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Abstract

Recent work on training neural retrievers for
open-domain question answering (OpenQA)
has employed both supervised and unsuper-
vised approaches. However, it remains un-
clear how unsupervised and supervised meth-
ods can be used most effectively for neural
retrievers. In this work, we systematically
study retriever pre-training. We first propose
an approach of unsupervised pre-training with
the Inverse Cloze Task and masked salient
spans, followed by supervised finetuning using
question-context pairs. This approach leads
to absolute gains of 2+ points over the previ-
ous best result in the top-20 retrieval accuracy
on Natural Questions and TriviaQA datasets.
We next explore two approaches for end-to-
end training of the reader and retriever compo-
nents in OpenQA models, which differ in the
manner the reader ingests the retrieved docu-
ments. Our experiments demonstrate the ef-
fectiveness of these approaches as we obtain
state-of-the-art results. On the Natural Ques-
tions dataset, we obtain a top-20 retrieval ac-
curacy of 84%, an improvement of 5 points
over the recent DPR model. We also showcase
good results on answer extraction, outperform-
ing recent models such as REALM and RAG
by 3+ points. Our code is available at: https:
//github.com/NVIDIA/Megatron-LM.

1 Introduction

The task of open-domain question answering
(OpenQA) consists of finding answers to the
information-seeking questions using a large knowl-
edge source such as Wikipedia. This knowledge
source is also referred to as evidence and it typically
contains millions of documents. Most approaches
for OpenQA consist of a two-stage pipeline (Chen
et al., 2017; Chen, 2018). In the first stage, given
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Document 1: Bowling is a target sport and recreational activity in 
which a player rolls a ball towards pins (in pin bowling) or another 
target (in target bowling) …

Document 2: “Hall of Fame” is a song by Irish pop rock band the 
Script. It is the lead single from their studio album #3. The track 
features American hip-hop artist will.i.am of The Black Eyed Peas.

Document 3: The World Bowling Writers (WBW) International 
Bowling Hall of Fame was established in 1993 and is located … on 
the International Bowling campus in Arlington, Texas.

Question: Where is the bowling hall of fame located?

Stage 1: Retriever

Stage 2: Reader

Answer: Arlington, Texas

Figure 1: An example illustrating OpenQA pipeline.

a question, a retriever module identifies the most
relevant documents, which is often a very small
subset of the evidence known as context documents.
Traditionally, approaches based on document rank-
ing such as BM25 (Robertson and Zaragoza, 2009)
have been used for the retriever. In the second
stage, these relevant documents are given as input
to the reader module, which understands them and
extracts the answer for the question (Figure 1).

The main drawback of the BM25 method is that
it is not trainable and hence it can’t be adapted to
tasks involving open-retrieval. Recent work has ad-
dressed this limitation by building upon advances
in self-supervised learning, such as BERT (Devlin
et al., 2019). These approaches model both the
retriever and reader using neural networks, allow-
ing the retriever to be trained using task-specific
datasets (Lee et al., 2019; Guu et al., 2020). Typi-
cally, the retriever model consists of a dual-encoder
architecture (Bromley et al., 1994), where one en-
coder processes the question and the other encoder
processes the context document. Prior work has
investigated both unsupervised and supervised ap-
proaches to train the retriever. Unsupervised ap-
proaches include separately training the retriever
with Inverse Cloze Task (ICT) (Lee et al., 2019)
or training the retriever and reader jointly by pre-

https://github.com/NVIDIA/Megatron-LM
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dicting masked salient spans (REALM) (Guu et al.,
2020), while supervised approaches such as Dense
Passage Retrieval (DPR) (Karpukhin et al., 2020)
train the retriever using human-annotated sets of
question and context pairs.

However, there is no study that investigates the
comparative advantages of using these two styles of
training when the retrieval task is challenging, i.e.,
when the evidence contains millions of documents.
It is unclear if the unsupervised approaches can
further help to improve the performance of strong
supervised approaches, and, if so, under what con-
ditions. A core focus of this work is systematically
studying these aspects of retriever training.

We propose a unified approach to train the re-
triever: unsupervised pre-training followed by su-
pervised finetuning. We also investigate key de-
sign choices—such as relevance score scaling and
longer training—and showcase their effectiveness.
Our results demonstrate that the proposed approach
obtains substantial accuracy gains when evaluated
on benchmark OpenQA datasets. Extensive experi-
ments also highlight the relative importance of dif-
ferent pre-training strategies, revealing important
trade-offs when varying the amount of supervised
data available to train the retriever.

Furthermore, motivated by recent work (Guu
et al., 2020; Lewis et al., 2020a), we also explore
two approaches for end-to-end supervised training
of the reader and retriever components. In the first
approach, the reader considers each retrieved docu-
ment separately while in the second approach, the
reader takes as input all the retrieved documents
together. We compare the effectiveness of these
approaches on both retrieval accuracy and answer
extraction. We show that the first approach leads
to an improved retrieval performance, while the
second approach results in an improved answer ex-
traction. With end-to-end training, we outperform
previous best models to obtain new state-of-the-art
results on retrieval accuracy and answer extraction.
We also perform experiments by scaling the model
size to a large configuration for both retriever and
reader and observe consistent improvements, com-
pared with smaller models.

In summary, the contributions of this work are:

• We demonstrate that our proposed method of
unsupervised pre-training of the retriever with
ICT followed by supervised finetuning leads to
absolute gains of more than 2 points in the top-20
retrieval accuracy over the previous best result

on Natural Questions and TriviaQA datasets.
• We show that masked salient spans-based pre-

training of the retriever is more effective when
the supervised dataset sizes are small.

