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Abstract

The journey of reducing noise from distant
supervision (DS) generated training data has
been started since the DS was first introduced
into the relation extraction (RE) task. For
the past decade, researchers apply the multi-
instance learning (MIL) framework to find the
most reliable feature from a bag of sentences.
Although the pattern of MIL bags can greatly
reduce DS noise, it fails to represent many
other useful sentence features in the datasets.
In many cases, these sentence features can
only be acquired by extra sentence-level hu-
man annotation with heavy costs. Therefore,
the performance of distantly supervised RE
models is bounded. In this paper, we go
beyond typical MIL framework and propose
a novel Contrastive Instance Learning (CIL)
framework. Specifically, we regard the ini-
tial MIL as the relational triple encoder and
constraint positive pairs against negative pairs
for each instance. Experiments demonstrate
the effectiveness of our proposed framework,
with significant improvements over the previ-
ous methods on NYT10, GDS and KBP.

1 Introduction

Relation extraction (RE) aims at predicting the re-
lation between entities based on their context. Sev-
eral studies have been carried out to handle this
crucial and complicated task over decades as the
extracted information can serve as a significant role
for many downstream tasks. Since the amount of
training data generally limits traditional supervised
RE systems, current RE systems usually resort to
distant supervision (DS) to fetch abundant train-
ing data by aligning knowledge bases (KBs) and
texts. However, such a heuristic way inevitably in-
troduces some noise to the generated data. Training
a robust and unbiased RE system under DS data
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Figure 1: Classical MIL framework for DSRE. (Left)
A set of instances (x1, X2, ..., Z,;,) with the same KB
fact [e1, e, r] form a bag B; (Right) The MIL frame-

work trains the DSRE model at bag level(B : 3~ a:hi).

noise becomes the biggest challenge for distantly
supervised relation extraction (DSRE).

With awareness of the existing DS noise, Zeng
et al. (2015) introduces the multi-instance learning
(MIL) framework to DSRE by dividing training
instances into several bags and using bags as new
data units. Regarding the strategy for selecting in-
stances inside the bag, the soft attention mechanism
proposed by Lin et al. (2016) is widely used for its
better performance than the hard selection method.
The ability to form accurate representations from
noisy data makes the MIL framework soon become
a paradigm of following-up works.

However, we argue that the MIL framework is
effective to alleviate data noise for DSRE, but is
not data-efficient indeed: As Figure 1 shows: The
attention mechanism in the MIL can help select rel-
atively informative instances (e.g.h1, ho) inside the
bag, but may ignore the potential information of
other abundant instances (e.g.h,,). In other words,
no matter how many instances a bag contains, only
the formed bag-level representation can be used for
further training in the MIL, which is quite ineffi-
cient. Thus, our focus is on how to make the initial
MIL framework efficient enough to leverage all
instances while maintaining the ability to obtain
an accurate model under DS data noise?
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Here, we propose a contrastive-based method to
help the MIL framework learn efficiently. In detail,
we regard the initial MIL framework as the bag en-
coder, which provides relatively accurate represen-
tations for different relational triples. Then we de-
velop contrastive instance learning (CIL) to utilize
each instance in an unsupervised manner: In short,
the goal of our CIL is that the instances sharing the
same relational triples (i.e.positive pairs) ought to
be close in the semantic space, while the represen-
tations of instances with different relational triples
(i.e.negative pairs) should be far away.

Experiments on three public DSRE benchmarks
— NYT10 (Riedel et al., 2010; Hoffmann et al.,
2011), GDS (Jat et al., 2018) and KBP (Ling and
Weld, 2012) demonstrate the effectiveness of our
proposed framework CIL, with consistent improve-
ments over several baseline models and far exceed
the state-of-the-art (SOTA) systems. Furthermore,
the ablation study shows the rationality of our pro-
posed positive/negative pair construction strategy.

Accordingly, the major contributions of this pa-
per are summarized as follows:

* We discuss the long-standing MIL framework
and point out that it can not effectively utilize
abundant instances inside MIL bags.

* We propose a novel contrastive instance learn-
ing method to boost the DSRE model perfor-
mances under the MIL framework.

 Evaluation on held-out and human-annotated
sets shows that CIL leads to significant im-
provements over the previous SOTA models.

