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Abstract

While there is a large amount of research in
the field of Lexical Semantic Change Detec-
tion, only few approaches go beyond a stan-
dard benchmark evaluation of existing models.
In this paper, we propose a shift of focus from
change detection to change discovery, i.e., dis-
covering novel word senses over time from the
full corpus vocabulary. By heavily fine-tuning
a type-based and a token-based approach on re-
cently published German data, we demonstrate
that both models can successfully be applied
to discover new words undergoing meaning
change. Furthermore, we provide an almost
fully automated framework for both evaluation
and discovery.

1 Introduction

There has been considerable progress in Lexical Se-
mantic Change Detection (LSCD) in recent years
(Kutuzov et al., 2018; Tahmasebi et al., 2018;
Hengchen et al., 2021), with milestones such as
the first approaches using neural language mod-
els (Kim et al., 2014; Kulkarni et al., 2015), the
introduction of Orthogonal Procrustes alignment
(Kulkarni et al., 2015; Hamilton et al., 2016), de-
tecting sources of noise (Dubossarsky et al., 2017,
2019), the formulation of continuous models (Fr-
ermann and Lapata, 2016; Rosenfeld and Erk,
2018; Tsakalidis and Liakata, 2020), the first uses
of contextualized embeddings (Hu et al., 2019; Giu-
lianelli et al., 2020), the development of solid an-
notation and evaluation frameworks (Schlechtweg
et al., 2018, 2019; Shoemark et al., 2019) and
shared tasks (Basile et al., 2020; Schlechtweg et al.,
2020).

However, only a very limited amount of work
applies the methods to discover novel instances of
semantic change and to evaluate the usefulness of
such discovered senses for external fields. That is,
the majority of research focuses on the introduction

of novel LSCD models, and on analyzing and evalu-
ating existing models. Up to now, these preferences
for development and analysis vs. application repre-
sented a well-motivated choice, because the quality
of state-of-the-art models had not been established
yet, and because no tuning and testing data were
available. But with recent advances in evaluation
(Basile et al., 2020; Schlechtweg et al., 2020; Ku-
tuzov and Pivovarova, 2021), the field now owns
standard corpora and tuning data for different lan-
guages. Furthermore, we have gained experience
regarding the interaction of model parameters and
modelling task (such as binary vs. graded semantic
change). This enables the field to more confidently
apply models to discover previously unknown se-
mantic changes. Such discoveries may be useful
in a range of fields (Hengchen et al., 2019; Jatowt
et al., 2021), among which historical semantics and
lexicography represent obvious choices (Ljubešić,
2020).

In this paper, we tune the most successful mod-
els from SemEval-2020 Task 1 (Schlechtweg et al.,
2020) on the German task data set in order to obtain
high-quality discovery predictions for novel seman-
tic changes. We validate the model predictions in a
standardized human annotation procedure and visu-
alize the annotations in an intuitive way supporting
further analysis of the semantic structure relating
word usages. In this way, we automatically detect
previously described semantic changes and at the
same time discover novel instances of semantic
change which had not been indexed in standard his-
torical dictionaries before. Our approach is largely
automated, by relying on unsupervized language
models and a publicly available annotation system
requiring only a small set of judgments from anno-
tators. We further evaluate the usability of the ap-
proach from a lexicographer’s viewpoint and show
how intuitive visualizations of human-annotated
data can benefit dictionary makers.



