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Abstract

Professional summaries are written with
document-level information, such as the theme
of the document, in mind. This is in contrast
with most seq2seq decoders which simultane-
ously learn to focus on salient content, while
deciding what to generate, at each decoding
step. With the motivation to narrow this gap,
we introduce Focus Attention Mechanism, a
simple yet effective method to encourage de-
coders to proactively generate tokens that are
similar or topical to the input document. Fur-
ther, we propose a Focus Sampling method
to enable generation of diverse summaries, an
area currently understudied in summarization.
When evaluated on the BBC extreme summa-
rization task, two state-of-the-art models aug-
mented with Focus Attention generate sum-
maries that are closer to the target and more
faithful to their input documents, outperform-
ing their vanilla counterparts on ROUGE and
multiple faithfulness measures. We also em-
pirically demonstrate that Focus Sampling is
more effective in generating diverse and faith-
ful summaries than top-k or nucleus sampling-
based decoding methods.

1 Introduction

Document summarization — producing the shorter
version of a document while preserving salient in-
formation (Mani, 2001; Nenkova and McKeown,
2011) — is challenging even for humans. Today,
systems can generate summaries with a high level
of fluency and coherence. This is due to recent
advances such as sequence-to-sequence architec-
tures (seq2seq) with attention and copy mechanism
(Hochreiter and Schmidhuber, 1997; Bahdanau
et al., 2015; Gu et al., 2016), fully attention-based
Transformer architectures (Vaswani et al., 2017),
and large pretrained language models (Devlin et al.,

∗Work done when authors were interning/working at
Google.

A

GOLD: Australia has expelled an Israeli diplomat saying Israel was
behind the forging of Australian passports linked to the murder of a
Hamas operative in Dubai.
PEGASUS: Australia has expelled an Israeli diplomat after concluding
that forged Australian passports used in the killing of a Hamas militant
in Dubai were issued by Israel.
Our PEGFAME model: The Australian government has expelled an
Israeli diplomat over the use of forged Australian passports in the killing
of a Hamas militant in Dubai.

B

PEGASUS with Top-k Sampling
Israel has summoned the Australian ambassador to complain after the
Australian government said forged passports used in the killing of a
Hamas operative in Dubai belonged to Netanyahu’s foreign ministry.
The Australian government has ordered Israel to withdraw an officer
over the use of forged Australian passports used by the 2013 murder of
a Lebanese opposition figure in Dubai.
PEGASUS with Nucleus Sampling
Israel hasracuse withdrawn an envoy after the Australian government
said it concluded that Israeli agents used forged passports used to kill a
Dubai Bendigo businessman.
The Australian government has recalled an Israeli diplomat over accu-
sation that fake Australian passports used 436 kilometres (300 miles)
from Canberra in the death of a Hamas militant were stolen by Israeli
agents.

C

Our PEGFAME model with novel Focus Sampling
Australia has expelled an Israeli diplomatic staff after accusing the coun-
try’s security agency, the Israeli military’s intelligence agency, of being
responsible for the use of Australian visas used in the killing of a Pales-
tinian.
The Australian government has expelled an Israeli diplomatic staff after
it said the country was responsible for the use of Australian visas used
in the killing of a Palestinian in the Middle East.

Figure 1: Block A shows the best predictions from
PEGASUS and our PEGFAME (PEGASUS with FAME)
model, along with the GOLD summary for an XSUM
article. Block B presents diverse summaries gener-
ated from PEGASUS using top-k and nucleus sampling.
Block C shows diverse summaries generated using our
PEGFAME model with Focus sampling. The text in or-
ange is not supported by the input article.

2019; Radford et al., 2018; Yang et al., 2019; Liu
et al., 2019; Dong et al., 2019a; Song et al., 2019;
Lewis et al., 2019; Rothe et al., 2020; Raffel et al.,
2019; Zhang et al., 2019).

However, in terms of summary quality, many chal-
lenges remain. For example, generating summaries
that are faithful to the input is an unsolved prob-
lem (Kryscinski et al., 2020; Maynez et al., 2020;
Gabriel et al., 2020). Furthermore, there can be
multiple equally good summaries per source docu-
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ment. Neural generation models fail to account for
this and tend to generate outputs with low diversity
due to standard likelihood training, approximate
decoding objectives, and lack of high quality multi-
reference datasets (Fan et al., 2018; Kulikov et al.,
2019; Freitag et al., 2020; Choi et al., 2020). Not
much attention has been given to generation of di-
verse, yet faithful summaries – two goals are often
challenging to achieve simultaneously (Hashimoto
et al., 2019); a model can produce diverse outputs
through sampling (Fan et al., 2018; Holtzman et al.,
2020), but at the cost of quality.

