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Abstract

We present InferWiki, a Knowledge Graph
Completion (KGC) dataset that improves upon
existing benchmarks in inferential ability, as-
sumptions, and patterns. First, each testing
sample is predictable with supportive data in
the training set. To ensure it, we propose
to utilize rule-guided train/test generation, in-
stead of conventional random split. Second,
InferWiki initiates the evaluation following the
open-world assumption and improves the in-
ferential difficulty of the closed-world assump-
tion, by providing manually annotated nega-
tive and unknown triples. Third, we include
various inference patterns (e.g., reasoning path
length and types) for comprehensive evalua-
tion. In experiments, we curate two settings
of InferWiki varying in sizes and structures,
and apply the construction process on CoDEx
as comparative datasets. The results and em-
pirical analyses demonstrate the necessity and
high-quality of InferWiki. Nevertheless, the
performance gap among various inferential as-
sumptions and patterns presents the difficulty
and inspires future research direction. Our
datasets can be found in https://github.

com/TaoMiner/inferwiki.

1 Introduction

Knowledge Graph Completion (KGC) aims to pre-
dict missing links in KG by inferring new knowl-
edge from existing ones. Attributed to its reasoning
ability, KGC models are crucial in alleviating the
KG’s incompleteness issue and benefiting many
downstream applications, such as recommenda-
tion (Cao et al., 2019b) and information extrac-
tion (Hu et al., 2021; Cao et al., 2020a). However,
the KGC performance on existing benchmarks are
still unsatisfactory — 0.51 Hit Ratio@1 and 187
Mean Rank of the top-ranked model (Wang et al.,
2019) on the widely used FB15k237 (Toutanova
and Chen, 2015). Do we have a slow progress of

Head Predicate Tail
Test David location ? (Ans: Florida)

Train David placeOfBirth Atlanta
David nationality U.S.A.

Test Zurich travelMonth ? (Ans: October)
Train Zurich travelMonth Jan., Feb., Mar., Apr.,

May., Jun., Jul., Aug.,
Sep., Nov., Dec.

Table 1: Low-quality examples in FB15k237. We only
present related triples. Ans denotes the missing entity.

models (Akrami et al., 2020)? Or should we blame
for the low-quality of benchmarks?

In this paper, we re-think the task of KGC and
construct a new benchmark dubbed InferWiki that
highlights three fundamental objectives:

Test triples should be inferential: this is the es-
sential requirement of KGC. Each test triple should
have supportive samples in the train set. How-
ever, we observe two major issues of current KGC
datasets: unpredictable and meaningless test triples,
which may hinder evaluating and advancing state-
of-the-arts. As shown in Table 1, the first example
of inferring the location for David (i.e., Florida)
is even impossible for humans — not to mention
machines — merely based on his birthplace and
nationality (i.e., Atlanta and USA). In contrast, the
second one is predictable but meaningless to find
the missing month from a list of months within a
year. The above cases are very common in existing
datasets, e.g., YAGO3-10 (Dettmers et al., 2018)
and CoDEx (Safavi and Koutra, 2020), mainly due
to their construction process: first collecting a high-
frequency subset of entities and then randomly
splitting their triples into train/test. In this setting,
KGC models may be over- or under-estimated, as
we are even unsure if a human can perform better.

Test triples may be inferred positive, nega-
tive, or unknown. Following open-world assump-
tion: what is not observed in KG is not necessar-

https://github.com/TaoMiner/inferwiki
https://github.com/TaoMiner/inferwiki
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FB15k237 WN18RR YAGO3-10 CoDEx-m Kinship Country InferWiki16k/64k
Source FreeBase WordNet YAGO Wikidata Artificial Wikidata
Inferential 7 7 7 7 3 3 3 3
#Entity 14,541 40,943 123,182 17,050 104 272 16,288 64,718
#Relation 237 11 37 51 26 2 197 239
#train 272,115 86,835 1,079,040 185,584 8,548 1,111 162,424 782,243
#valid (+) 17,535 3,034 5,000 10,310 1,069 24 3,398 7,747
(-\UNK) -\- -\- -\- 10,310\- -\- -\- 1,910\1,456 6,125\1,605
#test (+) 20,466 3,134 5,000 10,311 1,069 24 3,398 7,747
(-\UNK) -\- -\- -\- 10,311\- -\- -\- 1,868\1,501 6,062\1,685

Table 2: Statistics of KGC datasets. A more detailed survey table can be found in Appendix A.

ily false, but unknown (Shi and Weninger, 2018).
However, existing benchmarks generate unseen
triples as negatives (i.e., the closed-world assump-
tion), because KG contains only positive triples.
They usually randomly corrupt the head or tail en-
tity in a triple, sometimes with type constraints (Li
et al., 2019a). This leads to trivial evaluation (al-
most 100% accuracy in triple classification (Safavi
and Koutra, 2020)). Besides, the lack of unknown
test ignores a critical inference capacity and may
cause false negative errors in knowledge-driven
tasks (Kotnis and Nastase, 2017).

Inference has various patterns. Concentrat-
ing on limited patterns in evaluation may bring
in severe bias. Domain-specific datasets Kin-
ship (Kemp et al., 2006) and Country (Bouchard
et al., 2015) only focus on a few relations and are
nearly solved (Das et al., 2017). General-domain
WN18RR (Dettmers et al., 2018) contains prevalent
symmetry relation types, which incorrectly boosts
the performance of RotatE (Abboud et al., 2020).
Clearly, limited patterns leads to unfair compar-
isons among KGC models.