6986

2 Related Work

State-of-the-art semantic change detection models
are Vector Space Models (VSMs) (Schlechtweg
et al., 2020). These can be divided into type-based
(static) (Turney and Pantel, 2010) and token-based
(contextualized) (Schütze, 1998) approaches. For
our study, we use both a static and a contextualized
model. As mentioned above, previous work mostly
focuses on creating data sets or developing, evalu-
ating and analyzing models. A common approach
for evaluation is to annotate target words selected
from dictionaries in specific corpora (Tahmasebi
and Risse, 2017; Schlechtweg et al., 2018; Perrone
et al., 2019; Basile et al., 2020; Rodina and Kutu-
zov, 2020; Schlechtweg et al., 2020). Contrary to
this, our goal is to find ‘undiscovered’ changing
words and validate the predictions of our models
by human annotators. Few studies focus on this
task. Kim et al. (2014), Hamilton et al. (2016),
Basile et al. (2016), Basile and Mcgillivray (2018),
Takamura et al. (2017) and Tsakalidis et al. (2019)
evaluate their approaches by validating the top
ranked words through author intuitions or known
historical data. The only approaches applying a
systematic annotation process are Gulordava and
Baroni (2011) and Cook et al. (2013). Gulordava
and Baroni ask human annotators to rate 100 ran-
domly sampled words on a 4-point scale from 0
(no change) to 3 (changed significantly), however
without relating this to a data set. Cook et al. work
closely with a professional lexicographer to inspect
20 lemmas predicted by their models plus 10 ran-
domly selected ones. Gulordava and Baroni and
Cook et al. evaluate their predictions on the (macro)
lemma level. We, however, annotate our predic-
tions on the (micro) usage level, enabling us to
better control the criteria for annotation and their
inter-subjectivity. In this way, we are also able to
build clusters of usages with the same sense and to
visualise the annotated data in an intuitive way. The
annotation process is designed to not only improve
the quality of the annotations, but also lessen the
burden on the annotators. We additionally seek the
opinion of a professional lexicographer to assess
the usefulness of the predictions outside the field
of LSCD.

In contrast to previous work, we obtain model
predictions by fine-tuning static and contextualized
embeddings on high-quality data sets (Schlechtweg
et al., 2020) that were not available before. We
provide a highly automated general framework for

evaluating models and predicting changing words
on all kinds of corpora.

3 Data

We use the German data set provided by the
SemEval-2020 shared task (Schlechtweg et al.,
2020, 2021). The data set contains a diachronic
corpus pair for two time periods to be compared,
a set of carefully selected target words as well as
binary and graded gold data for semantic change
evaluation and fine-tuning purposes.

Corpora The DTA corpus (Deutsches
Textarchiv, 2017) and a combination of the
BZ (Berliner Zeitung, 2018) and ND (Neues
Deutschland, 2018) corpora are used. DTA
contains texts from different genres spanning the
16th–20th centuries. BZ and ND are newspaper
corpora jointly spanning 1945–1993. Schlechtweg
et al. (2020) extract two time specific corpora C1

(DTA, 1800–1899) and C2 (BZ+ND 1946–1990)
and provide raw and lemmatized versions.

Target Words A list of 48 target words, consist-
ing of 32 nouns, 14 verbs and 2 adjectives is pro-
vided. These are controlled for word frequency
to minimize model biases that may lead to artifi-
cially high performance (Dubossarsky et al., 2017;
Schlechtweg and Schulte im Walde, 2020).

4 Models

Type-based models generate a single vector for
each word from a pre-defined vocabulary. In con-
trast, token-based models generate one vector for
each usage of a word. While the former do not take
into account that most words have multiple senses,
the latter are able to capture this particular aspect
and are thus presumably more suited for the task of
LSCD (Martinc et al., 2020). Even though contex-
tualized approaches have indeed significantly out-
performed static approaches in several NLP tasks
over the past years (Ethayarajh, 2019), the field
of LSCD is still dominated by type-based models
(Schlechtweg et al., 2020). Kutuzov and Giulianelli
(2020) yet show that the performance of token-
based models (especially ELMo) can be increased
by fine-tuning on the target corpora. Laicher et al.
(2020, 2021) drastically improve the performance
of BERT by reducing the influence of target word
morphology. In this paper, we compare both fami-
lies of approaches for change discovery.
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4.1 Type-based approach
Most type-based approaches in LSCD combine
three sub-systems: (i) creating semantic word rep-
resentations, (ii) aligning them across corpora, and
(iii) measuring differences between the aligned
representations (Schlechtweg et al., 2019). Mo-
tivated by its wide usage and high performance
among participants in SemEval-2020 (Schlechtweg
et al., 2020) and DIACR-Ita (Basile et al., 2020),
we use the Skip-gram with Negative Sampling
model (SGNS, Mikolov et al., 2013a,b) to cre-
ate static word embeddings. SGNS is a shallow
neural language model trained on pairs of word
co-occurrences extracted from a corpus with a sym-
metric window. The optimized parameters can be
interpreted as a semantic vector space that con-
tains the word vectors for all words in the vocabu-
lary. In our case, we obtain two separately trained
vector spaces, one for each subcorpus (C1 and
C2). Following standard practice, both spaces are
length-normalized, mean-centered (Artetxe et al.,
2016; Schlechtweg et al., 2019) and then aligned
by applying Orthogonal Procrustes (OP), because
columns from different vector spaces may not cor-
respond to the same coordinate axes (Hamilton
et al., 2016). The change between two time-specific
embeddings is measured by calculating their Co-
sine Distance (CD) (Salton and McGill, 1983). The
strength of SGNS+OP+CD has been shown in two
recent shared tasks with this sub-system combina-
tion ranking among the best submissions (Arefyev
and Zhikov, 2020; Kaiser et al., 2020b; Pömsl and
Lyapin, 2020; Pražák et al., 2020).