• Our end-to-end training approach obtains new
state-of-the-art performance on retrieval accu-
racy. On Natural Questions, our top-20 accuracy
is 84, which is a 5 points gain over DPR results.

• We achieve competitive results on answer extrac-
tion with gains of more than 3 points over recent
models such as REALM (Guu et al., 2020) and
RAG (Lewis et al., 2020c).

• We scale up end-to-end training to large models
and show consistent gains in performance.

The rest of the paper is organized as follows.
Sec. 2 and 3 explain the retriever model and end-
to-end training, respectively. Sec. 4-6 describe the
experimental details with the results. Sec. 7 reviews
the related work followed by conclusion in Sec. 8.

2 Neural Retriever

In this section, we first describe the retriever ar-
chitecture and then discuss different approaches to
train it, including our proposed approach.

2.1 Background

Given a collection of documents in the evidence
Z = {z1, · · · , zm} and a question q, the task of the
retriever is to select a relevant subset of documents
for the question. To do this, the retriever performs a
ranking of the evidence documents conditioned on
the question and outputs the top-ranked documents.

The retriever model consists of two modules: a
question encoder (fQ) and a context encoder (fZ).
Such a model is often referred to as a dual-encoder
model (Bromley et al., 1994). Here, we detail the
training methodology of the dual-encoder model
given a questions (q) and context documents (zi)
from Z . First, we compute the relevance score
between the question and context. We define the
relevance score to be the dot-product between the
question and context representations

s(q, zi;φ) = fQ(q)
>fZ(zi) (1)

where fQ(q) ∈ Rd and fZ(z) ∈ Rd denote the
question and context encoders, respectively, which
are parameterized by φ = [φQ, φZ ]. We model
the fQ and fZ using BERT-style transformer net-
works (Devlin et al., 2019; Vaswani et al., 2017).
We consider the hidden states of the first token of
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the sequence (i.e. [CLS] token) as the encoder’s
output. The probability of a context document zi
being relevant to the question q is calculated as

p(zi | q,Z;φ) =
exp(s(q, zi;φ)/τ)∑|Z|
j=1 exp(s(q, zj ;φ)/τ)

(2)

where τ is a scaling factor. While previous work
had used the setting of τ = 1, in this work, we set
τ =
√
d. Bigger scaling factor helps in better opti-

mization when the model hidden size (d) is large.
We refer to this as relevance score scaling. To
train the retriever, we maximize the log-likelihood
computed from Eq. 2.

In practice, as the evidence set consists of mil-
lions of documents, the normalization term would
be expensive to compute. Hence, we approximate
the denominator of the above equation by using the
context documents in the batch as negative exam-
ples, a technique that has shown to perform well in
practice (Chen et al., 2020).

2.2 Training
In this section, we discuss different approaches to
train the retriever. In all the approaches, we initial-
ize the parameters of both the question and context
encoders using BERT weights as implemented in
Megatron-LM (Shoeybi et al., 2019). We also ex-
perimented with random initialization but it vastly
underperformed BERT initialization.

2.2.1 Supervised Training
In the supervised setting, human-annotated ques-
tions, answers, and sometimes context are provided.
If the context is not included, then a common ap-
proach is to use distant supervision (Mintz et al.,
2009) to obtain the context document. Specifi-
cally, we select the top-ranked document using
BM25 (Robertson and Zaragoza, 2009) from the
evidence that contains the answer as the context.
We also select other top-ranked documents that do
not contain the answer as additional hard negative
examples. This approach to train neural retriever
was popularized by (Karpukhin et al., 2020).

2.2.2 Unsupervised Training
Inverse Cloze Task (ICT): In this setup, we do
not consider the human-annotated question-context
pairs. Instead, the retriever is trained in an unsu-
pervised manner. Specifically, a randomly sampled
sentence from a paragraph is considered as the
query while other sentences as the context. This
approach was first proposed by (Lee et al., 2019).

Masked salient spans training: (Guu et al.,
2020) showcased that the ICT initialized retriever
can be further improved by training it with an ob-
jective where the reader predicts the masked salient
spans such as named entities conditioned on the
retrieved documents. In this work, we adopt the
same approach. However, unlike (Guu et al., 2020)
who use BERT for the reader, we use a generative
language model based on T5 (Raffel et al., 2020).

2.3 Proposed Approach: Unsupervised
Pre-training and Supervised Finetuning

To improve the retriever training, we propose the
approach of unsupervised pre-training of the re-
triever followed by supervised finetuning. In this
approach, we first pre-train the retriever weights
with ICT training or masked salient spans training
(Sec. 2.2.2). After pre-training, we finetune the
retriever with supervised training (Sec. 2.2.1).

3 End-to-End Retriever and Reader
Training

In this section, we explore two supervised train-
ing approaches to end-to-end train the reader and
retriever components from the task-specific data.
In the first approach, the reader considers each re-
trieved document separately (Sec. 3.1) while in
the second approach, the reader takes as input all
retrieved documents together (Sec. 3.2). These ap-
proaches are designed such that when predicting
the answer conditioned on the question, the learn-
ing process improves both the reader and retriever.

