and how they can be handled as event-based con-
ditional generation problems. A visual of the task
formulations is shown in Figure 4.

Temporal Event Ordering Given an unordered
set of events {ei}, this task’s goal is to produce the
temporal ordering of {ei}, as shown in Figure 4(a).
We ask the model to generate an ordered sequence
of events {ef(i)} given the set {ei}, where f(·) is
a mapping function to determine the event to put at
position i. This is a conditional generation problem
that is directly solved by our proposed models.

Event Infilling The goal of event infilling is to
generate inserted events at some pre-selected inser-
tion positions in a seed event sequence (Wang et al.,
2020). To simplify the evaluation, here we assume
that given an event sequence x = {ei}, models will
only be required to generate one inserted event at
one insertion position i∗, as shown in Figure 4(b).
We first feed {ei} as the input to our model, then
generate one event e∗ using xprefix = {ei | i < i∗}
as the decoding prefix. To force our models to
produce e∗ /∈ x, we prevent our model from gener-
ating {vei} during the decoding process.

4.1 Baselines: Temporal Event Ordering

We compare against two baselines: a state-of-the-
art pairwise model used for the in-context temporal

ordering task and a pointer network model that
directly models event sequence permutations dis-
criminatively.

BERT-based Pairwise Model + SSVM We fol-
low the architecture of the Deep SSVM model used
in Han et al. (2019a) as our first baseline, which
tackles event ordering as a pairwise classification
problem. This network first exploits a BERT-based
model (Devlin et al., 2019) to compute pairwise
scores for ei preceding ej in the output y. The final
output is then obtained by solving an ILP over all
the pairwise scores. The overall network is trained
with the structured SVM loss so that it can learn to
make joint predictions with transitivity constraint.
To make this baseline more comparable to our mod-
els, we take Repr(ei) prepended with [E] as the
event representation instead of using the sentence
containing vei as in Han et al. (2019a). Detailed for-
mulas are in Appendix B. We denote this baseline
as “Pairwise+SSVM” in the evaluations.

BERT-based Pointer Network This network
first follows the BERT-based Pairwise Model +
SSVM to extract the the vectorized representation
Upi for each ei, where U is the final BERT en-
coded matrix, and pi is the position of the first to-
ken of ei in the input sequence. These event repre-
sentations are then instead fed into a LSTM-based
pointer network to model the ordering probability
by decomposing it in a sequential fashion:

P seq(y | x) =
∏
j

P (j | h1, . . . ,Up1 , . . .) (1)

ht is the decoder hidden state in the pointer net-
work. Compared to the above pairwise baseline,
this model has a stronger inductive bias for exploit-
ing global event relations. We train the sequential
model with teacher forcing to maximize the proba-
bility of the gold ordering. We denote this baseline
as “BERT-based PN” in the evaluation section.

4.2 Baselines: Event Infilling
HAQAE HAQAE (Weber et al., 2018b) is a vec-
tor quantized variational autoencoder which en-
codes schema knowledge with hierarchical latent
variables. Since HAQAE is also an event-level
seq2seq autoencoder, we can easily apply it to our
setting. During training we follow Weber et al.
(2018b) except that we use our narrative event se-
quences for training and represent each event with
the predicate-argument format described in §3.2 so
it is more comparable to our BART-based models.

7147

GPT-2 GPT-2 (Radford et al., 2019) is a
transformer-based pretrained language model that
has been exploited in various generation tasks like
story generation (Dathathri et al., 2020; Rashkin
et al., 2020). However, one issue with the GPT-2
model is that it can only perform uni-directional
generation. To apply GPT-2 to generate an inserted
event e∗, we first concatenate {Repr(ei) | ei ∈
xprefix} with periods in between, and treat it as the
decoding prefix only. We then decode until another
period is generated, and take the model’s output
as the text representation of e∗. Except where oth-
erwise specified, we use the GPT2-medium pre-
trained model from HuggingFace’s Transformer
(Wolf et al., 2020), whose model size is compara-
ble to BART-large.

Infilling GPT-2 To build a stronger GPT-2 base-
line that doesn’t only condition on the prefix events,
we follow the baselines from Qin et al. (2020) to
adapt GPT-2 to infilling tasks. Infilling GPT-2 gen-
erates the infilling events by “wrapping” the events
after the insertion position to the front. That is,
the decoding prefix fed to the infilling GPT-2 be-
comes the concatenation of {Repr(ei) | i >= i∗},
<SEP> and {Repr(ei) | i < i∗}, again with a pe-
riod appended after each event. The special token
<SEP> is used to help the model to differentiate
the events before and after the insertion position.

5 Evaluation

5.1 Experimental Setup

All the models used in the evaluation are trained
with the temporal event sequences automatically
collected on EventsNarratives except GPT-2, since
we want to compare the learned knowledge in GPT-
2 with our proposed models. Although we are
able to gather millions of sequences, for efficiency,
we train on 100,000 sequences unless specified
otherwise. For each sequence, we extract 2 distinct
permutations from the corruption process. This
results in 200,000 training examples in total.