In this paper we introduce a Focus Atten-
tion MEchanism (or FAME) to transformer-based
seq2seq architectures. FAME is inspired by how hu-
mans write summaries. Specifically, FAME aims to
perform source-side planning to focus the summary
on supported and topical content. FAME achieves
this through a novel technique which augments
standard contextual representations with a dynamic
source-conditioned vocabulary biasing layer. We
present the following experimental findings:

FAME promotes summaries faithful to the
source When evaluated on the BBC extreme
summarization task (XSUM; Narayan et al., 2018),
experiments with two state-of-the-art summarizers
– ROBERTAS2S (Rothe et al., 2020) and PEGA-
SUS (Zhang et al., 2019) – show that both models
generate summaries that are more faithful to their
input documents when augmented with FAME, in
comparison with their vanilla counterparts.1 Faith-
fulness is measured through a variety of previously
proposed metrics. In addition, we leverage the
manually annotated document-summary pairs for
faithfulness from Maynez et al. (2020) and train
a scorer which serves as an efficient proxy for ex-
pensive human evaluations. We call this metric
BERTFaithful.

FAME enables diverse summaries FAME, by
design, supports Focus Sampling – a technique
that is more effective in sampling topically rele-
vant tokens to generate diverse, yet topically con-
sistent and faithful outputs, than other sampling
methods (Fan et al., 2018; Holtzman et al., 2020).
Figure 1 illustrates how focus sampling generates
better summaries than other sampling methods. We
demonstrate the effectiveness of our new Focus

1In the paper we focus on assessing FAME on XSUM. But
other summarization and text editing results can be found in
Appendix B and C.

Sampling technique using a variety of existing di-
versity and faithfulness measures. Empirically, we
find that optimizing for high diversity often comes
at the cost of faithfulness. Thus FAME provides a
mechanism for trading-off high faithfulness with
better diversity in summarization.

2 Related Work

Task-Specific Architectural Priors Several
works enhance seq2seq architectures with task-
specific priors. Pointer-generator style models
(See et al., 2017; Xu et al., 2020) can accurately
generate mostly extractive summaries by copying
words from the source text via pointing. Text
editing models (Malmi et al., 2019; Dong et al.,
2019b; Mallinson et al., 2020) cast text generation
as a sequence tagging problem with carefully
selected edit operations required for the task.
Others focus on improving content selection to
better constrain the model to likely input phrases
(Gehrmann et al., 2018) or by improving the
representation of relevant input tokens (Zhou et al.,
2017). Instead of directly modeling such priors,
FAME learns the theme of the document through
dynamic vocabulary biasing. Thus, FAME can be
seen as a generalization of Pointer-generator or
text-editing models via soft vocabulary learning.
In fact, our FAME models achieve state-of-the-art
on text-editing tasks (Appendix C).

Topic-Aware Generation Models The idea of
capturing document-level semantic information has
been widely explored in the summarization com-
munity. Barzilay and Elhadad (1997) use WordNet
(Fellbaum, 1998) to model a text’s content relative
to a topic based on lexical chains. Lin and Hovy
(2000) propose to learn topic signatures for summa-
rizing documents. Recently, document-level topic
information has been used for improving neural lan-
guage models (Mikolov and Zweig, 2012; Ghosh
et al., 2016; Dieng et al., 2017; Karmaker Santu
et al., 2019), neural response generators (Xing et al.,
2017; Dziri et al., 2019), and not surprisingly, neu-
ral summarizers (Narayan et al., 2018; Ailem et al.,
2019; Wang et al., 2020c). Both, Narayan et al.
(2018) and Ailem et al. (2019), use a pretrained
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
model, whereas, Wang et al. (2020c) use Poisson
factor analysis (Zhou et al., 2012), to synthesize
topic vectors for the input. Instead, we dynamically
learn a target-induced topic distribution for the in-
put under the assumption that the human-written
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summary is a good proxy for the input document.