2 Methodology

In this paper, we argue that the MIL framework
is effective to denoise but is not efficient enough,
as the initial MIL framework only leverages the
formed bag-level representations to train models
and sacrifices the potential information of numer-
ous instances inside bags. Here, we go beyond the
typical MIL framework and develop a novel con-
trastive instance learning framework to solve the
above issue, which can prompt DSRE models to
utilize each instance. A formal description of our
proposed CIL framework is illustrated as follows.

2.1 Input Embeddings

Token Embedding For input sentence/instance
z, we utilize BERT Tokenizer to split it into several

tokens: (t1,%9,...€1...ea2...t1), where ey, e5 are
the tokens corresponding to the two entities, and L
is the max length of all input sequences. Following
standard practices (Devlin et al., 2019), we add two
special tokens to mark the beginning ([CLS]) and
the end ([SEP]) of sentences.

In BERT, token [CLS] typically acts as a pooling
token representing the whole sequence for down-
stream tasks. However, this pooling representa-
tion considers entity tokens e; and ey as equivalent
to other common word tokens ¢;, which has been
proven (Baldini Soares et al., 2019) to be unsuit-
able for RE tasks. To encode the sentence in an
entity-aware manner, we add four extra special to-
kens ([H-CLS], [H-SEP]) and ([T-CLS], [T-SEP])
to mark the beginning and the end of two entities.

Position Embedding In the Transformer atten-
tion mechanism (Vaswani et al., 2017), positional
encodings are injected to make use of the order
of the sequence. Precisely, the learned position
embedding has the same dimension as the token
embedding so that the two can be summed.

—> Add & Norm

Feed
Forward

——

—> Add & Norm

Multi-Head
Attention

Token
Embedding

f

Figure 2: BERT Encoder: N x Transformer Blocks.

2.2 Sentence Encoder

BERT Encoder (Transformer Blocks, see Figure 2)
transforms the above embedding inputs (token em-
bedding & position embedding) into hidden feature
vectors: (h1,ha,...he, ... he, ... hL), where he,
and he, are the feature vectors corresponding to
the entities e; and es. By concatenating the two en-
tity hidden vectors, we can obtain the entity-aware
sentence representation h = [he, ; he,| for the input
sequence x. We denote the sentence encoder H as:

,H(:L‘) = [h‘el;he2] =h
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2.3 Bag Encoder

Under the MIL framework, a couple of instances x
with the same relational triple [e1, e2, 7] form a bag
B. We aim to design a bag encoder F to obtain
representation B for bag B, and the obtained bag
representation is also a representative of the current
relational triple [e1, ez, 7|, which is defined as:

F(B) = F(le1,e2,r]) =B

With the help of the sentence encoder described
in section 2.2, each instance x; in bag B can be
first encoded to its entity-aware sentence represen-
tation h; = #(z;). Then the bag representation B
can be regarded as an aggregation of all instances’
representations, which is further defined as:

K
.7:([61,62,7“]) = E = Zazhl
=1

where K is the bag size. As for the choice of weight
«;, we follow the soft attention mechanism used
in (Lin et al., 2016), where «; is the normalized at-
tention score calculated by a query-based function
fi that measures how well the sentence representa-
tion h; and the predict relation r matches:

X = zj eli
where f; = h;Aq,, A is a weighted diagonal ma-
trix and ¢, is the query vector which indicates the
representation of relation 7 (randomly initialized).
Then, to train such a bag encoder parameterized
by 6, a simple fully-connected layer with activation
function softmax is added to map the hidden feature
vector B to a conditional probability distribution
p(r|B, 6), and this can be defined as:

eor

p(r|B,0) = =n—-

ity €%

where 0 = M B + b is the score associated to all

relation types, n, is the total number of relations,

M is a projection matrix, and b is the bias term.
And we define the objective of bag encoder using

cross-entropy function as follows:

Lp(0) == logp(ri|B;,0)
i—1

2.4 Contrastive Instance Learning

As illustrated in section 1, the goal of our frame-
work CIL is that the instances containing the same
relational triples (i.e.positive pairs) should be as
close (i.e.~) as possible in the hidden semantic
space, and the instances containing different rela-
tional triples (i.e.negative pairs) should be as far
(i.e.~~) away as possible in the space. A formal
description is as follows.