During evaluation, all the models are evaluated
on out-of-domain datasets in a zero-shot way, i.e.,
no fine-tuning is performed on the evaluation sets.

5.2 Temporal Event Ordering

5.2.1 Datasets
We use two out-of-domain English datasets to ex-
tract the test temporal event sequences: CaTeRS
and MCTaco. As during training, two different

Candidate Answer:
they would destroy the democracy

Context:
In Colombia, the drug-financed guerrillas trying to seize
the country and destroy democracy include M-19,
which Castro has clearly backed.
Question:
What would the guerrillas do if able to seize the country ?

Extracted Event Sequence:
e1: drug financed guerrillas
e2: the drug - financed guerrillas trying to seize
 the country and destroy democracy
e3: the drug - financed guerrillas seize the country
e4: the drug - financed guerrillas destroy democracy
e5: In Colombia the drug - financed guerrillas trying to
 seize the country and destroy democracy include
 M-19 , which Castro has clearly backed
e6: M-19 which Castro clearly backed
e7: they would destroy the democracy Gold Label:

ea AFTER eq

Figure 5: An example of the event sequence extracted
from a context-question-answer tuple in MCTaco. eq

and ea are highlighted with the color green and blue
respectively.

permutations are produced from each extracted se-
quence.

CaTeRS (Mostafazadeh et al., 2016b) CaTeRS
includes annotations of events and their casual
and temporal relations on 320 five-sentence short
stories sampled from the ROCStories corpus
(Mostafazadeh et al., 2016a). To extract the eval-
uation data from CaTeRS, we first apply the SRL
model used in §3.3 on each story. Then, a directed
acyclic graph is constructed with a node being an
event e whose predicate ve can be captured by
the SRL model, and an edge (ei, ej) indicating
ei happens temporally before ej . Note that here we
treat all types of annotated relations except “IDEN-
TITY”, “DURING” and “CAUSE_TO_END” as
“BEFORE”, as suggested in Mostafazadeh et al.
(2016b). Test temporal event sequences are then
extracted by retrieving all the path from the source
nodes to sink nodes in the graph. With this proce-
dure, we are able to gather 842 event sequences,
60% of which contain 3 or more events. With
permutations, the final CaTeRS evaluation set has
1684 examples.

MCTaco (Zhou et al., 2019) MCTaco is a
multiple-choice QA dataset for evaluating model
understanding on 5 different types of temporal com-

7148

Architecture All Length >= 3
Pairwise Acc. Pairwise Acc.

Random 50.4 50.2
Pairwise+SSVM 65.7 62.3
BERT-based PN 54.1 52.3

TemporalBART 77.1 74.7
TemporalBART-indexed 79.7 78.0

Table 1: Averaged pairwise accuracy between the gold
and predicted ordering generated by each model on
temporal event sequences from CaTeRS. The rightmost
column is sequences with 3+ events.

monsense. To extract suitable test data, we focus
on questions with the reasoning type of “event or-
dering” and their positive candidates. Each data
point here consists of a sentence describing multi-
ple events {eci}, a question asking what event could
happen temporally before/after a particular event
eq ∈ {eci}, and a candidate event ea. Critically,
the question itself tells us whether ea should hap-
pen before/after eq in the temporal event sequence
formed by {eci} ∪ {ea}.

With this annotation, we evaluate our models by
first feeding the randomly shuffled {eci}∪{ea} into
a model, then checking the ordering between ea

and eq in the output sequence. Here, we were able
to extract 585 test sequences from MCTaco. For
each sequence, {eci} and ea are extracted with the
SRL model used in §3.3. For the question, we first
use a set of pre-defined regex templates to extract
an event eq and a temporal relation (“before” / “af-
ter”). We then match eq to one of eci by ROUGE-L
scores. See Figure 5 for an example of the extracted
data.

Compared to CaTeRS, since the sentences here
are from 9 different domains in MultiRC (Khashabi
et al., 2018), the types of events are more diverse.
The event arguments are also more complex.

5.2.2 Results on CaTeRS
We first examine the temporal ordering results on
CaTeRS, shown in Table 1. We compute the pair-
wise accuracy of the predicted event sequences, or
how many pairs of events in the output are ordered
correctly by a model. Note that the BART-based
models can deviate from generating permutations
of the input; however, we found that the most prob-
able generated sequences were almost exact permu-
tations of the input or easily aligned to the input
using a heuristic.