To this end, we curated an Inferential KGC
dataset extracted from Wikidata and establish the
benchmark with two settings of varying in sizes
and structures: InferWiki64k and InferWiki16k.
Instead of random split, we mine rules via Any-
BURL (Meilicke et al., 2019) to guide train/test
generation. All test triples are thus guaranteed
inferential from training data. To avoid the rule
leakage, we utilize two sets of triples: a large set
for high-quality rule extraction and a small set for
train/test split. Moreover, we infer unseen triples
and manually annotate them with positive, negative
and unknown labels to improve the difficulty of
evaluation following both closed-world and open-
world assumptions. For inference patterns, we in-
clude and balance triples with different reasoning
path length, relation types and patterns (e.g., sym-
metry and composition).

Our contributions can be summarized as follows:

• We summarize three principles of KGC: infer-
ential ability, assumptions and patterns, and
construct a rule-guided dataset.

• We highlight the importance of negatives and
unknowns, and initiate open-world evaluation.

• We conduct extensive experiments to establish
the benchmark. The results and deep analyses
verify the necessity and challenge of Infer-
Wiki, providing insights for future research.

2 Related Work

We can roughly classify current KGC datasets
into two groups: inferential and non-inferential
datasets. The first group is usually manually cu-
rated to ensure each testing sample can be inferred
from training data through reasoning paths, while
they only focus on specific relations, such as Fam-
ilies (Garcia-Duran et al., 2015), Kinship (Kemp
et al., 2006), and Country (Bouchard et al., 2015).
The limited scale and inference patterns make
them not challenging. HOLE (Nickel et al., 2016)
achieves 99.7% ACU-PR on the dataset of Country.

The second group of datasets are automatically
derived from public KGs and randomly split posi-
tive triples into train/test, leading to a risk of testing
samples non-inferential from training data. Pop-
ular datasets include FB15k-237 (Toutanova and
Chen, 2015), WN18RR (Dettmers et al., 2018), and
YAGO3-10 (Dettmers et al., 2018). CoDEx (Safavi
and Koutra, 2020) argues the scope and difficulty of
the above datasets, thus propose a comprehensive
dataset with manually verified hard negatives.

In fact, inference is an important ability for in-
telligence. Various fields study how inference is
done in practice, ranging from logic to cognitive
psychology. Inference helps people make reliable
predictions, which is also an expected ability for AI
models. Indeed, once deployed, a model may have
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to make a prediction when there is no evidence in
the training set. But, instead of an unreliable guess,
we highlight the ability to know unknown, a.k.a.
open-world assumption. Therefore, we aim to cu-
rate an large-scale inferential benchmark InferWiki
including various inference patterns and testing
samples (i.e., positive, negative, and unknown), for
better evaluation. We list the statistics in Table 2.

3 Dataset Design

We describe our dataset construction that comprises
four steps: data preprocessing, rule mining, rule-
guided train/test generation, and inferred test label-
ing. We then give a detailed analysis.

3.1 Data Preprocessing

More and more studies utilize Wikidata1 as a
knowledge resource due to its high quality and
large quantity. We utilize the September 2019 En-
glish dump in experiments. Data preprocessing
aims to define relation vocabulary and extract two
sets of triples from Wikidata: a large one for rule
mining T r and a relatively small one for dataset
generation T d. The reason for using two sets is to
avoid the leakage of rules. In other words, some
frequent rules on the large set may be very few on
the small set. The different distributions shall avoid
that rule mining methods will easily achieve high
performance. Besides, more triples can improve
the quality of mined rules. In contrast, the relatively
small set is enough for efficient KGC training and
evaluation.

In specific, we first extract all triples that consist
of two entity items and one relation with English
labels. We then remove the repeated triples and
obtain 40,199,175 triples with 7,734,841 entities
and 1,170 different relation types. Considering rule
mining efficiency, we reduce the relation vocabu-
lary by (1) manually filtering out meaningless rela-
tions, such as movie ID or film rating, (2) removing
relations of InstanceOf and subClassOf following
existing benchmarks (Toutanova and Chen, 2015),
(3) select the most frequent 500 relation types. We
focus on the most frequent 800,000 entities, which
result in 8,632,777 triples as the large set for rule
mining. To obtain the small set for dataset construc-
tion, we further select the most frequent 120,000
entities and 300 relations, which result in 1,283,246
triples. Note that we also infer new triples and label
them as positive, negative, or unknown later.

1https://www.wikidata.org/

3.2 Rule Mining

Since developing advanced rule mining models is
not the focus of this paper and several mature tools
are available online, such as AMIE+ (Galárraga
et al., 2015) and AnyBURL (Meilicke et al., 2019).
We utilize AnyBURL2 in experiments due to its
efficiency and effectiveness.

Given a set of triples (i.e., the large set T r),
this step aims to automatically learn rules F =
{(fp, λp)}Pp=1, where fp denotes a horn rule, e.g.,
spouse(x, y) ∧ father(x, z) ⇒ mother(y, z), and
λp ∈ [0, 1] denotes the confidence of fp. For each
rule fp, the left side of⇒ is called the premise, and
the right side is called the conclusion, where the
conclusion contains a single atom and the premise
is a conjunction of several atoms in the Horn rule
scheme. We can ground specific entities to replace
x, y, z in fp, which shall denote an inferential re-
lationship between premise and conclusion triples.
For example, given spouse(LeBron James, Savan-
nah Brinson) and father(LeBron James, Bronny
James), we may infer a new triple mother(Savannah
Brinson, Bronny James).

Of course, not all of the mined rules are reason-
able. To alleviate the negative impacts of unrea-
sonable rules, we rely on more data (a large set of
triples) and keep high-confidence rules only. Par-
ticularly, we follow the suggested configuration of
AnyBURL. We run it for 500 seconds to ensure that
all triples can be traversed at least once and obtain
251,317 rules, where 168,996 out of them whose
confidence meets λp > 0.1 have been selected as
the rule set to guide dataset construction.