Assume there is a batch bag input (with a batch
size G): (B1, B, ..., Bg), the relational triples of
all bags are different from each other. Each bag B
in the batch is constructed by a certain relational
triple [ey, e2, |, and all instances x inside the bag
satisfy this triple. The representation of the triple
can be obtained by bag encoder as B.

We pick any two bags B and Bj.;, in the batch
to further illustrate the process of contrastive in-
stance learning. By is defined as the source bag con-
structed with relational triple [eg1, €52, 5] While B,
is the target bag constructed with triple [e;1, €2, 7).
And we discuss the positive pair instance and nega-
tive pair instances for any instance x, in bag B;.

It is worth noting that all bags are constructed
automatically by the distantly supervised method,
which extracts relational triples from instances in
a heuristic manner and may introduce true/false
positive label noise to the generated data. In other
words, though the instance x is included in the bag
with relational triple [eq, ez, ], it may be noisy and
fail to express the relation r.

2.4.1 Positive Pair Construction

Instance z; ~ Random Instance =, One intu-
itive choice of selecting positive pair instance for in-
stance x5 is just picking another instance xy # g
from the bag B randomly. However, both of the
instances zs and xy may suffer from data noise,
and they are hard to express the same relational
triple simultaneously. Thus, taking instance x5 and
randomly selected instance z as a positive pair is
not an optimal option.

Figure 3: Instance x; ~ Random Instance x

Instance z; ~ Relational Triple ES Another
positive pair instance candidate for instance x; is
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the relational triple representation ES of current
bag B. Though B, can be regarded as a de-noised
representation, x5 may be still noisy and express
other relation r # 7. Besides, the quality of con-
structed positive pairs heavily relies on the model
performance of the bag encoder.

Figure 4: Instance x; ~ Relational Triple B,

Instance x; ~ Augmented Instance 7 From
the above analysis, we can see that the general pos-
itive pair construction methods often encounter the
challenge of DS noise. Here, we propose a noise-
free positive pair construction method based on
TF-IDF data augmentation: If we only make small
and controllable data augmentation to the original
instance x5, the augmented instance x; should sat-
isfy the same relational triple with instance 5.

Figure 5: Instance x; ~ Augmented Instance z7

In detail: (1) We first view each instance as a
document and view each word in the instances as
a term, then we train a TF-IDF model on the total
training corpus. (2) Based on the trained TF-IDF
model, we insert/substitute some unimportant (low
TF-IDF score, see Figure 6) words to/in instance x,
with a specific ratio, and can obtain its augmented
instance x¥. Particularly, special masks are added
to entity words to avoid them being substituted.

[stephen king| ’s [maine] chronicles have underscored of point.
[stephen king] ’s [maine] chronicles have underscored goehr point.

Figure 6: An example of word substitution: The low-
scoring word of is replaced with word goehr, and entity
words stephen king and maine are protected.

2.4.2 Negative Pair Construction

Instance x; ~ Random Instance x; Similarly,
for instance x5 in bag B, we can randomly select
an instance x; from another different bag By as its

negative pair instance. Under this strategy, x is far
away from the average representation Zfi 1 aihg
of the bag By, where all o; = % approximately.
And the randomly selected instance x; may be too
noisy to represent the relational triple of bag By, so
that the model performance may be influenced.

Figure 7: Instance x; ~ Random Instance x;

Instance = ~ Relational Triple B, Compared
to the random selection strategy, using relational
triple representation B; as the negative pair in-
stance for x, is a better choice to reduce the im-
pact of data noise. As the instance x; can be seen
as be far away from a weighted representation
Zfi 1 a;h; of the bag B;, where all o; are learn-
able. Though the instance x; may still be noisy, x
and B, can not belong to the same relational triple.

Figure 8: Instance x, ~ Relational Triple Et

2.5 Training Objective

As discussed above, for any instance z; in the
source bag B;: (1) The instance z; after control-
lable data augmentation based on x4 is its positive
pair instance. (2) The relational triple represen-
tations Et of other different (¢ # s) bags in the
batch are its negative pair instances. The overall
schematic diagram of CIL is shown in Figure 9.

Figure 9: Contrastive Instance Learning

And we define the objective for instance x; in
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bag B, using InfoNCE (Oord et al., 2018) loss:

esim(hs,hY)

Le(xs30) = —1 B
c($37 ) o8 GSim(hS’hg) + Zt:t#s eSim(hS7Bt)

where sim(a, b) is the function to measure the sim-
ilarity between two representation vectors a, b, and
hs = H(xs), hi = H(x}) are the sentence repre-
sentations of instances x, .