Our BART-based models outperform the BERT-
based pointer network by more than 20 points, a

Architecture Acc. Macro F1

Majority 90.6 47.5
Pairwise+SSVM 67.2 47.0
BERT-based PN 54.7 42.7

TemporalBART 63.9 50.1
TemporalBART-indexed 74.9 55.1

Table 2: Temporal ordering results on MCTaco se-
quences. Metrics are computed on the ordering be-
tween the answer event and sentence event. The test
set is imbalanced, so we include macro F1. Our BART-
based models outperform the baselines for macro F1.

huge margin. One possible reason is that the de-
coder of BART can condition on the token-level em-
beddings of the events when generating the output
events, whereas in the pointer network, the decoder
is only aware of the condensed event embeddings
Upi . Our two BART-based models also outper-
form the BERT-based pairwise model on both all
sequences and long sequences.

5.2.3 Results on MCTaco
Results on MCTaco are shown in Table 2. Here
since we only know the gold temporal relation of
one pair of events in the input, i.e eq and ea, the
averaged accuracy on predicting the order of eq

and ea is computed. In addition, since the ratio of
before/after questions is significantly unbalanced
in MCTaco, with 90% asking about the “after” re-
lationship, we also compute the macro F1 score as
our metric (averaging F1 across these two classes).

Our two baselines perform worse than just pick-
ing the majority label. This is possibly due to the
high diversity of events in MCTaco, which makes
it much harder to apply a zero-shot model. In con-
trast, TemporalBART achieves an F1 score about
3 points higher than the Pairwise+SSVM baseline,
and TemporalBART-indexed further performs best
among all.

In Appendix E, we also show that our models are
able to learn temporal phenomenon not explicitly
annotated in our training data, which is another
demonstration of our model’s ability to generalize.

5.3 Ordering Unseen Events

We evaluate our BART-based models on an addi-
tional variant of this ordering problem that better
tests their capability as generative models. Recall
that previously, BART conditions on the complete
(but possibly scrambled) sequence of events. We
now consider ordering an event in the decoder that
the model does not condition on in the encoder.

7149

Architecture All Length >= 3
EM Top2 EM EM Top2 EM

Random 34.1 69.5 23.7 48.7
HAQAE 37.1 71.9 28.7 53.2
GPT-2 35.2 68.4 22.6 48.2
Infilling GPT-2 38.8 73.5 26.3 55.4

TemporalBART 57.7 83.3 48.2 70.6
TemporalBART-indexed 58.4 87.4 50.9 77.4
- event deletion 42.4 73.0 29.8 53.8

Table 3: Comparison of the ability to tackle unseen
events between our BART-based models and baselines
on CaTeRS. The right columns are computed on test
sequences of 3 or more events.

Concretely, for each temporal event sequence in
CaTeRS, we randomly select one event e∗, and treat
the rest of the sequence as the seed input event se-
quence {e1, · · · , eN}. Then we check if a model
can correctly determine where to insert e∗ into the
input sequence. Specifically, for both the BART-
based models and the GPT-2 baselines, we use
the generation probability to rank event sequences
{e1, · · · , ei∗−1, e

∗, ei∗ , · · · , eN} for i∗ between 1
and N + 1 (all possible locations). If a model cor-
rectly ranks the gold candidate higher, it indicates
that it can model temporal relations between seen
events and new unseen events it may generate.

The results are shown in Table 3, where we com-
pute the top-1 and top-2 exact match (EM): did
the model rank the gold sequence 1st or 2nd high-
est? Our GPT-2 variants are only slightly better
than random. HAQAE, also using an autoencoder
framework, performs worse than infilling GPT-2,
likely due to the lack of large-scale pretraining and
the loss of information when compressing input
into latent variables. Our BART-based models are
significantly better, with TemporalBART-indexed
showing the benefit of using indexed event markers
to help the model capture order. We also perform
an ablation of deletion during training (Figure 2).
Unsurprisingly for this unseen event evaluation, not
deleting events in training (setting p to 0) causes a
major drop by 14 EM points. Deletion denoising is
evidently critical to model new events.

5.4 Event Infilling

Now we turn to temporal event infilling: given a
CaTeRS sequence, remove a random event at index
i∗, and denote the resulting sequence {e1, · · · , eN}.
We then ask a model to generate one event e∗ at
position i∗ so {e1, · · · , ei∗−1, e

∗, ei∗ , · · · , eN} is
temporally ordered with the new event.

Architecture Coherence Temporality

GPT-2 1.37 0.57
Infilling GPT-2 1.50 0.87

TemporalBART 1.43 1.10
TemporalBART-indexed 1.50 1.03

Table 4: Human evaluation of event infilling (0-2 scale).
Data are event sequences from CaTeRS. All models fill
in coherent events, but our BART-based output is more
temporally ordered with respect to the input events.