3.3 Rule-guided Dataset Construction

Different from existing benchmarks, InferWiki pro-
vides inferential testing triples with supportive data
in the training set. Moreover, it aims to include as
many inference patterns as possible and these pat-
terns are better evenly distributed to avoid biased
evaluation. Thus, this step has four objectives: rule-
guided split, path extension, negative supplement,
and inference pattern balance.
Rule-guided Split grounds the mined rules F on
triples T d to obtain premise triples and correspond-
ing conclusion triples. All premise triples form a
training set, and all conclusion triples form a test
set. Thus, they are naturally guaranteed to be in-
ferential. For correctness, all of premise triples

2http://web.informatik.uni-mannheim.
de/AnyBURL/

https://www.wikidata.org/
http://web.informatik.uni-mannheim.de/AnyBURL/
http://web.informatik.uni-mannheim.de/AnyBURL/
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must exist in the given triple set T d, while conclu-
sion triples are not necessarily in T d and may be
generated for further annotation (i.e., Section 3.4).

For example, given a rule spouse(x, y) ∧ fa-
ther(x, z) ⇒ mother(y, z), we traverse all of the
given triples and find entities LeBron James, Sa-
vannah Brinson, and Bronny James that meet
the premise. We then add the premise triples
spouse(LeBron James, Savannah Brinson) and
father(LeBron James, Bronny James) into the
training set, and generate the conclusion triple
mother(Savannah Brinson, Bronny James) for test-
ing, no matter it is given or not.

Path Extension aims to increase the inference path
patterns by (1) adding more reasoning paths for the
same testing triple, and (2) elongating paths by
replacing those premise triples that have reason-
ing paths. For example, we replace father(LeBron
James, Bronny James) with two triples that can
infer it: father(LeBron James, Bryce James) and
brother(Bronny James, Bryce James). The original
path is then extended by one hop. Correspondingly,
we define the confidence of extended paths as the
multiplication of all involved rules. Longer paths
will challenge long-distance reasoning ability.

Negative Supplement is to generate negative
triples if we cannot annotate the same number of
negatives with positive triples. Otherwise, we will
face an imbalance issue. Following conventions,
we randomly corrupt the head or tail entities in a
positive triple with the following constraints: (1)
the relation of the positive triple is exclusive, e.g.,
placeOfBirth, if the ratio from head to tail entities
is smaller than a threshold (we choose 1.2 heuris-
tically in experiments); otherwise, the corrupted
negative triple may be actually positive, leading to
false negative errors. (2) We choose positive triples
from the test set for corruption to improve the dif-
ficulty — the model has to correctly infer the cor-
responding positive triple from training data, then
classify the corrupted triple as negative through the
confliction. Particularly, for non-exclusive relation
types, most of their corrupted results should be
unknown following open-world assumption. The
inferred test set covers such cases, which will be
discussed in Section 3.4.

Inference Pattern Balance aims to balance vari-
ous inference patterns, including path length, rela-
tion types, and relation patterns (i.e., symmetry, in-
version, hierarchy, composition, and others). This
is because concentrating on some patterns may

lead to severe bias and unfair comparison between
KGC models (Zhang et al., 2020). We first count
the frequency of testing triples according to the
path lengths, relation types and patterns, respec-
tively. For each of them, we rank their counting
and choose highest ranked groups of triples as fre-
quent ones, instead of setting a threshold. We then
carefully remove some frequent triples randomly,
until the new distributions reach an accepted range
(checked by humans).

3.4 Inferred Test Triple Labeling

Different from existing datasets, InferWiki aims
to include positive, negative, and unknown testing
triples, to evaluate the model under two types of
assumptions: open-world assumption and closed-
world assumption. The main difference between
them is whether unknown triples are regarded as
negatives. That is, the open-world evaluation is
a three-class classification problem (i.e., positive,
negative, and unknown). The closed-world evalua-
tion targets only positive and negative triples, and
we can simply relabel unknown triples as negatives
without changing the test set.

So far, we have two test sets: one is generated
via rule guidance, and the other contains the sup-
plemented negatives. This section aims to label
the generated triples. First, we automatically label
the triples with positive if they exist in Wikidata.
Then, we manually annotate the remaining 4,053
triples. The annotation guideline can be found in
Appendix B. Note that all of the unknowns are fac-
tually incorrect but not inferential. To assess the
quality of annotations, we verify a random selec-
tion of 300 test triples (100 for each label). The
annotators agree with our labels 84.3% of the time.
We further investigate the disagreements by relabel-
ing 100 samples. 85% of the time, humans prefer
an unknown, while automatic labeling tends to as-
sign them with positive or negative labels. This
suggests the inferential difference between humans
and machines — the capacity of knowing unknown.

Finally, we remove the entities that are not in
any of the grounded paths and their triples. We
randomly select half of the test set as valid. This
forms InferWiki64k. We further extract a dense
subset InferWiki16k by filtering out the positive
triples whose confidence is smaller than 0.6. Corre-
spondingly, negative/unknown triples are reduced
to keep balance. The statistics is listed in Table 2.
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Test (+) Japan National Route 1Q1191191, connectsWith, Japan National Route 4Q1055023

Train Japan National Route 4, terminus, Japan National Route 1
Test (+) AgneseQ2726556, sibling, LuciaQ3838490

Train MaddalenaQ329555, sibling, Agnese ∧ Maddalena, mother, BeatriceQ51089 ∧ Valentina, mother, Beatrice∧
ViridisQ271827, sibling, ValentinaQ943180 ∧ Viridis, sibling, EstorreQ3733572 ∧ ElisabettaQ1941886, sibling,
Estorre ∧ Lucia, sibling, Elisabetta

Test (-) QuimperQ702161, capital, VersaillesQ621 (⊥ YvelinesQ12820, capital, Versailles)
Train Yvelines, replaces, Seine-et-OiseQ979470 ∧ Seine-et-Oise, capital, Versailles
Test (-) RobertoQ53003, placeOfBirth, BatonQ28218 (⊥ Roberto, placeOfBirth, RomeQ220)
Train RenzoQ1397252, sibling, Roberto ∧ Renzo, placeOfBirth, Rome
Test (UNK) Midōsuji LineQ1192413, connectsWith, Keiyō LineQ741145