Besides, to inherit the ability of language under-
standing from BERT and avoid catastrophic forget-
ting (McCloskey and Cohen, 1989), we also add the
masked language modeling (MLM) objective to our
framework. Pre-text task MLLM randomly masks
some tokens in the inputs and allows the model
to predict the masked tokens, which prompts the
model to capture rich semantic information in the
contexts. And we denote this objective as L ().

Accordingly, the total training objective of our
contrastive instance learning framework is:

£0) = XD S S L)+ Lo(0) AL (6)

B zeB

where N = K G is the total number of instances
in the batch, A, is the weight of language model
objective L, and A(t) C [0,1] is an increasing
function related to the relative training steps ¢:

At = —2

Tldet
At the beginning of our training, the value of \()
is relatively small, and our framework CIL focuses
on obtaining an accurate bag encoder (Lg). The
value of \(¢) gradually increases to 1 as the relative
training steps ¢ increases, and more attention is paid
to the contrastive instance learning (L¢).

3 Experiments

Our experiments are designed to verify the effec-
tiveness of our proposed framework CIL.

3.1 Benchmarks

We evaluate our method on three popular DSRE
benchmarks — NYT10, GDS and KBP, and the
dataset statistics are listed in Table 1.

NYT10 (Riedel et al., 2010) aligns Freebase en-
tity relations with New York Times corpus, and it
has two test set versions: (1) NYT10-D employs
held-out KB facts as the test set and is still under
distantly supervised. (2) NYT10-H is constructed
manually by (Hoffmann et al., 2011), which con-
tains 395 sentences with human annotations.

Dataset | #Rel. [ #Ins. | #TestIns. | # Test Set
NYT10-D 53 694,491 172,448 DS
NYT10-H 25 362,691 3,777 MA
GDS 5 18,824 5,663 Partly MA
KBP 7 148,666 1,940 MA
Table 1: Statistics of various used datasets. Rel.: rela-

tion, Ins.: instance and MA: manually annotated.

GDS (Jat et al., 2018) is created by extending
the Google RE corpus with additional instances for
each entity pair, and this dataset assures that the
at-least-one assumption of MIL always holds.

KBP (Ling and Weld, 2012) uses Wikipedia ar-
ticles annotated with Freebase entries as the train-
ing set, and employs manually-annotated sentences
from 2013 KBP slot filling assessment results (Ellis
et al., 2012) as the extra test set.

3.2 Evaluation Metrics

Following previous literature (Lin et al., 2016;
Vashishth et al., 2018; Alt et al., 2019), we first con-
duct a held-out evaluation to measure model per-
formances approximately on NYT10-D and GDS.
Besides, we also conduct an evaluation on two
human-annotated datasets (NYT10-H & KBP) to
further support our claims. Specifically, Precision-
Recall curves (PR-curve) are drawn to show the
trade-off between model precision and recall, the
Area Under Curve (AUC) metric is used to evaluate
overall model performances, and the Precision at
N (P@N) metric is also reported to consider the
accuracy value for different cut-offs.

3.3 Baseline Models

We choose six recent methods as baseline models.

Mintz (Mintz et al., 2009) A multi-class logistic
regression RE model under DS setting.

PCNN-ATT (Lin et al., 2016) A piece-wise
CNN model with selective attention over instances.

MTB-MIL  (Baldini Soares et al., 2019) A rela-
tion learning method based on distributional simi-
larity, achieves amazing results for supervised RE!.

RESIDE  (Vashishth et al., 2018) A NN model
that makes use of relevant side information (entity
types and relational phrases) and employs Graph
CNN to capture syntactic information of instances.