We evaluate the quality of the generated (in-
serted) events by human evaluation on Amazon
Mechanical Turk. Specifically, we randomly sam-
ple 30 examples from CaTeRS and have 5 raters
judge the coherence and temporality (on a scale
from 0 to 2) of the inserted event from each model.
See Figure 8 in Appendix for our exact prompt.
The final scores for each model on coherence and
temporality are computed by taking the average
of the majority rating on each prediction. Here
we only include GPT-2 models as baselines since
HAQAE is also using the autoencoder framework,
and already performs significantly worse in §5.3.

The results of this evaluation are shown in Table
4. All models achieve reasonable coherence scores.
However in terms of temporality, GPT-2 performs
worst, as expected, since it can only condition on
partial input event sequences while the other three
consider the whole event sequence as input. Both
of the BART-based models achieve better perfor-
mance than infilling GPT-2. The improvements on
the temporal score are significant with p < 0.05
according to bootstrap resampling for both Tempo-
ralBART models with respect to infilling GPT-2.

Figure 6 gives examples of infilled events gen-
erated by GPT-2, infilling GPT-2, and Temporal-
BART. On this specific test example, GPT-2 gen-
erates an event generally about the Apple watch,
which is less relevant to the input scenario about
Mike making a tree. The event generated by infill-
ing GPT-2 is coherent with the scenario, but doesn’t
occur in the correct order with respect to the input
events. The event generated by TemporalBART
is the best in terms of coherence and temporality.
More examples are in Table 7 of the Appendix.

5.5 The Effectiveness of Narrative Data

Figure 7 shows that the performance of both our
models on the CaTeRS ordering task improves
when increasing the amount of narrative training
data. This demonstrates that the automatically ex-

7150

TemporalBART: After breakfast
Mike picked a good piece of twine

GPT-2: You can buy a $25 Apple
Watch with the watch face

e3: He painted over the bad tree with design of his own creatione2: Mike tried to make a tree

Infilling GPT-2: He started
with a rough - looking tree

[INSERTED EVENT]

Figure 6: Real examples of infilled events generated by GPT-2, infilling GPT-2 and TemporalBART respectively.
Green events are the input, and blue events are the infilled events generated by the models.

Figure 7: Pairwise accuracy of the two proposed BART-
based models on temporal event ordering on CaTeRS
when trained with different numbers of event sequences
from narrative documents and MATRES.

tracted temporal event sequences are useful and di-
verse enough to help the models to learn temporal-
related knowledge. The TemporalBART-indexed
model is effective on surprisingly small amounts of
data, but also scales well with data size; however,
we observe a plateau in both models which moti-
vated our decision to use 100k training sequences.

For comparison, we train our TemporalBART-
indexed model on 1266 event sequences gath-
ered from the MATRES dataset, a human-labeled
dataset for temporal relation extraction, using the
same procedure we applied to CaTeRS. However,
Figure 7 shows that the resulting performance, 65.6
on MATRES, is significantly lower than the best
number we get on narrative data. Even with the
same size training set, using narrative data achieves
over 7 points of improvement over using MATRES.
This suggests that the small-scale human-labeled
dataset is not enough for models to learn general-
ized temporal knowledge, and even with the same
amount of data, narrative data may be a better
source for general temporal knowledge.

6 Conclusion

This work presents a BART-based conditional gen-
eration model and a denoising autoencoder frame-
work to learn temporal event knowledge, and ad-
dresses both temporal ordering and event infilling
tasks by pretraining on automatically collected data.

Our experiments demonstrate that our model is able
to perform temporal ordering and infilling in a zero-
shot manner, not fine-tuned on our target datasets,
which suggests that it can also be applied to other
settings requiring event schematic and temporal
knowledge.

Acknowledgments

Thanks to Mahnaz Koupaee from Stony Brook Uni-
versity for providing directions on our HAQAE
baseline and to the members of the UT TAUR lab
for helpful discussion, particularly Yasumasa Onoe
and Jiacheng Xu for suggestions on the human eval-
uation. Thanks as well to the anonymous reviewers
for their comments. This work is based on research
that is in part supported by the Air Force Research
Laboratory (AFRL), DARPA, for the KAIROS pro-
gram under agreement number FA8750-19-2-1003.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of the
Air Force Research Laboratory (AFRL), DARPA,
or the U.S. Government.

References
Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-

tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 501–506, Baltimore, Maryland. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.3115/v1/P14-2082
https://doi.org/10.3115/v1/P14-2082

7151

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797–1807,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Nathanael Chambers, Shan Wang, and Dan Juraf-
sky. 2007. Classifying temporal relations between
events. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 173–176, Prague, Czech Re-
public. Association for Computational Linguistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional LSTM over depen-
dency paths. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1–6, Van-
couver, Canada. Association for Computational Lin-
guistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language mod-
els: A simple approach to controlled text generation.
In International Conference on Learning Represen-
tations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Quang Do, Wei Lu, and Dan Roth. 2012. Joint infer-
ence for event timeline construction. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 677–687, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A Deep Semantic Natural Lan-
guage Processing Platform.