4.2 Token-based approach
Bidirectional Encoder Representations from Trans-
formers (BERT, Devlin et al., 2019) is a
transformer-based neural language model designed
to find contextualized representations for text by
analyzing left and right contexts. The base version
processes text in 12 different layers. In each layer,
a contextualized token vector representation is cre-
ated for every word. A layer, or a combination of
multiple layers (we use the average), then serves
as a representation for a token. For every target
word we extract usages (i.e., sentences in which
the word appears) by randomly sub-sampling up to
100 sentences from both subcorpora C1 and C2.1

These are then fed into BERT to create contex-
1We sub-sample as some words appear in 10,000 or more

sentences.

tualized embeddings, resulting in two sets of up
to 100 contextualized vectors for both time peri-
ods. To measure the change between these sets we
use two different approaches: (i) We calculate the
Average Pairwise Distance (APD). The idea is to
randomly pick a number of vectors from both sets
and measure their mutual distances (Schlechtweg
et al., 2018; Kutuzov and Giulianelli, 2020). The
change score corresponds to the mean average dis-
tance of all comparisons. (ii) We average both
vector sets and measure the Cosine Distance (COS)
between the two resulting mean vectors (Kutuzov
and Giulianelli, 2020).

5 Discovery

SemEval-2020 Task 1 consists of two subtasks:
(i) binary classification: for a set of target words,
decide whether (or not) the words lost or gained
sense(s) between C1 and C2, and (ii) graded rank-
ing: rank a set of target words according to their
degree of LSC between C1 and C2. These require
to detect semantic change in a small pre-selected
set of target words. Instead, we are interested in the
discovery of changing words from the full vocab-
ulary of the corpus. We define the task of lexical
semantic change discovery as follows.

Given a diachronic corpus pair C1 and C2, de-
cide for the intersection of their vocabularies
which words lost or gained sense(s) between
C1 and C2.

This task can also be seen as a special case of Se-
mEval’s Subtask 1 where the target words equal
the intersection of the corpus vocabularies. Note,
however, that discovery introduces additional diffi-
culties for models, e.g. because a large number of
predictions is required and the target words are not
preselected, balanced or cleaned. Yet, discovery is
an important task, with applications such as lexi-
cography where dictionary makers aim to cover the
full vocabulary of a language.

5.1 Approach
We start the discovery process by generating
optimized graded value predictions using high-
performing parameter configurations following pre-
vious work and fine-tuning. Afterwards, we infer
binary scores with a thresholding technique (see
below). We then tune the threshold to find the
best-performing type- and token-based approach
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x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: DURel relatedness scale (Schlechtweg et al.,
2018).

for binary classification. These are used to generate
two sets of predictions.2

Evaluation metrics We evaluate the graded
rankings in Subtask 2 by computing Spearman’s
rank-order correlation coefficient ρ. For the binary
classification subtask we compute precision, recall
and F0.5. The latter puts a stronger focus on pre-
cision than recall because our human evaluation
cannot be automated, so we decided to weigh qual-
ity (precision) higher than quantity (recall).

Parameter tuning Solving Subtask 2 is straight-
forward, since both the type-based and token-based
approaches output distances between representa-
tions for C1 and C2 for every target word. Like
many approaches in SemEval-2020 Task 1 and
DIACR-Ita we use thresholding to binarise these
values. The idea is to define a threshold parame-
ter, where all ranked words with a distance greater
or equal to this threshold are labeled as changing
words.