"For MTB-MIL, we firstly conduct MTB pre-training to

learn relation representations on the entire training corpus and
continually fine-tune the model by the MIL framework.
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NYT10-D GDS

Method

AUC | P@100 | P@200 | P@300 | P@M | AUC | P@500 | P@1000 | P@2000 | P@M
Mintzf 10.7 | 52.3 50.2 45.0 | 49.2 - - - - -
PCNN-ATT# | 34.1 | 73.0 68.0 67.3 69.4 | 799 | 90.6 87.6 75.2 84.5
MTB-MIL 40.8 | 76.2 71.1 694 | 72.2 | 88.5 | 94.8 92.2 87.0 91.3
RESIDE} 41.5 | 81.8 75.4 743 | 77.2 | 89.1 | 94.8 91.1 82.7 89.5
REDSandT?# 424 | 78.0 75.0 73.0 | 75.3 | 86.1 | 95.6 92.6 84.6 91.0
DISTRE? 422 | 68.0 67.0 653 | 66.8 | 89.9 | 97.0 93.8 87.6 92.8
CIL* 50.8 | 90.1 86.1 81.8 | 86.0 | 91.6 | 98.4 95.3 88.7 94.1

Table 2: Model performances on NYT10-D and GDS. (7)/(}) marks the results on (NYT10-D column)/(both
columns) are reported in the previous papers. Bold and underline indicate the best and the second best scores, and
* indicates that our model shows significant gains (p > 0.05) over the second-best model based on Student’s t-test.

REDSandT (Christou and Tsoumakas, 2021) A
transformer-based DSRE method that manages to
capture highly informative instance and label em-
beddings by exploiting BERT pre-trained model.

DISTRE (Altetal., 2019) A transformer-based
model, GPT fine-tuned for DSRE under the MIL.

3.4 Evaluation on Distantly Supervised Set

We summarize the model performances of our
method and above-mentioned baseline models in
Table 2. From the results, we can observe that: (1)
On both two datasets, our proposed framework CIL
achieves the best performance in all metrics. (2)
On NYT10-D, compared with the previous SOTA
model DISTRE, CIL improves the metric AUC
(42.2—50.8) by 20.4% and the metric P@Mean
(66.8—86.0) by 28.7%. (3) On GDS, though the
metric of previous models is already high (= 90.0),
our model still improves it by nearly 2 percentage
points. (89.9—91.6 & 92.8—94.1).

1.0y - L L S A | R A
Mintz | AUC-10.7 1
PCNN-ATT | AUC-34.1 -
MTB-MIL | AUC-40.8
RESIDE | AUC-41.5
REDSandT | AUC-42.4 -
DISTRE | AUC-42.2 -
CIL | AUC-50.8 .

precision

0.4

0'6.0 0.7

0.6

0.1 0.2 0.3 0.4

recall

0.5

Figure 10: PR-curve on NYT10-D.

The overall PR-curve on NYT10-D is visualized

in Figure 10. From the curve, we can observe that:
(1) Compared to PR-curves of other baseline mod-
els, our method shifts up the curve a lot. (2) Pre-
vious SOTA model DISTRE performs worse than
model RESIDE at the beginning of the curve and
yields a better performance after a recall-level of
approximately 0.25, and our method CIL surpasses
previous two SOTA models in all ranges along the
curve, and it is more balanced between precision
and recall. (3) Furthermore, as a SOTA scheme of
relation learning, MTB fails to achieve competitive
results for DSRE. This is because MTB relies on
label information for pre-training, and noisy labels
in DSRE may influence its model performance.

3.5 Evaluation on Manually Annotated Set

The automated held-out evaluation may not reflect
the actual performance of DSRE models, as it gives
false positive/negative labels and incomplete KB in-
formation. Thus, to further support our claims, we
also evaluate our method on two human-annotated
datasets, and the results? are listed in Table 3.

Method NYT10-H KBP

AUC | FI [ P@M [ AUC | FI | PeM
PCNN-A | 389 | 47.0 | 58.6 | 154 | 31.5 | 32.8
DISTRE | 37.8 | 50.9 | 54.1 | 22.1 | 37.5 | 46.4
CIL 46.0 | 55.5 | 63.0 | 30.1 | 44.0 | 48.2

Table 3: Model performances on NTY10-H and KBP.
PCNN-A denotes PCNN-ATT. F1 refers to Micro-F1.

From the above result table, we can see that: (1)
Our proposed framework CIL can still perform well
under accurate human evaluation, with averagely
21.7% AUC improvement on NYT10-H and 36.2%
on KBP, which means our method can generalize

“Manual evaluation is performed for each test sentence.

6196



to real scenarios well. (2) On NYT10-H, DISTRE
fails to surpass PCNN-ATT in metric P@Mean.
This indicates that DISTRE gives a high recall but
a low precision, but our method CIL can boost the
model precision (54.1—63.0) while continuously
improving the model recall (37.8—46.0). And the
human evaluation results further confirm the obser-
vations in the held-out evaluation described above.