Tanya Goyal and Greg Durrett. 2019. Embedding time
expressions for deep temporal ordering models. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4400–
4406, Florence, Italy. Association for Computational
Linguistics.

Tanya Goyal and Greg Durrett. 2020. Neural syntactic
preordering for controlled paraphrase generation. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 238–
252, Online. Association for Computational Linguis-
tics.

Aditya Gupta and Greg Durrett. 2019. Tracking dis-
crete and continuous entity state for process under-
standing. In Proceedings of the Third Workshop
on Structured Prediction for NLP, pages 7–12, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019a. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 666–106, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019b.
Joint event and temporal relation extraction with
shared representations and structured prediction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 434–
444, Hong Kong, China. Association for Computa-
tional Linguistics.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mo-
hak Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from se-
quence of independent short descriptions. CoRR,
abs/1707.05501.

Bram Jans, Steven Bethard, Ivan Vulic, and Marie-
Francine Moens. 2012. Skip n-grams and ranking
functions for predicting script events. In EACL.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking be-
yond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Hirokazu Kiyomaru, Kazumasa Omura, Yugo Mu-
rawaki, Daisuke Kawahara, and Sadao Kurohashi.
2019. Diversity-aware event prediction based on a
conditional variational autoencoder with reconstruc-
tion. In Proceedings of the First Workshop on Com-
monsense Inference in Natural Language Process-

https://www.aclweb.org/anthology/D13-1185
https://www.aclweb.org/anthology/D13-1185
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P07-2044
https://www.aclweb.org/anthology/P07-2044
https://doi.org/10.18653/v1/P17-2001
https://doi.org/10.18653/v1/P17-2001
https://doi.org/10.18653/v1/P17-2001
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D12-1062
https://www.aclweb.org/anthology/D12-1062
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/P19-1433
https://doi.org/10.18653/v1/P19-1433
https://doi.org/10.18653/v1/2020.acl-main.22
https://doi.org/10.18653/v1/2020.acl-main.22
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/K19-1062
https://doi.org/10.18653/v1/D19-1041
https://doi.org/10.18653/v1/D19-1041
http://arxiv.org/abs/1707.05501
http://arxiv.org/abs/1707.05501
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/D19-6014
https://doi.org/10.18653/v1/D19-6014
https://doi.org/10.18653/v1/D19-6014

7152

ing, pages 113–122, Hong Kong, China. Association
for Computational Linguistics.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only.
In International Conference on Learning Represen-
tations.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 1150–1158, Valencia, Spain. Associa-
tion for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

X. Lu, Y. Tsao, S. Matsuda, and C. Hori. 2013. Speech
enhancement based on deep denoising autoencoder.
In INTERSPEECH.

Aman Madaan, Dheeraj Rajagopal, Yiming Yang, Ab-
hilasha Ravichander, E. Hovy, and Shrimai Prab-
humoye. 2020. Eigen: Event influence genera-
tion using pre-trained language models. ArXiv,
abs/2010.11764.

Aman Madaan and Yiming Yang. 2020. Neural lan-
guage modeling for contextualized temporal graph
generation. ArXiv, abs/2010.10077.

Inderjeet Mani, Marc Verhagen, Ben Wellner,
Chong Min Lee, and James Pustejovsky. 2006. Ma-
chine learning of temporal relations. In Proceedings
of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics,
pages 753–760, Sydney, Australia. Association for
Computational Linguistics.

Ashutosh Modi. 2016. Event embeddings for semantic
script modeling. In CoNLL.

Raymond Mooney and Gerald DeJong. 1985. Learning
schemata for natural language processing. In IJCAI.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016b. CaTeRS: Causal and temporal relation
scheme for semantic annotation of event structures.
In Proceedings of the Fourth Workshop on Events,
pages 51–61, San Diego, California. Association for
Computational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. TORQUE: A reading
comprehension dataset of temporal ordering ques-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1158–1172, Online. Associa-
tion for Computational Linguistics.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018a. Improving temporal relation extraction with
a globally acquired statistical resource. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 841–851, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Qiang Ning, Hao Wu, and Dan Roth. 2018b. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1318–1328, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Haoruo Peng, Snigdha Chaturvedi, and Dan Roth.
2017. A joint model for semantic sequences:
Frames, entities, sentiments. In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 173–183,
Vancouver, Canada. Association for Computational
Linguistics.

https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://www.aclweb.org/anthology/E17-1108
https://www.aclweb.org/anthology/E17-1108
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/N18-1077
https://doi.org/10.18653/v1/N18-1077
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/K17-1019
https://doi.org/10.18653/v1/K17-1019

7153

Haoruo Peng and Dan Roth. 2016. Two discourse
driven language models for semantics. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 290–300, Berlin, Germany. Association
for Computational Linguistics.

Karl Pichotta and Raymond J. Mooney. 2016. Learning
Statistical Scripts with LSTM Recurrent Neural Net-
works. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, page
2800–2806. AAAI Press.