Train Shin-Ōsaka StationQ801438, connectingLine, Midōsuji Line ∧ Tōkaidō ShinkansenQ660895, terminus, Shin-
Ōsaka Station ∧ Tōkaidō Shinkansen, connectsWith, Keihin-Tōhoku LineQ1197028 ∧ Keiyō Line, connectsWith,
Keihin-Tōhoku Line

Test (UNK) MaryQ104109, workLocation, LondonQ84

Train Mary, memberOfPoliticalParty, Republican PartyQ29468 ∧ CarlQ127437, memberOfPoliticalParty, Republican
Party ∧ CarlQ127437 workLocation, London ∧Mary, occupation, actorQ33999 ∧Mary, spouse OwenQ966972

Table 3: Positive, negative, and unknown examples of InferWiki, where the triples with brackets are not in train
set (inferred from related training triples), ⊥ denotes contradicted triples and subscripts denote Wikidata ID.

3.5 Dataset Analysis

Table 3 shows positive, negative, and unknown
examples of InferWiki and their (possible) support-
ive training data. For positives, their paths seem
reasonable and vary in length, relation types, and
patterns. The 7-hop path of the sibling example
is even difficult for a human. For negatives and
unknowns, they are indeed incorrect and more chal-
lenging. There are no direct contradicted triples in
the train set — the model is encouraged to reason
related triples and justify if there is a confliction
(i.e., negative) or not (i.e., unknown). Nevertheless,
there are two minor issues. First, some unreason-
able paths may corrupt the predictability. We thus
increase the rule confidence threshold λ > 0.6 for
InferWiki16k and manually annotate uncertain test
triples for the correctness of labels. More advanced
rule mining models can improve the construction
pipeline. We leave it in the future. Second, does un-
known triples have a bias on certain relation types?
The answer is yes but not exactly. As shown in
Table 3, the relation connectsWith is involved in
both positive and unknown triples, which is also
determined by the paths.

Next, we analyze the relation patterns and path
length distribution through comparisons with exist-
ing KGC datasets. Due to the different construc-
tion pipelines, existing datasets are difficult to offer
quantitative statistics. We thus apply our pipeline
on CoDEx (Safavi and Koutra, 2020). Only in-
ferential test triples remain, and the training set
keeps unchanged, namely CoDEx-m-infer, which
reduces the test and valid positives from 20,622

Figure 1: Distribution of paths in relation patterns.

to 7,050. This agree with the original paper that
reports 20.56% triples are symmetry or compo-
sitional through AMIE+ analysis. We find more
paths due to more extensive rules extracted from a
large set of triples. This also demonstrates the ne-
cessity of rule-guided train/test generation — most
test triples are not guaranteed inferential when us-
ing random split.
Relation Pattern Following convention, we count
reasoning paths for various patterns: symmetry, in-
version, hierarchy, composition, and others, whose
detailed explanations and examples can be found
in Appendix C. If a triple has multiple paths, we
count all of them. As Figure 1 shows, we can see
that (1) there are no inversion and only a few sym-
metry and hierarchy patterns in CoDEx-m, as most
current datasets remove them to avoid train/test
leakage. But, we argue that learning and remem-
bering such patterns are also an essential capacity
of inference. It just needs to control their numbers
for a fair comparison. (2) The patterns of InferWiki
is more evenly distributed. Note that the patterns
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Figure 2: Comparison of paths in different lengths.

of symmetry, inversion, and hierarchy refer to 1-
hop paths, while composition and others refer to
multi-hop paths. So, the total number of the former
three is almost the same as that of the latter two, to
balance paths with varying lengths, which will be
discussed next.
Path Length Distribution The reasoning paths
can ensure test triples’ predictability but may not
be the shortest ones, as there may be undiscovered
paths connecting two entities. Thus, our statistics
concerning path length offer a conservative anal-
ysis and give an upper bound. For a test triple
with multiple paths, we count the shortest one. As
shown in Figure 2, we can see that InferWiki has
more long-distance paths, while CoDEx-m-infer
normally concentrates on maximum 3-hop reason-
ing paths. In specific, the maximum path length
of InferWiki is 9 (4 before path extension) and the
average length is 2.9 (1.5 before path extension).

Further analysis of relation, entity and neighbor
distributions can be found in Appendix D&E.

3.6 Limitation

Although we carefully design the construction of in-
ferWiki, there are still two types of limitations: rule
biases and dataset errors, that can to be addressed
along with the development of KG techniques in
the future. In terms of rule biases, AnyBURL may
be over-estimated due to its role in the construction.
Although we utilize two triple sets to avoid rule
leakage, their overlap may still bring unfair perfor-
mance gain to AnyBURL. We consider synthesize
several rule mining results to improve InferWiki in
the next version. In terms of dataset errors, first, to
balance positive and negative triples in the larger
InferWiki64k, we follow conventions to randomly
sample a portion of negatives. These negatives may
be unknown if following open-world assumption.
We manually assess the randomly sampled nega-
tives and find a 15.7% error rate. Therefore, we
conduct open-world experiments on the smaller

InferWiki16k, all of whose testing negatives are
verified by humans. The second type of errors is
due to unreasonable rules for dataset split, which is
caused by prediction errors of existing rule mining
models. However, there is no suitable evaluation
in this field to provide quantitative analysis. Our
ongoing work aims to develop an automatic eval-
uation for path rationality to improve the mining
quality, and thus facilitate our inferential pipeline.