Background and notation: In end-to-end train-
ing, the trainable components consists of the
retriever (φ) and reader (θ) parameters. For
retriever, we use the dual-encoder architecture
and train it as discussed previously in Sec. 2.3.
Our reader is a generative model designed ac-
cording to the sequence-to-sequence modeling
paradigm (Sutskever et al., 2014). Specifically, we
use pre-trained T5 as the reader. The inputs to the
training process are questions (q) and its answers
(a), both in string form. Given a question, first the
retriever obtains the k relevant context documents
(K) from the evidence (Z) as

K = arg sort
zi∈Z

s(q, zi;φ)[: k] (3)

The reader then takes the question and one or more
context documents (zi) as input to predict the an-
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Figure 2: A schematic diagram illustrating end-to-end supervised training of the retriever and reader components.

swer, the likelihood of which is defined as

p(a | q, zi; θ) =
N∏
j=1

p (aj | a1:j−1, q, zi; θ) , (4)

where N is the number of answer tokens. Next,
we describe the two proposed approaches. A block
diagram illustrating the end-to-end training process
is shown in Figure 2.

3.1 Approach 1: Individual Top-k

In this approach, similar to (Guu et al., 2020), the
reader’s likelihood is first computed conditioned
on the question and each retrieved document. The
marginal likelihood is defined as the weighted av-
erage of the individual likelihoods as

p(a | q; θ, φ) =
∑
zi∈K

p(a | q, zi; θ)p(zi | q,Z;φ),

(5)
where p(zi | q,Z;φ) is computed using Eq. 2.
However, the normalization is done over K instead
of Z . The final loss is defined as the negative
marginal log-likelihood

L(q, a) = − log p(a | q; θ, φ). (6)

We note that the RAG model (Lewis et al., 2020c)
also proposed a similar approach, but there are two
main differences. The first is that while we update
all the parameters of the retriever (both the query
and context encoders), RAG just updates the query
encoder. The second is that we use T5 model as
the reader while RAG uses BART model (Lewis
et al., 2020b). These enhancements help us obtain
substantial gains over the RAG model, which we
will discuss in Sec. 6.

3.2 Approach 2: Joint Top-k

In this approach, similar to (Lewis et al., 2020a),
the likelihood is defined as the reader’s likelihood
conditioned on the question, all the retrieved docu-
ments, and the retrieval score

p(a | q; θ, φ) = p(a | q, z1:k, p(z | q,Z;φ); θ).
(7)

As the T5 reader consists of separate encoder
and decoder modules, it provides the flexibility to
customize the input or output of the encoder. We
concatenate each retrieved document with the ques-
tion and feed them as input to the encoder, which
computes their hidden representations. Next, we
stack the hidden representations of all the retrieved
documents, which the decoder jointly attends to
during the encoder-decoder attention, thus allowing
a more powerful form of information aggregation
from multiple retrieved documents. We also add re-
triever similarity score to bias the encoder-decoder
attention as it helps facilitate end-to-end training
and enables the reader to pay higher attention to the
relevant documents. The interaction score during
the encoder-decoder attention is computed as

attn(q, a, z1:k) ∝ Q(a)>K(z1:k, q)+λp(z | q;φ),
(8)

where Q is the query vector computed from de-
coder’s input, K is the key vector computed from
encoder’s output, and λ is a trainable parameter.

Final loss is defined according to Eq. 6. We
further note that a similar approach for OpenQA
was proposed in (Izacard and Grave, 2020) but it
only optimizes the reader model and didn’t perform
end-to-end training of the retriever.
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Dataset Train Filtered Train Dev Test

NQ 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313

Table 1: OpenQA dataset statistics. The training set is
used for end-to-end training, while the filtered version
is used for retriever training. The filtered set ignores
those examples where the document retrieved from ev-
idence does not align with the ground-truth document.

4 Experimental Setup

In this section, we describe the datasets and model
settings. For reproducibility, we provide training
details and list the hyperparameters in Appendix A.

4.1 OpenQA Datasets
We perform experiments using two widely used
QA datasets whose details are provided below and
their statistics are shown in Table 1.

Natural Questions (NQ): This corpus con-
sists of real questions asked from the Google
search engine along with their long and short an-
swer annotations from the top-ranked Wikipedia
pages (Kwiatkowski et al., 2019). Following prior
work (Karpukhin et al., 2020), we use the same
subset of the short answer questions in our experi-
ments, as it is more suited for OpenQA.

TriviaQA: This corpus consists of a collection
of trivia questions and their answers scraped from
multiple sources in the Web (Joshi et al., 2017).

Evidence: Following (Karpukhin et al., 2020),
we make use of their released preprocessed En-
glish Wikipedia dump from December 2018 as the
source of evidence documents. Overall, there are
21, 015, 324 documents, each 100 words long.

4.2 Model Details
We use two models of different sizes, base and
large, for the experiments. The base configuration
consists of 12 layers, 768-d hidden size, and 12
attention heads. The BERT-base contains 110M
parameters while the T5-base contains 220M pa-
rameters. The large configuration consists of 24
layers, 1024-d hidden size, and 16 attention heads.
The BERT-large contains 330M parameters while
the T5-large contains 770M parameters.

5 Results: Retriever Training

In this section, we compare different approaches to
train the retriever. Retrieval accuracy is evaluated
using the top-k metric (k ∈ {1, 5, 20, 100}).

Setting Top-1 Top-5 Top-20 Top-100

Base Configuration

[CLS], 40 epochs 32.6 60.1 76.4 85.9
+ score scaling 34.1 60.9 77.6 85.9
+ 80 epochs 36.7 62.2 77.4 86.0
+ 1 hard negative 48.6 74.5 79.0 85.8

DPR (Official) – 67.1 78.4 85.4

Table 2: Effect of different factors on the supervised
training of retriever when evaluated on NQ test set.