For cases where no tuning data is available,
Kaiser et al. (2020b) propose to choose the thresh-
old according to the population of CDs of all words
in the corpus. Kaiser et al. set the threshold to
µ+ σ, where µ is the mean and σ is the standard
deviation of the population. We slightly modify this
approach by changing the threshold to µ + t ∗ σ.
In this way, we introduce an additional parameter t,
which we tune on the SemEval-2020 test data. We
test different values ranging from −2 to 2 in steps
of 0.1.

Population Since SGNS generates type-based
vectors for every word in the vocabulary, measuring
the distances for the full vocabulary comes with low
additional computational effort. Unfortunately, this
is much more difficult for BERT. Creating up to 100
vectors for every word in the vocabulary drastically
increases the computational burden. We choose a
population of 500 words for our work allowing us

2Find the code used for each step of the pre-
diction process at https://github.com/seinan9/
LSCDiscovery.

to test multiple parameter configurations.3 We sam-
ple words from different frequency areas to have
predictions not only for low-frequency words. For
this, we first compute the frequency range (highest
frequency – lowest frequency) of the vocabulary.
This range is then split into 5 areas of equal fre-
quency width. Random samples from these areas
are taken based on how many words they contain.
For example: if the lowest frequency area con-
tains 50% of all words from the vocabulary, then
0.5 ∗ 500 = 250 random samples are taken from
this area. The SemEval-2020 target words are ex-
cluded from this sampling process. The resulting
population is used to create predictions for both
models.

Filtering The predictions contain proper names,
foreign language and lemmatization errors, which
we aim to filter out, as such cases are usually not
considered as semantic changes. We only allow
nouns, verbs and adjectives to pass. Words where
over 10% of the usages are either non-German or
contain more than 25% punctuation are filtered out
as well.

6 Annotation

The model predictions are validated by human an-
notation. For this, we apply the SemEval-2020
Task 1 procedure, as described in Schlechtweg et al.
(2020). Annotators are asked to judge the semantic
relatedness of pairs of word usages, such as the two
usages of Aufkommen in (1) and (2), on the scale
in Table 1.

(1) Es ist richtig, dass mit dem Aufkommen der
Manufaktur im Unterschied zum Handwerk
sich Spuren der Kinderexploitation zeigen.
‘It is true that with the emergence of the
manufactory, in contrast to the handicraft,
traces of child labor are showing.’

(2) Sie wissen, daß wir für das Vieh mehr Futter
aus eigenem Aufkommen brauchen.
‘They know that we need more feed from our
own production for the cattle.’

The annotated data of a word is represented in a
Word Usage Graph (WUG), where vertices repre-
sent word usages, and weights on edges represent

3In a practical setting where predictions have to be gener-
ated only once, a much larger number may be chosen. Also,
possibilities to scale up BERT performance can be applied
(Montariol et al., 2021).

https://github.com/seinan9/LSCDiscovery
https://github.com/seinan9/LSCDiscovery
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full C1 C2

Figure 1: Word Usage Graph of German Aufkommen (left), subgraphs for first time period C1 (middle) and for
second time period C2 (right). black/gray lines indicate high/low edge weights.

the (median) semantic relatedness judgment of a
pair of usages such as (1) and (2). The final WUGs
are clustered with a variation of correlation cluster-
ing (Bansal et al., 2004; Schlechtweg et al., 2020)
(see Figure 1, left) and split into two subgraphs
representing nodes from subcorpora C1 and C2,
respectively (middle and right). Clusters are then
interpreted as word senses and changes in clusters
over time as lexical semantic change.

In contrast to Schlechtweg et al. we use the
openly available DURel interface for annotation
and visualization.4 This also implies a change in
sampling procedure, as the system currently imple-
ments only random sampling of use pairs (without
SemEval-style optimization). For each target word
we sample |U1| = |U2| = 25 usages (sentences)
per subcorpus (C1, C2) and upload these to the
DURel system, which presents use pairs to annota-
tors in randomized order. We recruit eight German
native speakers with university level education as
annotators. Five have a background in linguistics,
two in German studies, and one has an additional
professional background in lexicography. Similar
to Schlechtweg et al., we ensure the robustness
of the obtained clusterings by continuing the an-
notation of a target word until all multi-clusters
(clusters with more than one usage) in its WUG
are connected by at least one judgment. We fi-
nally label a target word as changed (binary) if it
gained or lost a cluster over time. For instance,
Aufkommen in Figure 1 is labeled as change as it
gains the orange cluster from C1 to C2. Follow-
ing Schlechtweg et al. (2020) we use k and n as
lower frequency thresholds to avoid that small ran-
dom fluctuations in sense frequencies caused by
sampling variability or annotation error be misclas-