4 Benchmarking

4.1 Tasks

We benchmark performance on InferWiki for the
tasks: (1) Link Prediction, the task of predict-
ing the missing head/tail entity for a given query
triple (?, r, t) or (h, r, ?). Models are encouraged
to rank correct entities higher than others in the
vocabulary. We adopt the filtering setting (Bor-
des et al., 2013) that excludes those entities, if
the predicted triples have been seen in the train
set. Mean reciprocal rank (MRR) and hits@k are
standard metrics for evaluation. (2) Triple Clas-
sification aims to predict a label for each given
triple (h, r, t). The label following open-world as-
sumption is trinary y ∈ {−1, 0, 1} and becomes
binary y ∈ {−1, 1} when adopting closed-world
assumption — all 0-label triples are re-labeled with
−1, since our unknown triples are factually nega-
tive yet non-inferential from training data. Since
KGC models output real-value scores for triples,
we classify scores into labels by choosing one or
two thresholds per relation type on valid. Accuracy,
precision, recall, and F1 are measurements.

4.2 Models

For comprehensive comparison, we choose three
types of representative models as baselines: (1)
Knowledge Graph Embedding models, including
TransE (Bordes et al., 2013), ComplEx (Trouil-
lon et al., 2016), RotatE (Sun et al., 2019),
ConvE (Dettmers et al., 2018), and TuckER (Bal-
azevic et al., 2019), (2) multihop reasoning model
Multihop (Lin et al., 2018), and (3) rule-based
AnyBURL (Meilicke et al., 2019). Note that the
latter two are specially designed for link prediction.
The detailed implementation including parameters
and thresholds can be found in Appendix F.

4.3 Triple Classification Results

Table 4 shows micro scores for triple classifica-
tion. We can see that all of the baselines perform
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InferWiki64k InferWiki16k CoDEx-m-infer
Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1

TransE .823 .782 .895 .835 .796 .736 .926 .820 .763 .792 .891 .839
ComplEx .812 .779 .872 .823 .811 .835 .778 .805 .798 .805 .936 .866

RotatE .852 .808 .924 .862 .811 .769 .891 .825 .788 .790 .945 .861
ConvE .881 .864 .906 .884 .897 .887 .911 .899 .851 .853 .948 .898

TuckER .862 .897 .817 .855 .861 .836 899 .866 .803 .919 .784 .846

Table 4: Overall Performance of Triple Classification (Closed-world Assumption), where acc and prec stand for
accuracy and precision, respectively.

Figure 3: Accuracy regarding various negative types,
where random neg denotes supplemented negatives,
and annotation neg denotes annotated negatives (includ-
ing unknowns).

well — around 90% F1 scores. This is consistent
with recent findings that triple classification is a
nearly solved task (around 98% F1 scores) (Safavi
and Koutra, 2020). Nevertheless, the lower perfor-
mance demonstrates the difficulty of our curated
datasets, mainly due to the manually annotated hard
negatives of InferWiki (and CoDEx).
Impacts of Hard Negatives

Figure 3 presents the accuracy on InferWiki16k
regarding various types of triples: positive, random
supplemented negatives, and annotated negatives
(including relabeled unknowns). We can see that
(1) random negative triples are indeed trivial for
all of baseline models, which motivates the ne-
cessity of harder negative triples to push this re-
search direction forward, (2) positive triples are
slightly difficult to judge than random negatives,
and (3) the accuracy significantly drops on anno-
tation negatives. This is mainly because most an-
notated triples are actually unknown — they are
factually incorrect, but there are no obvious ab-
normal patterns. Such non-inferential cases may
underestimate KGC models.
Open-world Assumption

Since most baselines fail in judging unknown
as negative, we now investigate them following
open-world assumption to see their ability in recog-

Acc Prec Recall F1
TransE .711 .687 .668 .676

ComplEx .723 .703 .709 .701
RotatE .745 .746 .750 .736
ConvE .803 .763 .777 .768

TuckER .709 .639 .657 .618

Table 5: Performance of Triple Classification on Infer-
Wiki16k (Open-world Assumption).

nizing unknown triples. Table 5 shows the macro
performance3 on InferWiki16k. We can see that all
of the baseline models perform worse than those
under the closed-world assumption. On one hand,
the trinary classification is intuitively more difficult
than binary classification. On the other hand, it
is a rather straightforward method to search two
decision thresholds — one between positive and
unknown and the other between unknown and neg-
ative. This motivates us future works on advanced
models to represent KG, which should also be able
to detect the limitation and boundaries of given
KG. It is a fundamental capacity of inference to
respond “I do not know”, to avoid false negatives
in downstream applications.

Figure 4 presents a detailed analysis of each
model regarding their search thresholds. We can
see that although their best performance seems not
bad, the worst scores are only around 10%. That is,
they are very sensitive to thresholds. Besides, most
of the time, the average F1 scores of ComplEx, Ro-
tatE, and TuckER are around 20%, while transE
achieves higher scores. Maybe that is the reason
why it is still the most widely used KGC method.
ConvE stably outperforms other baselines, no mat-
ter in terms of best, worst, or average performance.

4.4 Link Prediction Results
Table 6 shows the average scores for head and tail
prediction. We can see that (1) AnyBURL performs
the best most of the time, but the performance gap
is not significant. This is mainly due to its role in

3Micro performance is only applicable to binary classifica-
tion, while open-world evaluation is trinary.
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InferWiki64k InferWiki16k CoDEx-m-infer
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE .357 .129 .709 .474 .214 .842 .366 .363 .567
ComplEx .350 .218 .595 .537 .377 .789 .252 .160 .430

RotatE .465 .297 .735 .629 .450 .883 .352 .476 .561
ConvE .575 .475 .747 .748 .678 .868 .450 .369 .585

TuckER .573 .466 .755 .754 .677 .886 .451 .365 .603
AnyBURL - .559 .783 - .714 .892 - .394 .620

Table 6: Results of Link Prediction. Bold fonts denote the best scores and underlines highlight the second best.