5.1 Effect of Relevance Score Scaling, Longer
Training, and Hard Negatives

We explore the best training settings for supervised
training of the retriever. To do so, we perform a
series of experiments on the NQ dataset starting
with the training settings from the popular DPR
model and then progressively improve it. DPR was
initialized with BERT, trained for 40 epochs, with
a scaling factor of 1, and utilized [CLS] token em-
beddings from the retriever. Our result with this
setting is shown in Table 2. We then observe that
incorporating relevance score scaling and longer
training till 80 epochs helps to improve the top-5
and top-20 accuracy by 1.5-2 points. These results
also signify that the original DPR model was sig-
nificantly undertrained and not fully optimized.

In addition to score scaling, we further include 1
additional hard-negative example (similar to DPR)
for each question-context pair and train the model
for 80 epochs. Our results, in sync with the re-
sults of DPR, obtain substantial additional gains
in performance. These findings highlight that rele-
vance score scaling, longer training, and including
a hard negative example are essential to improve
the supervised retriever’s accuracy. These super-
vised training results can be considered as a very
strong baseline. Hence, we employ these settings
in subsequent experiments.

5.2 Effect of Retriever Initialization

We first characterize the zero-shot retriever’s perfor-
mance when its weights are initialized with either
BERT or ICT or masked salient spans pre-training
(Table 3). As is understood that unsupervised lan-
guage models do not perform well in information
retrieval tasks (Lee et al., 2019), evidently, BERT
also leads to a poor retrieval accuracy. We note that
ICT initialization is quite effective in providing a
non-trivial zero-shot accuracy which is further im-
proved by masked salient spans training by more
than 8 points. Both being unsupervised approaches
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Model NQ TriviaQA

Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

Base Configuration

BERT (zero-shot) 0.9 3.9 9.4 20.3 0.6 2.8 7.2 17.8
ICT (zero-shot) 12.6 32.3 50.6 66.8 19.2 40.2 57.5 73.6
Masked salient spans (zero-shot) 20.0 41.7 59.8 74.9 31.7 53.3 68.2 79.4
BERT + Supervised 48.6 68.8 79.0 85.8 57.5 72.2 80.0 85.1
ICT + Supervised 48.4 72.1 81.8 88.0 58.4 73.9 81.7 86.3
Masked salient spans + Supervised 50.3 71.9 82.1 87.8 60.6 74.8 81.8 86.6

Large Configuration

ICT (zero-shot) 13.0 31.8 49.3 66.1 20.1 41.6 58.5 74.1
BERT + Supervised 51.4 71.0 81.0 87.2 60.4 74.5 81.4 86.0
ICT + Supervised 52.4 72.7 82.6 88.3 61.9 76.2 82.9 87.1

Table 3: Effect of unsupervised pre-training on retrieval accuracy when evaluated on NQ and TriviaQA test sets.

demonstrate their utility in effectively bootstrap-
ping the retriever almost from scratch.

We next empirically analyze our proposed ap-
proach of pre-training with ICT and masked salient
spans followed by supervised finetuning. We ob-
serve that it provides absolute improvements of
2-3 points over the already strong supervised train-
ing results, with the gains being consistent across
both the datasets. These results highlight that even
after finetuning the retriever with thousands of la-
beled examples, it does not lead to catastrophic
forgetting of the discriminative properties learned
by the retriever during ICT and masked salient
spans pre-training. Another merit is that being un-
supervised, large text collections can be leveraged
to pre-train the retriever, a considerable advantage
over data-augmentation methods which rely on the
availability of human-annotated question-context
pairs. Furthermore, when comparing ICT with
masked salient spans initialization, we note that
their accuracy gains are roughly similar.

5.3 Effect of Amount of Training Data

We study the effect on accuracy when the retriever
is pre-trained with BERT, ICT, or masked salient
spans and the amount of supervised training data
is varied. We train the retriever with 1%, 2%, 5%,
10-50%, of NQ’s training data and plot the top-20
accuracy in Figure 3. Results reveal that in the low-
resource regime, masked salient spans pre-training
is much more effective than ICT, consistently lead-
ing to large gains. As the fraction of training data
increases to beyond 40% towards a high-resource
setup, the gains from salient spans pre-training
saturates to that of ICT. We believe that these find-
ings will have important implications for future
research in OpenQA—with only a few hundred ex-
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Figure 3: Effect of amount of training data on retrieval
accuracy when evaluated on NQ test set.

amples, performing expensive masked salient span
training is beneficial while if the training data has
thousands of examples, ICT is just as optimal as
masked salient spans training.

5.4 Effect of End-to-End Training

For end-to-end training, retriever weights are ini-
tialized with the previous best setting of ICT pre-
training and supervised finetuning. The number
of retrieved evidence documents for the reader is
considered as a hyperparameter and is selected via
performance on the dev set. The focus here is to
analyze the effect on retrieval accuracy when up-
dating the retriever weights using question-answer
pairs in an end-to-end setting (Sec. 3). From the
results in Table 4, we observe that for Individual
Top-k, when only the query encoder is updated, it
tends to improve retrieval accuracy. In addition,
when the context encoder is also updated, the re-
trieval accuracy improves to 75% at top-5, a big
gain of 8 points over the previous best DPR re-
triever. Larger models further help to improve the
performance leading to new state-of-the-art results.