4https://www.ims.uni-stuttgart.de/
data/durel-tool.

sified as change. As proposed in Schlechtweg and
Schulte im Walde (submitted) for comparability
across sample sizes we set k = 1 ≤ 0.01∗|Ui| ≤ 3
and n = 3 ≤ 0.1 ∗ |Ui| ≤ 5, where |Ui| is the
number of usages from the respective time period
(after removing incomprehensible usages from the
graphs). This results in k = 1 and n = 3 for all
target words.

Find an overview over the final set of WUGs
in Table 2. We reach a comparably high inter-
annotator agreement (Krippendorf’s α = .58).5

7 Results

We now describe the results of the tuning and dis-
covery procedures.

7.1 Tuning
SGNS is commonly used (Schlechtweg et al., 2020)
and also highly optimized (Kaiser et al., 2020a,b,
2021), so it is difficult to further increase the per-
formance. We thus rely on the work of Kaiser et al.
(2020a) and test their parameter configurations on
the German SemEval-2020 data set.6 We obtain
three slightly different parameter configurations
(see Table 3 for more details), yielding competitive
ρ = .690, ρ = .710 and ρ = .710, respectively.

In order to improve the performance of
BERT, we test different layer combinations, pre-
processings and semantic change measures. Fol-
lowing Laicher et al. (2020, 2021), we are able
to drastically increase the performance of BERT

5We provide WUGs as Python NetworkX graphs, de-
scriptive statistics, inferred clusterings, change values and
interactive visualizations for all target words and the respec-
tive code at https://www.ims.uni-stuttgart.de/
data/wugs.

6All configurations use w = 10, d = 300, e = 5 and a
minimum frequency count of 39.

https://www.ims.uni-stuttgart.de/data/durel-tool
https://www.ims.uni-stuttgart.de/data/durel-tool
https://www.ims.uni-stuttgart.de/data/wugs
https://www.ims.uni-stuttgart.de/data/wugs
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Data set n N/V/A |U| AN JUD AV SPR KRI UNC LOSS LSCB LSCG

SemEval 48 32/14/2 178 8 37k 2 .59 .53 0 .12 .35 .31
Predictions 75 39/16/20 49 8 24k 1 .64 .58 0 .26 .48 .40

Table 2: Overview target words. n = no. of target words, N/V/A = no. of nouns/verbs/adjectives, |U | = avg. no. of
usages per word, AN = no. of annotators, JUD = total no. of judged usage pairs, AV = avg. no. of judgments per
usage pair, SPR = weighted mean of pairwise Spearman, KRI = Krippendorff’s α, UNC = avg. no. of uncompared
multi-cluster combinations, LOSS = avg. of normalized clustering loss * 10, LSCB/G = mean binary/graded
change score.

on the German SemEval-2020 data. In a pre-
processing step, we replace the target word in ev-
ery usage by its lemma. In combination with layer
12+1, both APD and COS perform competitively
well on Subtask 2 (ρ = .690 and ρ = .738).

After applying thresholding as described in Sec-
tion 5 we obtain F0.5-scores for a large range of
thresholds. SGNS achieves peak F0.5-scores of
.692, .738 and .685, respectively (see Table 3). In-
terestingly, the optimal threshold is at t = 1.0 in
all three cases. This corresponds to the thresh-
old used in Kaiser et al. (2020b). While the peak
F0.5 of BERT+APD is marginally worse (.598 at
t = −0.2), BERT+COS is able to outperform the
best SGNS configuration with a peak of .741 at
t = 0.1.