Figure 4: Macro F1 variance when we search the best
thresholds for open-world triple classification.

dataset construction, although we utilize two sets
of triples to minimize rule leakage. Actually, in-
ference of rules may be more important than we
thought to improve the reliability and interpretabil-
ity of knowledge-driven models. This also moti-
vates us to incorporate rule knowledge into KGC
training for advanced reasoning ability (Guo et al.,
2018; Li et al., 2019b). (2) KGC models perform
better on InferWiki16k than InferWiki64k, due to
the higher structure density and rule confidence. (3)
Models have higher hit@10 and lower hit@1 on
InferWiki than other datasets (e.g., CoDEx). This
agrees with an intuition that most entities are ir-
relevant, making it trivial to judge these corrupted
triples as in triple classification. And, only a small
portion of entities is difficult to predict, which re-
quires strong inference ability. Besides, hit@1
varies a lot, so that we can better compare among
models.
Impacts of Inferential Path Length

Figure 5 presents Hit@1 curves for tail pre-
diction regarding varying path length on Infer-
Wiki64k4. We can see an overall downwards trend
along with the increasing path length. Meanwhile,
the large fluctuation may be due to two possible
reasons: (1) as discussed in Section 3.5, the inferen-
tial paths ensure the predictability, but may not be
the shortest ones. This thus offers a conservative

4Multihop is designed for tail prediction, and Hit@1 on
InferWiki64k is more distinct for following ablation study.

Figure 5: Hit@1 curves of baseline models for tail pre-
diction. The x-axis denotes the number of hops, and
the bars denote the number of examples that have cor-
responding hops. Red solid line is a performance trend
line of six models.

analysis and give an upper bound of the perfor-
mance concerning k-hop paths. Our paths are of
high coverage and quality compared with existing
datasets, which either conduct case study or post-
process datasets via rule mining. (2) Relation types
and patterns also have significant impacts. Shorter
paths contain more long-tail relations, and longer
paths tend to cover many common relations. This
improves the difficulty of shorter paths and makes
longer paths easier.
Impacts of Relation Patterns

We present the Hit@1 tail prediction on Infer-
Wiki64k regarding relation patterns in Table 7. We
can see that symmetry and inversion are not well-
solved, which should be considered into evalua-
tion but limited in scale. TransE performs worse
on symmetry and inversion relations, consistent
with the analysis in Abboud et al. (2020). Even
if ComplEx and RotatE can capture such patterns,
they fail to rank corresponding entities at the top.
Embedding-based models perform well on hierar-
chy relations, even outperforms AnyBURL. For
compositional relations, it is still quite challenging
and worthwhile further investigation.

4.5 Comparison of CoDEx-infer and CoDEx

We investigate the impacts of rule-based train/test
generatation by comparing CoDEx-m-infer with
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Sym Inv Hier Comp Others
TransE .000 .049 .479 .211 .296

ComplEx .130 .279 .502 .368 .414
RotatE .191 .246 .694 .477 .610
ConvE .558 .668 .855 .602 .784

TuckER .527 .612 .850 .625 .753
Multihop .231 .309 .345 .240 .296

AnyBURL .782 .793 .782 .686 .809

Table 7: Hit@1 tail prediction on Relation Patterns.

(a) Triple classification (F1). (b) Link Prediction (MRR).

Figure 6: Comparison of CoDEx-infer and CoDEx.

CoDEx-m. The two datasets share the same train-
ing set. The only difference lies in how we obtain
the test triples, either using our proposed pipeline
(CoDEx-m-infer) or randomly (CoDEx-m). Thus,
the results reflect the impacts of inferential guar-
antee for dataset construction and demonstrate
the necessity to avoid over-estimation or under-
estimation of the inferential ability of KGC models.
We report the performance on CoDEx-m from the
original paper (Safavi and Koutra, 2020).

We can see that all of models perform better with
inferential path guarantee on CoDEx-m-infer than
CoDEx-m, except ComplEx for link prediction.
This is because rule guidance elimites those non-
inferential testing triples, making the task easier.
Nevertheless, the scores on hard cases are actually
decreased (as discussed in Figure 3 and Table 7).
Models are excepted a stronger reasoning ability
among several related entities, instead of trivially
filtering out massive irrelevant entities. This also
demonstrates the necessity of InferWiki to avoid
over- or under- estimation of the inferential ability
of KGC models — learning new knowledge from
existing ones.

5 Case Study of Relation Types

We illustrate the most frequent relation types
and their distribution of InferWiki64k and Infer-
Wiki16k in Figure 8. We can see that InferWiki has
a diverse relation types that are not limited to spe-
cific domains. Besides, the triples of each relation
type are well balanced.

Figure 7: Distribution of most frequent relation types
in InferWiki64k. A comparison with InferWiki16k is
in Appendix D.

6 Conclusion

We highlighted three principles for KGC datasets:
inferential ability, assumptions, and patterns, and
contribute a large-scale dataset InferWiki. We es-
tablished a benchmark with three types of seven
KGC models on two tasks of triple classification
and link prediction. The results present a de-
tailed analysis regarding various inference patterns,
which demonstrates the necessity of an inferential
guarantee for better evaluation and the difficulty of
new open-world triple classification.

In the future, we are interested in cross-KGs in-
ference and transfer (Cao et al., 2019a), and inves-
tigating how to inject knowledge into deep learn-
ing architectures, such as for information extrac-
tion (Tong et al., 2020) or text generation (Cao
et al., 2020b).
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A Literature Review

Table 8 lists existing KGC datasets. We can roughly
classify them into two groups: inferential and non-
inferential datasets. The first group are usually
manually curated to ensure each testing sample
can be inferred from training data through reason-
ing paths. Families (Garcia-Duran et al., 2015)
test family relationships including cousin, ances-
tor, marriage, parent, sibling, and uncle, among
the members of 5 families along 6 generations.
Such that there are obvious compositional relation-
ships like uncle ≈ sibling + parent or parent ≈
married + parent. Kinship (Kemp et al., 2006)
contains kinship relationships among members of
the Alyawarra tribe from Central Australia, while
Country (Bouchard et al., 2015) contains coun-
tries, regions, and subregions as entities and is
carefully designed to explicitly test the location
relationship (i.e., locatedIn and neighbor) among
them. The above datasets are clearly limited in
scale and inference patterns, thus become not chal-
lenging. HOLE (Nickel et al., 2016) even achieves
99.7% ACU-PR on dataset Country (Bouchard
et al., 2015).