On the other hand, in Joint Top-k, updating the
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Model NQ TriviaQA

Q C Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

Base Configuration

DPR (Karpukhin et al., 2020) – 67.1 78.4 85.4 – – 79.4 85.0

ICT + Supervised 48.4 72.1 81.8 88.0 58.4 73.9 81.7 86.3
Individual Top-k 3 7 54.5 73.7 83.2 88.6 61.4 75.6 82.1 86.7
Individual Top-k 3 3 56.8 75.0 84.0 89.2 63.5 76.8 83.1 87.0
Joint Top-k 3 7 51.1 72.1 81.8 87.8 59.1 74.1 81.3 86.3

Large Configuration

ICT + Supervised 52.4 72.7 82.6 88.3 61.9 76.2 82.9 87.1
Individual Top-k 3 3 57.5 76.2 84.8 89.8 66.4 78.7 84.1 87.8
Joint Top-k 3 7 53.7 73.3 83.2 88.0 61.2 75.9 82.7 87.0

Table 4: Effect of end-to-end training using question-answer pairs on retrieval accuracy. Q and C signify if the
query encoder and the context encoder are updated during training or not, respectively.

×
√
d Top-1 Top-5 Top-20 Top-100 Avg.

Base Configuration

0.25 48.8 69.3 78.7 85.5 70.6
0.5 51.4 71.6 81.5 87.7 73.1
1 51.1 71.8 82.1 87.7 73.2
2 50.2 71.5 81.9 87.9 72.9
4 50.6 71.7 81.7 88.0 73.0

Table 5: Effect of score scaling factor (τ ) on the re-
trieval accuracy when evaluated on the NQ test set. The
first column denotes the multiple (m) that is multiplied
by
√
d to obtain τ , i.e., τ = m×

√
d in Equation 2.

query encoder just improves the top-1 score but
does not really lead to much accuracy gains for
higher top-k’s. We also do not update the context
encoder for Joint Top-k as it did not result in im-
provements during our initial experiments.

These results showcase that when the retriever
is already well-initialized, the objective function
of Individual Top-k method is designed such that it
significantly improves the retrieval accuracy while
the Joint Top-k method does not result in improve-
ments. As we will show next, that the usefulness
of this method lies in answer extraction.

5.5 Intuition for Retriever Score Scaling

Retrieval score scaling is used when computing the
probability distribution of the retrieved documents
according to Equation 2, where the retrieval score
is normalized by the scaling factor (τ ). To study the
effect of τ on the retrieval accuracy, we perform an
ablation study with different values of τ on the NQ
retrieval task, whose results can be seen in Table 5.
More specifically, we choose different values of τ
as a multiple of

√
d, where d is the hidden size of

the model. Our results indicate that the choice of
τ =
√
d works well in practice.

Here, we briefly explain the intuition regarding
the usage of the scaling factor. In our preliminary
experiments on retriever training and end-to-end
training without the scaling factor, we observed
that a few of the top-k document’s similarity score
with the query was very high that in turn led to it
being assigned a high retrieval probability score.
This high score was leading to a skewed probability
distribution with most of the mass being centered
over the top-1 or top-2 retrieved documents. A
larger value of scaling factor results in a more even
distribution of probability mass over the top-k doc-
uments, which in turn leads to better results in both
retrieval accuracy and in the end-to-end training.

6 Results: Answer Extraction

We next present the results of end-to-end training
on answer extraction. To train the model, retriever
weights are initialized with ICT pre-training and
supervised finetuning while the reader is initialized
with pre-trained T5 weights. The number of re-
trieved evidence documents for the reader is tuned
on the dev set. Results are reported using the con-
ventional Exact Match (EM) metric.

6.1 Individual Top-k Approach
We compare our results as presented in Table 6 with
the recent related approaches in OpenQA. For the
base configuration on NQ, our model outperforms
both REALM and DPR by more than 4 points. For
the large configuration, we compare with the RAG
model (Lewis et al., 2020c), where our approach
outperforms it by 3.5+ points on NQ and by 2.8
points on TriviaQA. Our improved results are be-
cause of a more accurate initial retriever, stronger
reader, and updating both the query and context
encoders during training.
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Model NQ TriviaQA

Base Configuration

ORQA (Lee et al., 2019) 33.3 45.0
REALM (Guu et al., 2020) 40.4 –
DPR (Karpukhin et al., 2020) 41.5 56.8
Individual Top-k 45.9 56.3

Large Configuration

RAG (Lewis et al., 2020c) 44.5 56.8
Individual Top-k 48.1 59.6

Table 6: Answer extraction results using Individual
Top-k approach. The grouping under base and large
configurations is based on the size of the reader model.
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Figure 4: Effect of increasing top-k documents on an-
swer generation for Individual Top-k approach.

Our analysis in Figure 4 reveals that updating the
context encoder improves the results for both the
base and large configurations. Quite surprisingly,
we also observe that the performance of Individ-
ual Top-k approach is sensitive to the number of
top-k documents and can also decrease with an in-
crease in top-k documents. We leave an in-depth
investigation of this as a future work.

6.2 Joint Top-k Approach

We compare our results with the recent Fusion-in-
Decoder (FiD) approach (Izacard and Grave, 2020)
that also performs joint encoder-decoder attention.
It consists of DPR as the retriever and T5 as the
reader, which are initialized with their open-source
weights. However, unlike our approach, FiD just
finetunes the reader weights. Our results in Table 7
show that for the base configuration, Joint Top-
k outperforms the FiD model by 1 point on NQ,
highlighting the significance of end-to-end training.
For the large configuration, we obtain a gain of 0.7
points on TriviaQA.