James Pustejovsky, José M. Castaño, Robert Ingria,
Roser Saurí, Robert J. Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R. Radev. 2003a.
TimeML: Robust Specification of Event and Tempo-
ral Expressions in Text. In New Directions in Ques-
tion Answering.

James Pustejovsky, Patrick Hanks, Roser Saurí,
Andrew See, Rob Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, and Marcia Lazo. 2003b. The timebank cor-
pus. Proceedings of Corpus Linguistics.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 794–805, Online. Association for Computa-
tional Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, M. Matena, Yanqi Zhou, W. Li,
and Peter J. Liu. 2020. Exploring the limits of trans-
fer learning with a unified text-to-text transformer. J.
Mach. Learn. Res., 21:140:1–140:67.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-
conditioned generation with dynamic plot state
tracking. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4274–4295, Online. Associa-
tion for Computational Linguistics.

Julien Tourille, Olivier Ferret, Aurélie Névéol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A Bi-LSTM approach for
detecting narrative containers. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
224–230, Vancouver, Canada. Association for Com-
putational Linguistics.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal

relation extraction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2906–2919, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. SemEval-2007 task 15: TempEval tempo-
ral relation identification. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 75–80, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Marc Verhagen and James Pustejovsky. 2008. Tempo-
ral processing with the TARSQI toolkit. In Coling
2008: Companion volume: Demonstrations, pages
189–192, Manchester, UK. Coling 2008 Organizing
Committee.

P. Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Ben-
gio, and Pierre-Antoine Manzagol. 2010. Stacked
denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising crite-
rion. J. Mach. Learn. Res., 11:3371–3408.

Su Wang, Greg Durrett, and Katrin Erk. 2019. Query-
focused scenario construction. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2712–2722, Hong Kong,
China. Association for Computational Linguistics.

Su Wang, Greg Durrett, and Katrin Erk. 2020. Narra-
tive interpolation for generating and understanding
stories. CoRR, abs/2008.07466.

Su Wang, Eric Holgate, Greg Durrett, and Katrin Erk.
2018. Picking apart story salads. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1455–1465, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Noah Weber, Niranjan Balasubramanian, and
Nathanael Chambers. 2018a. Event representations
with tensor-based compositions. In Proceedings
of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018,
pages 4946–4953. AAAI Press.

Noah Weber, Leena Shekhar, Niranjan Balasubrama-
nian, and Nathanael Chambers. 2018b. Hierar-
chical quantized representations for script genera-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3783–3792, Brussels, Belgium. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1028
https://doi.org/10.18653/v1/P16-1028
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/P17-2035
https://doi.org/10.18653/v1/P17-2035
https://doi.org/10.18653/v1/P17-2035
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/P19-1280
https://www.aclweb.org/anthology/S07-1014
https://www.aclweb.org/anthology/S07-1014
https://www.aclweb.org/anthology/C08-3012
https://www.aclweb.org/anthology/C08-3012
https://doi.org/10.18653/v1/D19-1273
https://doi.org/10.18653/v1/D19-1273
https://arxiv.org/abs/2008.07466
https://arxiv.org/abs/2008.07466
https://arxiv.org/abs/2008.07466
https://doi.org/10.18653/v1/D18-1175
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17126
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17126
https://doi.org/10.18653/v1/D18-1413
https://doi.org/10.18653/v1/D18-1413
https://doi.org/10.18653/v1/D18-1413

7154

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Lili Yao, Nanyun Peng, Ralph M. Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling.
Proceedings of the AAAI Conference on Artificial In-
telligence, 33:7378–7385.

Wenlin Yao and Ruihong Huang. 2018. Temporal
event knowledge acquisition via identifying narra-
tives. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 537–547, Melbourne,
Australia. Association for Computational Linguis-
tics.

Xinyu Zhao, Shih-Ting Lin, and Greg Durrett. 2021.
Effective distant supervision for temporal relation
extraction. In Proceedings of the Second Workshop
on Domain Adaptation for NLP, pages 195–203,
Kyiv, Ukraine. Association for Computational Lin-
guistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan
Roth. 2019. “going on a vacation” takes longer
than “going for a walk”: A study of temporal com-
monsense understanding. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3363–3369, Hong Kong,
China. Association for Computational Linguistics.

Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot,
A. Sabharwal, and D. Roth. 2020. Temporal rea-
soning on implicit events from distant supervision.
ArXiv, abs/2010.12753.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1609/aaai.v33i01.33017378
https://doi.org/10.1609/aaai.v33i01.33017378
https://doi.org/10.18653/v1/P18-1050
https://doi.org/10.18653/v1/P18-1050
https://doi.org/10.18653/v1/P18-1050
https://www.aclweb.org/anthology/2021.adaptnlp-1.20
https://www.aclweb.org/anthology/2021.adaptnlp-1.20
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332

7155

A Scoring Orderings with
TemporalBART-indexed (tags only)

TemporalBART-indexed (tags only) scores whether
an output sequence y is temporally ordered by gath-
ering the generation scores on the special tokens
[Ei] only as its final ordering score:

P tag(y|x) =
∏
t∈I

BART(wy
t |x, w

y
1 , · · · , w

y
t−1)

(2)
where {wy

t } is the text representation of y and I is
the set of the positions of the special tokens [Ei]
in {wy

t }. This allows us to make a judgment only
depending on the predicted temporal order of the
events rather than mixing in general token order.
In contrast, TemporalBART scores a sequence of
events y with the generation probability on the
entire text representation of y:

P gen(y|x) =
∏
t

BART(wy
t |x, w

y
1 , · · · , w

y
t−1)

(3)
Since many of the generation decisions here are
copying event arguments, the prediction could be
largely affected by the correlation of tokens within
each argument.

Architecture Acc. Macro F1

TemporalBART-indexed 74.9 55.1
TemporalBART-indexed (tags only) 76.6 56.4

Table 5: The comparison between TemporalBART-
indexed and its (tags only) variant on temporal event
ordering. The test data and metrics used here are same
as in Table 2.

We evaluate “TemporalBART-indexed (tags
only)” on the temporal event ordering with the pro-
cedure used for the models in Table 2. Table 5
shows that this (tags only) variant further boosts
the performance of TemporalBART-indexed by 1.3
points on the macro F1. This result verifies that
this setting can help prevent the ordering scores
from being overly affected by the text generation
probabilities, which is particularly important for
MCTaco, where the arguments of events are more
complex.

B Architecture of BERT-based Pairwise
Model + SSVM

This network uses a BERT-based model (Devlin
et al., 2019) to obtain a vectorized representation

for each input event ei in x. As with the BART-
based models, the input to the BERT model is
the concatenation of Repr(ei) with [E] being
prepended in front of each event. The vector-
ized representation for ei is then extracted by Upi ,
where U is the final BERT encoded matrix, and pi
is the position of the first token of ei in the input
sequence. Each pair of event representations, Upi

and Upj are then fed into a feed-forward function
g to compute a score B for ei preceding ej in the
output y:

B(ei, ej) = g([Upi ;Upj ;Upi �Upj]) (4)

Finally, the final output y is computed by finding
the best permutation over all of the pairwise scores
by solving an ILP.

C Training Details of BART-based
Models

We train our BART-based conditional generation
models to minimize negative log likelihood of re-
constructing the original event sequence. We set
the learning rate to 1e-5, and use a polynomial de-
cay scheduling with 500 steps of warm-up. All of
the models are trained for 10 epochs, with each
epoch being 2000 updates and the batch size being
64. For the deletion training scheme, we set the
event deletion probability p to 0.15. The framework
is implemented with PyTorch (Paszke et al., 2019)
and AllenNLP (Gardner et al., 2017), and we use
the BART-large pretrained model from Hugging-
Face’s Transformers library (Wolf et al., 2020).

During the evaluation for temporal event order-
ing, we decode the output event sequences using
beam search with the beam size being 4. For event
infilling task, we use nucleus sampling with p set
to 0.8.

D Human Evaluation

Figure 8 shows the prompt for the human evalua-
tion described in §5.4, where we ask the MTurk
raters to evaluate the coherence and temporality
of the generation outputs. To help the raters ig-
nore grammatical issues when making decisions,
we first ask them to check the grammaticality, then
separately judge the coherence and the temporality.

E Learning Timex Knowledge

The temporal ordering and event infilling tasks cor-
respond to information that we might expect to be

7156

Architecture Year Month Weekday Hour:Minute (24) Hour:Minute (12)
EM Pairwise EM Pairwise EM Pairwise EM Pairwise EM Pairwise

Random 26.0 53.0 21.0 51.0 18.0 52.0 18.0 50.7 13.0 52.7
GPT-2 18.0 49.0 14.0 45.3 18.0 55.3 12.0 43.3 15.0 46.7
GPT-2 Large 15.0 47.3 16.0 47.7 19.0 57.7 9.0 41.7 11.0 48.7

TemporalBART 93.0 96.7 83.0 88.7 67.0 78.0 88.0 93.3 67.0 78.7
TemporalBART-indexed 81.0 91.3 85.0 90.0 71.0 80.7 84.0 90.7 65.0 78.0

Table 6: The results of temporal event ordering on the events anchored with various types of timex. The test data
used here are length-3 sequences artificially made up with “die” events for the “Year” timex, and 3 typical daily
events as shown in Figure 9 for other types of timex. The timexes of type “Year” are randomly sampled from 1000
to 2100. Our BART-based models significantly outperform the GPT-2 and random baselines, showing that they
can capture useful timex-related knowledge.