In order to obtain an estimate on the sampling
variability that is caused by sampling only up to 100
usages per word for BERT+APD and BERT+COS
(see Section 4.2), we repeat the whole procedure
9 times and estimate mean and standard deviation
of performance on the tuning data. In the begin-
ning of every run the usages are randomly sampled
from the corpora. We observe a mean ρ of .657
for BERT+APD and .743 for BERT+COS with a
standard deviation of .015 and .012, respectively,
as well as a mean F0.5 of .576 for BERT+APD and
.684 for BERT+COS with a standard deviation of
.013 and .038, respectively. This shows that the
variability caused by sub-sampling word usages is
negligible.

7.2 Discovery
We use the top-performing configurations (see Ta-
ble 3) to generate two sets of large-scale predic-
tions. While we use the lemmatized corpora for
SGNS, in BERT’s case we choose the raw corpora
with lemmatized target words instead. The latter
choice is motivated by the previously described per-
formance increases. After the filtering as described
in Section 6, we obtain 27 and 75 words labeled

as changing, respectively. We further sample 30
targets from the second set of predictions to ob-
tain a feasible number for annotation. We call the
first set SGNS targets and the second one BERT
targets, with an overlap of 7 targets. Additionally,
we randomly sample 30 words from the population
(with an overlap of 5 with the SGNS and BERT
targets) in order to have an indication of what the
change distribution underlying the corpora is. We
call these baseline (BL) targets. This baseline will
help us to put the results of the predictions in con-
text and to find out whether the predictions of the
two models can be explained by pure randomness.
Following the annotation process, binary gold data
is generated for all three target sets, in order to
validate the quality of the predictions.

The evaluation of the predictions is presented
in Table 3. We achieve a F0.5-score of .714 for
SGNS and .620 for BERT. Out of the 27 words
predicted by the SGNS model, 18 (67 %) were ac-
tually labeled as changing words by the human
annotators. In comparison, only 17 out of the
30 (57 %) BERT predictions were annotated as
such. The performance of SGNS for prediction
(SGNS targets) is even higher than on the tuning
data (SemEval targets). In contrast, BERT’s perfor-
mance for prediction drops strongly in comparison
to the performance on the tuning data (.741 vs.
.620). This reproduces previous results and con-
firms that (off-the-shelf) BERT generalises poorly
for LSCD and does not transfer well between data
sets (Laicher et al., 2020). If we compare these
results to the baseline, we can see that both mod-
els perform much better than the random baseline
(F0.5 of .349). Only 10 out of the 30 (30 %) ran-
domly sampled words are annotated as changing.
This indicates, that the performance of SGNS and
BERT is likely not a cause of randomness. Both
models considerably increase the chance of finding
changing words compared to a random model.

Figure 2 shows the detailed F0.5 developments
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parameters t
tuning predictions

ρ F0.5 P R ρ F0.5 P R

SG
N

S k = 1, s = .005 1.0 .690 .692 .750 .529
k = 5, s = .001 1.0 .710 .738 .818 .529 .295 .714 .667 1.0
k = 5, s = None 1.0 .710 .685 .714 .588

B
E

R
T APD −0.2 .673 .598 .560 .824

COS 0.1 .738 .741 .706 .788 .482 .620 .567 1.0

B
L random sampling .349 .300 1.0

Table 3: Performance (Spearman ρ, F0.5-measure, precision P and recall R) of different approaches on tuning data
(SemEval targets) and performance of best type- and token-based approach on respective predictions with optimal
tuning threshold t, as well as the performance of a randomly sampled baseline.

across different thresholds on the SemEval targets
and the predicted words. Increasing the threshold
on the predicted words improves the F0.5 for both
the type-based and token-based approach. A new
high-score of .783 at t = 1.3 is achievable for
SGNS. While BERT’s performance also increases
to a peak of .714 at t = 1.0, it is still lower than in
the tuning phase.

7.3 Analysis
For further insights into sources of errors, we take
a close look at the false positives, their WUGs
and the underlying usages. Most of the wrong
predictions can be grouped into one out of two
error sources (cf. Kutuzov, 2020, pp. 175–182).