Our analysis in Figure 5 portrays that the EM
scores improve with more retrieved documents.
This highlights that in contrast to Individual Top-k,
the Joint Top-k better aggregates the information

Model NQ TriviaQA

Base Configuration

FiD (Izacard and Grave, 2020) 48.2 65.0
Joint Top-k 49.2 64.8

Large Configuration

FiD (Izacard and Grave, 2020) 51.4 67.6
Joint Top-k 51.4 68.3

Table 7: Results on answer extraction using Joint Top-
k approach.
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Figure 5: Effect of increasing top-k documents on an-
swer generation for Joint Top-k approach.

contained in the retrieved documents. This Fig-
ure also illustrates the effect of similarity enriched
attention on answer extraction for the base config-
uration. For values of top-k=5, 10, and 25, using
retrieval-similarity enriched encoder-decoder atten-
tion, we consistently observe a gain of 0.8-1 EM
points (comparing orange plot and blue plot in Fig-
ure 5), while there is a smaller gain when top-k=50.
This signifies that with more retrieved documents,
the utility of end-to-end training tends to dimin-
ish, thus explaining the lower gains observed in
retrieval performance for Joint Top-k in Table 4.

6.3 Overall Comparison

Based on the discussions in Sec. 5.4 and Sec. 6,
we remark that end-to-end training using the two
approaches has a complementary effect on the re-
trieval accuracy and answer extraction. While the
Individual Top-k approach helps to significantly
improve the retrieval performance, the Joint Top-k
approach is more useful for answer extraction.

7 Related Work

(Yih et al., 2011) proposed a discriminative ap-
proach to train a retriever by learning dense repre-
sentations of query and context documents based
on word frequency. However, this approach was
data-hungry and not scalable. Recently, (Lee et al.,
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2019; Karpukhin et al., 2020) address this by lever-
aging pre-trained BERT weights (Devlin et al.,
2019) to train a dual-encoder retriever by using
smaller amounts of question-context pairs. In par-
ticular, (Lee et al., 2019) first pre-train the retriever
in an unsupervised manner using ICT and then
jointly train the retriever and reader for OpenQA.
On the other hand, (Karpukhin et al., 2020) per-
form supervised training of the retriever using hard-
negative examples, yielding impressive results on
several retrieval benchmarks.

To improve the retrieval accuracy of the dual-
encoder model, (Chang et al., 2020) explore several
paragraph-level pre-training strategies including
the application of ICT. They demonstrated the ef-
fectiveness of pre-training over sparse-retrieval ap-
proaches such as BM25. Their evidence consisted
of the training documents that was further increased
to 1M documents for OpenQA. Our work differs
from them in several ways. First, our OpenQA
setup is more challenging as the evidence consists
of 21M documents. Second, we pre-train with two
strategies consisting of ICT and masked salient-
spans and finetune using strong supervised meth-
ods, which leads to much improved results. Third,
we further update the retriever with end-to-end
training leveraging question-answer pairs, which
further improves the retrieval accuracy leading to
new state-of-the-art results.

A new line of work investigates task-specific pre-
training of language models. For example, (Guu
et al., 2020) predicts masked salient spans consist-
ing of named entities to pre-train the reader and re-
triever components for OpenQA. Similarly, (Lewis
et al., 2020a) perform cross-lingual pre-training
where the objective is to predict a sequence using
its paraphrases in different languages, demonstrat-
ing improved zero-shot performance in document
translation tasks.

8 Conclusion

We propose approaches to improve the retrieval ac-
curacy of the dual-encoder model for the OpenQA
task. We first perform a systematic investigation
of the importance of pre-training with ICT and
masked salient spans tasks for supervised training
of the retriever. We then present two approaches for
end-to-end training of the reader and retriever com-
ponents in OpenQA. In one approach, the reader
considers each retrieved document individually
while in the other approach where the reader con-

siders all the retrieved documents jointly. Overall,
these methods help achieve state-of-the-art results
on both retrieval and answer extraction.
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A Training Details

We provide the training details of all the experi-
ments below. We use the same training settings for
both the base and large model configurations and
use the open-source Megatron-LM toolkit (Shoeybi
et al., 2019) to implement the models.1 To train
the models, we employed mixed-precision train-
ing (Micikevicius et al., 2018) and leveraged dis-
tributed training feature as implemented in the Py-
torch framework (Li et al., 2020). All of our exper-
iments were performed on the Selene cluster which
consists of NVIDIA A100 GPUs.

A.1 Language Models Training

We train BERT (Devlin et al., 2019; Lan et al.,
2020) and T5 (Raffel et al., 2020) language models
from scratch, whose hyperparameters for both the
base and large configurations are detailed in Table 8.
We used 32 GPUs to train the BERT-large (330M)
model and 128 GPUs to train the T5-large (770M)
model.

A.2 Retriever Training

Supervised: We use Adam optimizer (Kingma
and Ba, 2015), a batch size of 128, learning rate of
2e-5 with a linear decay, and train for 80 epochs.
Training was performed on 16 GPUs.