Figure 8: A screenshot of prompt for the human evalu-
ation described in §5.4, which includes the 3 questions
the raters are asked to judge the event infilling outputs
from each model. The input events are highlighted with
the color green, and blue for the inserted events.

encoded by our model pre-training. To test whether
our models generalize to slightly more distant tem-
poral phenomena, we examine whether they are
able to capture the temporal relationships between
timexes. This knowledge has been shown to be
hard to learn in temporal relation extraction models
(Goyal and Durrett, 2019).

E.1 Evaluation Setup

The timexes we examine here include years,
months, weekdays, 24-hour clock time in
“hour:minute” format and 12-hour clock time in
“hour:minute am/pm” format. We evaluate the abil-
ity of our models to order events that are anchored
with a timex in their arguments. To prepare the
test input event sequences of a given type of timex,
we first artificially make up a template event se-
quence with 3 typical daily events that have no

Durer went to a supermarket at 7:52 pm

Durer bought a book at a shop at 5:16 am

Durer took a photo in front of a museum at 3:10 pm

Event 1

Event 2

Event 3

Figure 9: An example of test input event sequences for
timex evaluation. The appended timexes in each event,
which are 12-hour clock time here, is highlighted.

temporal order relations. We then randomly sam-
ple 3 different timexes, e.g “June”, “May”, “July”
for “Month”, and append each of them to the events
in the template sequence respectively with proper
prepositions. At the end, 100 examples are created
with this process for each type of timex. More
concrete examples are shown in Figure 9. For the
baselines, here we use GPT-2 models to do the or-
dering by using the generation probability to rank
all permutations of the input events.

E.2 Results

The results are shown in Table 6. First, we examine
the results of the GPT-2 models. In general both
the unsupervised GPT-2 (the medium model) and
GPT-2 large perform worse than the random base-
line, indicating that they have a limited ability to
order timexes. Our BART-based models achieve
stronger results. The results are strongest on years.
For 12-hour clock time, even though the model
has to make a challenging link between the tempo-
ral knowledge on “am’ and “pm” and numerical
comparisons, both of the BART-based models still
performs significantly better the random baseline.

F Examples for Event Infilling

In Table 7, we demonstrate more examples of the
infilled events generated by GPT-2, infilling GPT-2
and TemporalBART given the seed event sequences
from CaTeRS. In general, while the events output

7157

#1
Scenario: [INSERTED EVENT] he tell me Happy Birthday

GPT-2: A New England University
study reveals the effect of the Amer-
ican tax code on college tuition .

Infilling GPT-2: He then turned to
me and his mom and said, “ Good
morning .

TemporalBART: He looked at me
in the most amazing of ways, as if he
were wishing me a Happy Birthday
.

#2
Scenario: [INSERTED EVENT] Then he bought it with the card .

GPT-2: A federal judge dismissed a
lawsuit Wednesday from the family
of an elderly man who died after in-
haling a toxic gas during an air show
at the Lincoln Memorial .

Infilling GPT-2: He put the card in
his wallet .

TemporalBART: He pulled out a
small gift card from his wallet .

#3
Scenario: Kim hunkered down at home as a hurricane blew through town . [INSERTED EVENT] She went to
sleep hoping all would be well . She hoping all would be well .

GPT-2: It wasn’t until his brother
and mother returned from vacation
that he found out that a hurricane
had struck, bringing the death toll
from Hurricane Andrew in 2012 up
to 24 and leaving many people with-
out electricity for weeks .

Infilling GPT-2: Kim slept soundly
.

TemporalBART: Kim turned the
TV to catch the latest news .

#4
Scenario: Tony needed to buy his grandma a birthday present . He went to her favorite bakery . The owner told
Tony how to make it himself . [INSERTED EVENT] His elated grandma couldn’t tell the difference .

GPT-2: Tony got mad and left the
bakery .

Infilling GPT-2: Tony went to the
grocery store .

TemporalBART: make a loaf that
looked like grandma’s .

#5
Scenario: [INSERTED EVENT] He decided to use the batteries in his fire detector . He use the batteries in his
fire detector .

GPT-2: I’m an independent devel-
oper who’s worked for both big and
small companies .

Infilling GPT-2: He find a place to
charge the fire detector batteries .

TemporalBART: He see the batter-
ies in his alarm clock were dead .

Table 7: More examples of the infilled events generated by GPT-2, infilling GPT-2 and TemporalBART respectively.
Scenarios are the temporally-ordered input events fed into the models, with the events separated by periods, and
the insertion position specified by [INSERTED EVENT] in this figure. The second row in each example shows
the infilled event generated by each model.

by TemporalBART are coherent and temporally-
sensible, those from the GPT-2 models has a worse
quality in terms of the temporality. Note that the
nature of the event representation does not neces-
sarily guarantee a grammatical sentence when the
event is rendered in surface order.