Context change The first category includes
words where the context in the usages shifts be-
tween time periods, while the meaning stays the
same. The WUG of Angriffswaffe (‘offensive
weapon’) (see Figure 5 in Appendix A) shows a sin-
gle cluster for both C1 and C2. In the first time pe-
riod Angriffswaffe is used to refer to a hand weapon
(such as ‘sword’, ‘spear’). In the second period,
however, the context changes to nuclear weaponry.
We can see a clear contextual shift, while the mean-
ing did not change. In this case both models are
tricked by the change of context. Further false posi-
tives in this category are the SGNS targets Ächtung
(‘ostracism’) and aussterben (‘to die out’) and the
COS targets Königreich (‘kingdom’) and Waffen-
ruhe (‘ceasefire’).

Context variety Words that can be used in a
large variety of contexts form the second group of
false positives. SGNS falsely predicts neunjährig
as a changing word. We take a closer look at its
WUG (see Figure 6 in Appendix A). We observe

that there is only one and the same cluster in both
time periods, and the meaning of the target does not
change, even though a large variety of contexts ex-
ists in both C1 and C2. For example: ‘which bears
oats at nine years fertilization’, ‘courageously, a
nine-year-old Spaniard did something’ and ‘after
nine years of work’. Both models are misguided
by this large context variety. Examples include
the SGNS targets neunjährig (‘9-year-old’) and
vorjährig (‘of the previous year’) and the COS tar-
gets bemerken (‘to notice’) and durchdenken (‘to
think through’).

8 Lexicographical evaluation

We now evaluate the usefulness of the proposed
semantic change discovery procedure including the
annotation system and WUG visualization from a
lexicographer’s viewpoint. The advantage of our
approach lies in providing lexicographers and dic-
tionary makers the choice to take a look into pre-
dictions they consider promising with respect to
their research objective (disambiguation of word
senses, detection of novel senses, detection of ar-
chaisms, describing senses in regard to specific
discourses etc.) and the type of dictionary. Visual-
ized predictions for target words may be analyzed
in regard to single senses, clusters of senses, the
semantic proximity of sense clusters and a stylized
representation of frequency. Random sampling
of usages also offers the opportunity to judge un-
derrepresented senses in a sample that might be
infrequent in a corpus or during a specific period
of time (although currently a high number of over-
all annotations would be required in order to do
so). Most importantly, the use of a variable number
of human annotators has the potential to ensure a
more objective analysis of large amounts of corpus
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Figure 2: F0.5 performance on SemEval targets (orange) and respective predictions (green) across different thresh-
olds. Left: SGNS. Right: BERT+COS. Gray vertical line indicates optimal performance on SemEval targets.

data. In order to evaluate the potential of the ap-
proach for assisting lexicographers with extending
dictionaries, we analyze statistical measures and
predictions of the models provided for the two sets
of predictions (SGNS, BERT) and compare them
to existing dictionary contents.

We consider overall inter-annotator agreement
(α >= .5) and annotated binary change label to
select 21 target words for lexicographical analy-
sis. In this way, we exclude unclear cases and
non-changing words. The target words are ana-
lyzed by inspecting cluster visualizations of WUGs
(such as in Figure 1) and comparing them to entries
in general and specialized dictionaries in order to
determine:

• whether a candidate novel sense is already
included in one of the reference dictionaries,

• whether a candidate novel sense is included in
one of the two reference dictionaries that are
consulted forC1 (covering the period between
1800–1899) and C2 (covering the period be-
tween 1946–1990), indicating the rise of a
novel sense, the archaization of older senses
or a change in frequency.

Three dictionaries are consulted throughout the
analysis: (i) the Dictionary of the German language
(DWB) by Jacob und Wilhelm Grimm (digitized
version of the 1st print published between 1854–
1961), (ii) the Dictionary of Contemporary Ger-
man (WGD), published between 1964–1977, now
curated and digitized by the DWDS and (iii) the
Duden online dictionary of German language (DU-
DEN), reflecting usage of Contemporary German

up until today.7 Additionally, lemma entries in the
Wiktionary online dictionary (Wiktionary) are con-
sulted to verify genuinely novel senses described
in Section 8.1.