ICT training: We initialize the parameters of
both the question and context encoders using BERT
weights trained with Megatron-LM. We train the
model on Wikipedia paragraphs with maximum
length of 256 tokens. We use a batch size of 4, 096,
learning rate of 1e-4 with linear decay, and train
the model for 100, 000 steps using Adam optimizer.
This corresponds to training the model for roughly
20 epochs over the Wikipedia dataset. We set the
weight decay to 0.01 and the warmup ratio of the
optimizer to 0.01. With a probability of 0.1, we
also keep the query sentence in the context. We
train the large ICT model using 128 GPUs.

Masked salient spans generative training: We
initialize the retriever with ICT training and pre-
train the T5 reader on an aggregated dataset
from (Shoeybi et al., 2019). We use the pre-trained
models provided by the Stanza toolkit (Qi et al.,
2020) to segment Wikipedia paragraphs into sen-
tences and extract named entities.2 The masked

1https://github.com/NVIDIA/Megatron-LM
2We use the model trained on OntoNotes (Pradhan et al.,

2012) to extract named entities for 10 selected categories.

sentence is used as a query to retrieve evidence
documents with the help of which the reader pre-
dicts the masked words. The model is trained ac-
cording to Equation 5 and 6. We train the model
for 100, 000 steps with Adam optimizer using a
learning rate of 2e-5 and a warmup ratio of 0.05.
Similar to (Guu et al., 2020), we also compute the
evidence embeddings asynchronously and update
the evidence index every 500 steps. Training was
performed on 240 GPUs.

A.3 End-to-End Supervised Training

As the performance of the ICT pre-trained retriever
and masked salient spans pre-trained retriever is
similar when all the training data is used (Sec. 5.2),
we select the retriever pre-trained with ICT initial-
ization and finetuned with supervised data. For
the reader, we use a pre-trained T5 model. For all
experiments, we train for 10 epochs using a batch
size of 64, learning rate of 2e-5 with linear decay,
and weight regularization of 0.1. For Individual
Top-k approach, during training, the evidence em-
beddings index is refreshed after every 500 steps.
The number of retrieved evidence documents for
the reader is considered as a hyperparameter and is
selected via performance on the dev set. Training
of Individual Top-k was performed on 240 GPUs
while training of Joint Top-k was performed on 64
GPUs.

For retrieving the top-k documents from our
evidence (∼21M documents), we perform exact
search. Specifically, we utilize matrix multiplica-
tion and top-k functionalities as provided by the
PyTorch framework. This matrix multiplication
operation is highly optimized for GPU computa-
tions and we observed that performing exact search
was not a bottleneck during training. We there-
fore did not optimize or approximate the similarity
search using LSH (Andoni et al., 2015) or efficient
maximum inner product search (Shrivastava and
Li, 2014).

NQ and TriviaQA Specific Details: For both
datasets, we uniformly sample the target answer
from the list of provided answers during the train-
ing process. For answer extraction, similar to (Guu
et al., 2020), we did not append the title of the
Wikipedia article with the corresponding top-k re-
trieved document as the reader’s input.

https://blogs.nvidia.com/blog/2020/06/22/top500-isc-supercomputing/
https://github.com/NVIDIA/Megatron-LM
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Hyperparameter BERT T5

Dataset Wikipedia, BookCorpus Wikipedia, CC-Stories, RealNews, OpenWebText
Hidden Size {768, 1024} {768, 1024}
Attention Heads {12, 16} {12, 16}
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Optimizer Adam Adam
Training Steps 1M 1M
Warmup Steps 10k 10k
Peak Learning Rate 1e-4 1e-4
Weight Decay 1e-2 1e-2
Batch Size 256 2048
Learning Rate Decay Linear Linear
Gradient Clipping 1.0 1.0

Table 8: Hyperparameters for pre-training BERT and T5 models.

A.4 Individual Top-k Inference

During inference, the reader model first greedily
generates an answer for each retrieved document.
We then score each generated answer using Eq. 5
and finally select the answer with the highest likeli-
hood score.

A.5 Example Outputs from Retriever

We present few examples in Table 9 when the ICT
+ Supervised retriever is evaluated on the NQ test
dataset.

B Reproducibility Checklist

B.1 For all reported experimental results

• A clear description of the mathematical set-
ting, algorithm, and/or model: This is pro-
vided in the main paper in Sec. 2 and Sec. 3.

• A link to a downloadable source code, with
specification of all dependencies, including
external libraries (recommended for camera
ready, though welcome for initial submission):
As mentioned previously, we have developed
our codebase over the open-source Megatron-
LM library (https://github.com/NVIDIA/
Megatron-LM). Our implementations over
this codebase are currently organized in differ-
ent branches, that are better suited for walk-
through with a git-based tool. To preserve
anonymity and in good faith, we are submit-
ting the source codes from one branch of our
codebase, with the caution that the codebase
doesn’t contain an exhaustive README file.

• A description of computing infrastructure
used: We run experiments on Nvidia’s Se-
lene cluster where each node’s specifications

are: Number of CPUs: 256, Physical Memory:
2.2TB, GPU model: 8 x Nvidia A100, GPU ar-
chitecture and memory: Ampere/80GB, Arch:
x86 64, and Disk size: 10TB.

• The average runtime for each model or al-
gorithm, or estimated energy cost: We pro-
vide the average runtime and compute used
for training different models in Appendix A.
However, we want to highlight that our codes
were not carefully optimized to minimize run-
time or to make optimal use of the hardware
resources.

• The number of parameters in each model: We
provide number of parameters in models in
Sec. 4.2.