The second group of datasets are automatically
derived from public KGs and randomly split pos-
itive triples into train/valid/test, leading to a risk
of testing samples non-inferential from training
data. FB13 (Socher et al., 2013) and FB15K (Bor-
des et al., 2013) are commonly used benchmark
from FreeBase. FB15k401 (Yang et al., 2014) is
a subset of FB15k containing only frequent rela-
tions (relations with at least 100 training examples).
To remove test leakage, FB15k-237 (Toutanova
and Chen, 2015) removes all equivalent or inverse
relations. Similarly, FB5M (Wang et al., 2014)
removes all the entity pairs that appear in the
testing set. WN18RR (Dettmers et al., 2018) is
the challenging version of WN18 (Bordes et al.,
2013) extracted from WordNet. Textual informa-
tion is also included for specific task, such as
FB40K (Lin et al., 2015) targeting relation ex-
traction dataset New York Times (Riedel et al.,
2010). FB24K (Lin et al., 2016) introduce At-
tributes. FB15K+ (Xie et al., 2016) introduce types
and make fb15k more sparse by only filterring out
relation with a frequency lower than one. Another
popular knowledge source is YAGO, and the cor-
responding datasets include YAGO3-10 (Dettmers
et al., 2018) and YAGO37 (Guo et al., 2018). Ex-
cept for open-domain KG, NELL (Wang et al.,

2015) concentrates on location and sports, and
UMLS (Kok and Domingos, 2007) targets med-
ical knowledge. CoDEx (Safavi and Koutra, 2020)
argues the quality of the above benchmarks, such
as NELL995 (Xiong et al., 2017) are nonsensical or
overly generic. Thus they propose a comprehensive
dataset consisting of three knowledge graphs vary-
ing in size and structure, entity types, multilingual
labels and descriptions, and hard negatives.

B Annotation Guideline

We provide the following annotation guidelines for
annotators to label inferred triples in Section 3.4.

Task This is a two-step annotations. First,
you must annotate each triple with the label y ∈
{1,−1}, where 1 denotes that the triple is correct
and −1 denotes that the triple is incorrect. You can
find the answer from anywhere you want, such as
commonsense, Wikipedia, and professional web-
sites. If you cannot find any evidence to support
the statement, you shall choose label −1. Second,
you must annotate each incorrect triple with the
label ŷ ∈ {0,−1}, where 0 denotes that you do not
know the answer. Now, you can find the answer
from our provided triples. If you cannot find any
evidence to support the statement, you shall choose
label 0.

Examples Here are some examples judged using
three types of knowledge sources.

• Commonsense: (Cypriot Fourth Division,
hasPart, 2018–19 Cypriot Third Division) is
clearly incorrect, since the fourth division can-
not has a part of third division.

• Professional websites: To annotate the
triple (Bahrain-Merida 2019, hasPart,
Carlos Betancur), you may search the
person in professional websites, such as
https://www.procyclingstats.com/

team/bahrain-merida-2019. Since there
is no Carlos Betancur listed in that website,
please choose false.

• Wikipedia: Given the triples (Tōkaidō
Shinkansen, connectsWith, Osaka Higashi
Line) and (Tōkaidō Shinkansen, con-
nectsWith, San’yō Main Line), you can find
related station information from the page
of Tōkaidō Shinkansen. You can find that
Osaka Higashi Line shares a transfer station
with Tōkaidō Shinkansen, thus label it with 1.

https://www.procyclingstats.com/team/bahrain-merida-2019
https://www.procyclingstats.com/team/bahrain-merida-2019


Datasets source #Entity #Relation #Triples (train/valid/test)
FB13 (Socher et al., 2013) FreeBase 75,043 13 316,232/5,908/23,733
FB15k (Bordes et al., 2013) FreeBase 14,951 1,345 483,142/50,000/59,071
FB15k237 (Toutanova and Chen, 2015) FreeBase 14,541 237 272,115/17,535/20,466
FB15k+ (Xie et al., 2016) FreeBase 14,951 1,855 486,446/50,000/62,374
FB15k401 (Yang et al., 2014) FreeBase 14,541 401 560,209/-/-
FB24k (Lin et al., 2016) FreeBase 23,634 987 402,493/-/21,067
FB40k (Lin et al., 2015) FreeBase 39,528 1,336 370,648/67,946/96,678
FB5M (Wang et al., 2014) FreeBase 5,385,322 1,192 19,193,556/50,000/59,071
WN11 (Socher et al., 2013) WordNet 38,696 11 112,581/2,609/10,544
WN18 (Bordes et al., 2013) WordNet 40,943 18 141,442/5,000/5,000
WN18RR (Dettmers et al., 2018) WordNet 40,943 11 86,835/3,034/3,134
YAGO3-10 (Dettmers et al., 2018) YAGO 123,182 37 1,079,040/5,000/5,000
YAGO37 (Guo et al., 2018) YAGO 123,189 37 989,132/50,000/50,000
CoDEx (Safavi and Koutra, 2020) Wikidata 77,951 69 551,193/30,622/30,622
NELL995 (Xiong et al., 2017) NELL 75,492 200 154,213/-/-
NELLloc (Wang et al., 2015) NELL 672 10 941/-/-
Family (Garcia-Duran et al., 2015) Artificial 721 7 8,461/2,820/2,821
Kinship (Kemp et al., 2006) Artificial 104 26 8,548/2,820/2,821
Countries (Bouchard et al., 2015) Artificial 272 2 1,111/24/24
UMLS (Kok and Domingos, 2007) UMLS 135 49 5,216/-/-

Table 8: An overview of Knowledge Graph Completion Datasets.