1.0

L | A
—— PCNN-ATT | AUC-15.4 ~
DISTRE | AUC-22.1 .
—— CIL | AUC-30.1
0.8
50.6
@
o
o
20.4

0.0
0.0

0.1

0.2 0.3 0.4

recall

0.5 0.6

Figure 11: PR-Curve on KBP.

We also present the PR-curve on KBP in Fig-
ure 11. Under accurate sentence-level evaluation
on KBP, the advantage of our model is more obvi-
ous with averagely 36.2% improvement on AUC,
17.3% on F1 and 3.9% on P@Mean, respectively.

3.6 Ablation Study

To further understand our proposed framework CIL,
we also conduct ablation studies.

We firstly conduct an ablation experiment to ver-
ify that CIL has utilized abundant instances inside
bags: (1) By removing our proposed contrastive
instance learning, the framework degenerates into
vanilla MIL framework, and we train the MIL on
regular bags (MILy,g). (2) To prove the MIL can
not make full use of sentences, we also train the
MIL on sentence bags (MILg.,;), which repeats
each sentence in the training corpus to form a bag>.

Method [ AUC | FlI [ P@M
CIL 50.8 522 86.0
MILyg, | 40.3(-10.5) | 47.1(-5.1) | 70.0(-16.0)
MIL,cn: | 36.0(-14.8) | 43.5(-8.7) | 63.3(-22.7)

Table 4: Model performances of three training patterns.

3 All the results in Table 4 are obtained under the same test
setting that uses MIL bags (i.e. BERT+ATT) as test units.

From Table 4 we can see that: (1) MILj4 only
resorts to the accurate bag-level representations to
train the model and fails to play the role of each
instance inside bags; thus, it performs worse than
our method CIL (50.8—40.3). (2) Though MIL.,¢
can access all training sentences, it loses the advan-
tages of noise reduction in MILy,, (40.3—30.6).
The noisy label supervision may wrongly guide
model training, and its model performance heavily
suffers from DS data noise (86.0—63.3). (3) Our
framework CIL succeeds in leveraging abundant
instances while retaining the ability to denoise.

To validate the rationality of our proposed pos-
itive/negative pair construction strategy, we also
conduct an ablation study on three variants of our
framework CIL. We denote these variants as:
CIL, 4,.4p0s: Randomly select an instance x4 also
from bag B; as the positive pair instance for z;.
CILpqgpos: Just take the relational triple represen-
tation Es as the positive pair instance for z;.
CIL,4ndneg: Randomly select an instance x; from
another bag B; as the negative pair instance for x;.

And we summarize the model performances of
our CIL and other three variants in Table 5.

Method | AUC | FlI | PeM
CIL 50.8 522 86.0
ClLyandpos | 49.2(-1.6) | 50.9(-1.3) | 83.8(-2.2)
ClLpagpos | 47.8(-3.0) | 50.5(-1.7) | 79.2(-6.8)
ClLyandneg | 48:4(-24) | 50.6(-1.6) | 78.2(-7.8)

Table 5: Model performances of our proposed frame-
work CIL and its three variants.

As the previous analysis in section 2.4, the three
variants of our CIL framework may suffer from DS
noise: (1) Both variants CIL,ydpos and ClLyggpos
may construct noisy positive pairs; therefore, their
model performances have a little drop (50.8—49.2,
50.8—47.8). Besides, the variant CILpqgp05 also
relies on the bag encoder, for which it performs
worse than the variant CIL,.qp,qp0s (49.2—47.8). (2)
Though the constructed negative pairs need not be
as accurate as positive pairs, the variant CIL,4ydneg
treats all instances equally, which gives up the ad-
vantage of formed accurate representations. Thus,
its model performance also declines (50.8—48.4).

3.7 Case Study

We select a typical bag (see Table 6) from the train-
ing set to better illustrate the difference between
MIL;cp¢, MILygg and our framework CIL.
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Predicted Relation

S: /place_borned v
B: /place_borned v/
C: /place_borned v
S: /place_borned X
B: /place_borned X
C: /place_deaded v/

Sentence

Jjohn mcgahern, the eldest
of seven children, was born
on nov.12, 1934, in dublin.

Jjohn mcgahern, whose stark
..., died yesterday in dublin.