• Corresponding validation performance for
each reported test result: Validation set per-
formance is currently not reported in the main
paper. However, we followed rigorous ex-
perimentation protocol, and selected the best
models by its performance on the validation
set. If the program committee or reviewers re-
quire the validation set performance, we will
include it in the final version of the paper.

• A clear definition of the specific evalua-
tion measure or statistics used to report re-
sults: Our evaluation metrics are standard and
widely used by the question answering com-
munity. We provide their details in the main
paper in Sec. 5 and Sec. 6.

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
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Question from NQ test Answer Top-1 Document Retrieved by ICT + Super-
vised

what parts make up the peripheral nervous sys-
tem

autonomic nervous system . . . The connection between CNS and organs
allows the system to be in two different func-
tional states: sympathetic and parasympathetic.
The peripheral nervous system is divided into
the somatic nervous system, and the autonomic
nervous system. The somatic nervous system
is under voluntary control, and transmits sig-
nals from the brain to end organs such as mus-
cles. The sensory nervous system is part of the
somatic nervous system and transmits signals
from senses such as taste and touch (including
fine touch and gross touch) to the spinal cord
and brain. . .

when is the new season of wentworth coming
out

19 June 2018 . . . In a similar manner, a 12-episode fourth sea-
son was announced before the airing of the
third season on 27 February 2015. It began
airing from 10 May 2016. Cormack confirmed
a fifth season had been commissioned on 19
July. The twelve-part series premiered on 4
April 2017. On 9 May 2017, Showcase an-
nounced that the series has been renewed for
a sixth season, which premiered on 19 June
2018. A seventh season was commissioned in
April 2018, before the sixth-season premiere,
with filming commencing the following week
and a premiere set for 2019. . .

who challenged the aristotelian model of a geo-
centric universe

Copernicus . . . (”On the Revolutions of the Heavenly
Spheres”), which posited that the Earth and the
other planets instead revolved around the Sun.
The geocentric system was still held for many
years afterwards, as at the time the Coperni-
can system did not offer better predictions than
the geocentric system, and it posed problems
for both natural philosophy and scripture. The
Copernican system was no more accurate than
Ptolemyś system, because it still used circular
orbits. This was not altered until Johannes Ke-
pler postulated that they were elliptical (Keplerś
first law of planetary motion). . . .

Table 9: Examples of top-1 retrieved documents from the NQ test as outputted from the ICT + Supervised retriever.
If the answer exists in the document, it is highlighted in bold.

B.2 For all results involving multiple
experiments, such as hyperparameter
search

• The exact number of training and evaluation
runs: We provide training details for all mod-
els in Appendix A. Specifically, for the fine-
tuning experiments, we train the models until
convergence, which is 80 epochs for retriever
models and 10 epochs for answer extraction
models. We evaluate the model after each
epoch on the validation set and save the best
checkpoint according to their performance on
the corresponding evaluation metric.

• Hyperparameter configurations for best-
performing models: We provide the hyper-

parameter settings in Appendix A.

• The bounds for each hyperparameter: As de-
scribed in Appendix A, our model and training
setting uses standard hyperparameters such as
different dropouts ∈ [0, 1), warmup ratio of
optimizer ∈ [0.01, 0.05], weight regulariza-
tion ∈ [0, 1], and learning rate ∈ [1e−4, 1e−5].
The model hyperparameters includes model
dimensions d ∈ {768, 1024}, number of lay-
ers ∈ {12, 24}.

• The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy): We performed manual
hyperparameter tuning. We also performed
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tuning of the number of warmup steps for the
Adam optimizer. We selected the best hyper-
parameter using performance on the valida-
tion set.

• Summary statistics of the results (e.g. mean,
variance, error bars, etc.): All of our ex-
periments are compute expensive large-scale
runs utilizing a lot of resources such as CPUs,
GPUs and take time ranging from tens of
hours to several days. Therefore, due to com-
putational and time constraints performing
multiple runs for each experiment was not
feasible. Therefore, we adopted the approach
of using the same seed value (1234) for all the
training runs including both pre-training and
finetuning experiments.

B.3 For all datasets used
• Details of train/validation/test splits: We use

the standard training / dev / test splits whose
details are provided in Sec. 4.

• Relevant statistics such as number of exam-
ples and label distributions: We provide
dataset statistics details in Table 1.

• An explanation of any data that were excluded,
and all pre-processing steps: We include the
relevant details in Sec. 4.

• For natural language data, the name of the
language(s): Our datasets are in English lan-
guage.

• A link to a downloadable version of the
dataset or simulation environment: Both the
datasets of NQ and TriviaQA are open-source
and widely used by the community. NQ
is available at: https://ai.google.com/

research/NaturalQuestions/download.
TriviaQA is available at: http://nlp.cs.

washington.edu/triviaqa/. We make
use of the NQ, TriviaQA, and Wikipedia
datasets as open-sourced by the DPR au-
thors (Karpukhin et al., 2020) here: https:

//github.com/facebookresearch/DPR/

blob/master/data/download_data.py.

• For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control: This is not applicable to this
work.

https://ai.google.com/research/NaturalQuestions/download
https://ai.google.com/research/NaturalQuestions/download
http://nlp.cs.washington.edu/triviaqa/
http://nlp.cs.washington.edu/triviaqa/
https://github.com/facebookresearch/DPR/blob/master/data/download_data.py
https://github.com/facebookresearch/DPR/blob/master/data/download_data.py
https://github.com/facebookresearch/DPR/blob/master/data/download_data.py