And, San’yō Main Line doesn’t show up in
the page, you may label it with −1.

C Relation Patterns

InferWiki is able to analyze relation patterns for
each path, including symmetry, inversion, hierar-
chy, and composition, where detailed explanations
and examples are listed in Table 9.

D Relation Types

We illustrate the most frequent relation types
and their distribution of InferWiki64k and Infer-
Wiki16k in Figure 8.

E Comparison with Existing Datasets

Figure 9 shows the distribution of entities and their
neighbors as compared to widely used datasets:
FB15k237 and CoDEx-m.

F Experiment Setup

Our experiments are run on the server with the
following configurations: OS of Ubuntu 16.04.6
LTS, CPU of Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, and GPU of GeForce RTX 2080 Ti. We
use OpenKE5 for re-implementing TransE, Com-
plEx, and RotatE. For the rest models, we use
the original codes for ConvE6, TuckER 7, Multi-

5https://github.com/thunlp/OpenKE
6https://github.com/TimDettmers/ConvE
7https://github.com/ibalazevic/TuckER

hop8, and AnyBURL9. Because we utilize various
types of KGC models including embedding-based,
multi-hop reasoning (reinforcement learning), and
rule-based models, these models largely have their
own hyperparameters. To avoid exhaustive param-
eter search in a large range, we conduct a series
of preliminary experiments and find that the sug-
gested parameters work well on Wikidata-based
data. We then search the embedding size in the
range of {256, 512}, number of negative samples
in the range of {15, 25} and margin in the range
of {4, 8}. The optimal parameters of each model
on all of three datasets are listed in Table 10. The
thresholds in triples classification are listed in Ta-
ble 11

8https://github.com/salesforce/
MultiHopKG

9http://web.informatik.uni-mannheim.
de/AnyBURL/

https://github.com/TimDettmers/ConvE
https://github.com/ibalazevic/TuckER
https://github.com/salesforce/MultiHopKG
https://github.com/salesforce/MultiHopKG
http://web.informatik.uni-mannheim.de/AnyBURL/
http://web.informatik.uni-mannheim.de/AnyBURL/


Pattern Notation Example
symmetry r1(x, y)⇒ r1(y, x) (Prince ChristopherQ44775, partner, FriederikeQ93614)⇒ (Friederike, partner,

Prince Christopher)
inversion r1(x, y)⇔ r2(y, x) (Amravati districtQ1771774, capital, AmravatiQ269899)⇒ (Amravati, capitalOf,

Amravati district)
hierarchy r1(x, y)⇒ r2(y, x) (SupermanQ79015, derivativeWork, Superman ReturnsQ328695)⇒ (Superman,

presentInWork, Superman Returns)
composition r1(x, y)∧ · · ·∧ rp(y, z)⇒

rp+1(x, z)
(EleanorQ156045, mother, JoannaQ171136) ∧ (Ferdinand IQ150611, mother,
Joanna) ∧ (IsabellaQ157884, sibling, Ferdinand I)⇒ (Eleanor, sibling, Isabella)

Table 9: Explanations and examples for various relation patterns.

Hyperparameter TransE ComplEx RotatE ConvE TuckER Multihop
InferWiki16k

Embedding Size 256 512 512 512 512 256
# Negatives 15 25 25 - - -
Margin 4 4 8 - - -
Learning Rate 1.0 0.5 2e-5 1e-4 1e-4 1e-3
Optimizer SGD adagrad adam adam adam -
Batch Size 1,625 1,625 2,000 256 256 128

InferWiki64k
Embedding Size 256 512 512 256 512 256
# Negatives 15 15 25 - - -
Margin 4 4 8 - - -
Learning Rate 1.0 0.5 2e-5 1e-4 1e-4 1e-3
Optimizer SGD adagrad adam adam adam -
Batch Size 7,823 7,823 2,000 256 256 128

CoDEx-m-infer
Embedding Size 512 256 512 256 512 256
# Negatives 25 25 25 - - -
Margin 8 4 4 - - -
Learning Rate 1.0 0.5 2e-5 1e-4 1e-4 1e-3
Optimizer SGD adagrad adam adam adam -
Batch Size 1,856 1,856 2000 256 256 128

Table 10: Best hyperparameter configurations.

InferWiki TransE ComplEx RotatE ConvE TuckER

Closed
World

64k [-24.4663, -9.0235] [-43.0342, 30.6942] [-15.7235, 7.8291] [0.0, 0.9999] [0.0, 0.9982]
-16.7449 -0.2717 -0.6498 0.1 0.01

16k [-24.0588, -4.333] [-21.5906, 24.7742] [-21.2362, 7.8282] [0.0, 1.0] [0.0, 0.9734]
-13.4069 2.5191 -0.6005 0.19 0.0097

Open
World 16k [-24.0588, -4.333] [-21.5906, 24.7742] [-21.2362, 7.8282] [0.0, 1.0] [0.0, 0.9734]

-16.1685, -11.8288 -3.5084, 3.4464 -2.3444, 0.8527 0.01, 0.37 0.0097, 0.0389

Table 11: Best thresholds in triple classification, where the upper side is the search range and the lower side is the
best values. They are searched on validation.



(a) InferWiki64k. (b) InferWiki16k.

Figure 8: Distribution of most frequent relation types.

(a) Distribution of entities, where x-axis denotes different ranges regarding entity frequency in the train set.

(b) Distribution of entity neighbors, where x-axis denotes ranges regarding average number of neighbors in the train set.

Figure 9: Distribution of entities and their neighbors.