Table 6: A typical bag selected from the training set:
The bag is constructed with relational triple (john mc-
gahern, /place_borned, dubin), and the first sentence
(S1) is clean to express relation /place_borned while
the second instance (S2) are noisy with true relation
/place_deaded. S: MIL ¢, B: MILy, 4 and C: CIL.

Under MILg.,; pattern, both S1, S2 are used
for model training, and the noisy sentence S2 may
confuse the model. As for MILy,, pattern, S1 is
assigned with a high attention score while S2 has a
low attention score. However, MIL;,, only relies
on the bag-level representations, and sentences like
S2 can not be used efficiently. Our framework CIL
makes full use of all instances (S1, S2) and avoids
the negative effect of DS data noise from S2.

4 Related Work

Our work is related to DSRE, pre-trained language
models, and recent contrastive learning methods.

DSRE Traditional supervised RE systems heav-
ily rely on the large-scale human-annotated dataset,
which is quite expensive and time-consuming. Dis-
tant supervision is then introduced to the RE field,
and it aligns training corpus with KB facts to gen-
erate data automatically. However, such a heuristic
process results in data noise and causes classical
supervised RE models hard to train. To solve this
issue, Lin et al. (2016) applied the multi-instance
learning framework with selective attention mech-
anism over all instances, and it helps RE models
learn under DS data noise. Following the MIL
framework, recent works improve DSRE models
from many different aspects: (1) Yuan et al. (2019)
adopted relation-aware attention and constructed
super bags to alleviate the problem of bag label
error. (2) Ye et al. (2019) analyzed the label distri-
bution of dataset and found the shifted label prob-
lem that significantly influences the performance
of DSRE models. (3) Vashishth et al. (2018) em-
ployed Graph Convolution Networks (Defferrard
et al., 2016) to encode syntactic information from
the text and improves DSRE models with addi-
tional side information from KBs. (4) Alt et al.

(2019) extended the GPT to the DSRE, and fine-
tuned it to achieve SOTA model performance.

Pre-trained LM Recently pre-trained language
models achieved great success in the NLP field.
Vaswani et al. (2017) proposed a self-attention
based architecture — Transformer, and it soon be-
comes the backbone of many following LMs. By
pre-training on a large-scale corpus, BERT (Devlin
et al., 2019) obtains the ability to capture a notable
amount of “common-sense” knowledge and gains
significant improvements on many tasks following
the fine-tune scheme. At the same time, GPT (Rad-
ford et al., 2018), XL-Net (Yang et al., 2019) and
GPT2 (Radford et al., 2019) are also well-known
pre-trained representatives with excellent transfer
learning ability. Moreover, some works (Radford
et al., 2019) found that considerably increasing the
size of LM results in even better generalization to
downstream tasks.

Contrastive Learning As a popular unsuper-
vised method, contrastive learning aims to learn
representations by contrasting positive pairs against
negative pairs (Hadsell et al., 2006; Oord et al.,
2018; Chen et al., 2020; He et al., 2020). Wu
et al. (2018) proposed to use the non-parametric
instance-level discrimination to leverage more in-
formation in the data samples. Our approach, how-
ever, achieves the goal of data-efficiency in a more
complicated MIL setting: instead of contrasting the
instance-level information during training, we find
that instance-bag negative pair is the most effec-
tive method, which constitutes one of our main
contributions. In the NLP field, Dai and Lin
(2017) proposed to use contrastive learning for
image caption, and Clark et al. (2020) trained a
discriminative model for language representation
learning. Recent literature (Peng et al., 2020) has
also attempted to relate the contrastive pre-training
scheme to classical supervised RE task. Different
from our work, Peng et al. (2020) aims to utilize
abundant DS data and help classical supervised
RE models learn a better relation representation,
while our CIL focuses on learning an effective and
efficient DSRE model under DS data noise.

5 Conclusion

In this work, we discuss the long-standing DSRE
framework (i.e.MIL) and argue the MIL is not effi-
cient enough, as it aims to form accurate bag-level
representations but sacrifices the potential informa-
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tion of abundant instances inside MIL bags. Thus,
we propose a contrastive instance learning method
CIL to boost the MIL model performances. Experi-
ments have shown the effectiveness of our CIL with
stable and significant improvements over several
baseline models, including current SOTA systems.
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