8.1 Records of novel senses
In the case of 17 target words, all senses identified
by the system are included in at least one of the
three dictionaries consulted for the analysis. In
the four remaining cases, at least one novel sense
of a word is neither paraphrased nor given as an
example of semantically related senses in the dic-
tionaries:

einbinden Reference to the integration or embed-
ding of details on a topic, event, person in respect to
a chronological order within written text or visual
presentation (e.g. for an exhibition on an author)
is judged as a novel sense in close semantic prox-
imity to the old sense ‘to bind sth. into sth.’, e.g.
flowers into a bundle of flowers. einbinden is also
used in technical contexts, meaning ‘to (physically)
implement parts of a construction or machine into
their intended slots’.

niederschlagen In cases where the verb nieder-
schlagen co-occurs with the verb particle auf and
the noun Flügel, the verb refers to a bird’s action of
repeatedly moving its wings up and down in order
to fly.

regelrecht Used as an adverb, regelrecht may re-
fer to something being the usual outcome that ought

7Only the fully-digitized version of the DWB’s first print
was consulted for this evaluation, since a revised version has
not been completed yet and is only available for lemmas start-
ing with letters a–f.
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to be expected due to scientific principles, with an
emphasis on the actual result of an action (such as
the dyeing of fiber of a piece of clothing following
the bleaching process), whereas senses included in
dictionaries for general language emphasize either
the intended accordance with a rule or something
usually happening (the latter being colloquial use).

Zehner (see Figure 3 in Appendix A) The
meaning ‘a winning sequence of numbers in the
national lottery’, predicted to have risen as a novel
sense between C1 and C2, is not included in any of
the reference dictionaries.

In most of these cases, senses identified as novel
reflect metaphoric use, indicating that definitions
in existing dictionary entries may need to be broad-
ened, or example sentences would have to be added.
Some of the senses described in this section might
be included in specialized dictionaries, e.g. techni-
cal usage of einbinden.

8.2 Records of changes
For 12 target words, semantic change predicted
by the models (innovative, reductive or a salient
change of frequency of a sense) correlates with
the addition or non-inclusion of senses in dictio-
nary entries consulted for the respective period of
time (DWB for C1, WGD for C2). It should be
noted though, that lemma lists of the two dictionar-
ies might be lacking lemmas in the headword list,
and lemma entries might be lacking paraphrases
or examples of senses of the lemma, simply be-
cause corpus-based lexicography was not available
at the time of their first print and revisions of the
dictionaries are currently work in progress.

Additionally, we consult a dictionary for Early
New High German (FHD) in order to check
whether discovered novel senses existed at an ear-
lier stage and may be discovered due to low fre-
quency or sampling error. In two cases, discovered
novel senses that are not included in the DWB (for
C1) are found to be included in the FHD.

Interestingly, one sense paraphrased for Ausru-
fung (‘a loud wording, a shout’) is included in
neither of the two dictionaries consulted to judge
senses from C1 and C2, but in the FHD (earlier)
and DUDEN (as of now). These findings suggest
that it might be reasonable to use more than two
reference corpora. This would also alleviate the
corpus bias stemming from idiosyncratic data sam-
pling procedures.

9 Conclusion

We used two state-of-the-art approaches to LSC
detection in combination with a recently published
high-quality data set to automatically discover se-
mantic changes in a German diachronic corpus
pair. While both approaches were able to discover
various semantic changes with above-random prob-
ability, some of them previously undescribed in
etymological dictionaries, the type-based approach
showed a clearly better performance.

We validated model predictions by an opti-
mized human annotation process yielding high
inter-annotator agreement and providing conve-
nient ways of visualization. In addition, we eval-
uated the full discovery process from a lexicogra-
pher’s point of view and conclude that we obtained
high-quality predictions, useful visualizations and
previously unreported changes. On the other hand,
we discovered some issues with respect to the re-
liability of predictions for semantic change and
number and composition of reference corpora that
are going to be dealt with in the future. The results
of the analyses endorse that our approach might aid
lexicographers with extending and altering existing
dictionary entries.
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full C1 C2

Figure 3: Word Usage Graph of German Zehner (left), subgraphs for first time period C1 (middle) and for second
time period C2 (right).

full C1 C2

Figure 4: Word Usage Graph of German Lager (left), subgraphs for first time period C1 (middle) and for second
time period C2 (right).

full C1 C2

Figure 5: Word Usage Graph of German Anriffswaffe (left), subgraphs for first time period C1 (middle) and for
second time period C2 (right).

full C1 C2

Figure 6: Word Usage Graph of German neunjährig (left), subgraphs for first time period C1 (middle) and for
second time period C2 (right).