Faithful Generation Models Cao et al. (2017)
force faithful generation by conditioning on both
source text and extracted fact descriptions from the
source text. Song et al. (2020) propose to jointly
generate a sentence and its syntactic dependency
parse to induce grammaticality and faithfulness.
Tian et al. (2019) learn a confidence score to en-
sure that the model attends to the source whenever
necessary. Wang et al. (2020d) introduce new input-
output matching and embedding similarity losses to
alleviate hallucination issues. Yet, the task of gen-
erating text that is consistent with the input remains
an open problem (Gabriel et al., 2020).

Diverse Generation Models There has been a
surge of interest in making language models gener-
ate more diverse and human-like outputs. Vijayaku-
mar et al. (2018) and Kulikov et al. (2019) diversify
beam search, using a task-specific scoring function,
or constrain beam hypotheses to be sufficiently dif-
ferent. Others avoid text degeneration by truncating
the unreliable tail of the probability distribution at
each decoding step, either by sampling from the
top-k tokens (Top-k Sampling; Fan et al., 2018)
or by sampling from a dynamic nucleus of tokens
with the bulk of the probability mass (Nucleus Sam-
pling; Holtzman et al., 2020). Others modify the
training objective to make the distribution sparse
(Martins et al., 2020) or assign lower probability to
unlikely generations (Welleck et al., 2019a).

For conditional text generation, most work fo-
cuses on generating diverse questions (Narayan
et al., 2016; Dong et al., 2017; Sultan et al., 2020;
Wang et al., 2020b) or paraphrases (Li et al., 2016b;
Dai et al., 2017; Xu et al., 2018; Cao and Wan,
2020). Following Gehrmann et al. (2018), Cho
et al. (2019) use a mixture of experts to sample
different binary masks on the source sequence for
diverse content selection for summarization.
Our focus sampling is similar to top-k and nucleus
sampling methods; in that it truncates the tail of
the probability distribution. However, instead of
truncating it at each decoding step, it biases the
decoder proactively to generate output from a set
of tokens which are topically-relevant to the input.

3 Summarization with Focus Attention

Given an input document X1:n, we aim to gener-
ate its summary Y1:m, where n and m are input
and output sequence lengths. We address this prob-

x1 x2 x3 ... xn

Input
Tokens

Embedding 
Matrix

Encoder

x1 x2 x3 ... xn

tx1 tx2 tx3 ... txn

Dense

Dense
GELU

y1 y2 y3 ... yt-1

Generated 
Output

Decoder
aLt

Softmax

yt
ft

tX

FAME

Figure 2: A Transformer-based encoder-decoder archi-
tecture with FAME.

lem using seq2seq architectures with Transformer
encoder and decoder, augmented with FAME, as
depicted in Figure 2. FAME learns a distribution txi

for each input token xi over the vocabulary, mea-
suring similarity of xi (in context) to the tokens in
the vocabulary. The vocabulary distributions, txi ,
for all xi are combined to form a dynamic vocabu-
lary bias that is added to the decoder logits. This
mechanism enhances the conditioning on the in-
put source and encourages the decoder to generate
tokens that are topically similar to the input.

Transformer-based seq2seq Model The en-
coder uses BERT Transformer layers with multi-
headed self-attention to encode X to a vector se-
quence X = x1, . . . ,xn, with xi ∈ Rh, where h
is the size of hidden representation. The decoder
uses an identical architecture, except that at decod-
ing step t, layer l adds a conditional representation
yl
t ∈ Rh for the token yt by attending to the output

representation Y l−1
1:t−1 = yl−1

1 , . . . ,yl−1
t−1 generated

so far through self-attention and by attending to the
input contextual representation X through encoder-
decoder attention. The probability of predicting the
next token yt from a vocabulary V is:

p(yt|Y1:t−1, X; θ) = softmax(EyL
t ), (1)

where, yL
t is the representation from the final de-

coder layer L, E ∈ R|V |×h the embedding matrix
and θ the model parameters. Parameters are trained
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by minimizing cross-entropy at each decoding step:

LMLE(θ) = −
1

m

m∑
i=1

log p(ŷt|Ŷ1:t−1, X; θ),

where, Ŷ1:m is the human-written summary.

Focus Attention MEchansim (FAME) It is chal-
lenging for a decoder to obtain all relevant informa-
tion from the conditional representation yL

t to learn
the vocabulary output logits such that predictions
yt are consistent with the input. Other modeling
factors, specifically the decoder language model,
can overwhelm model predictions. FAME (Fig-
ure 2) addresses this by introducing a short-circuit
from the source to the vocabulary output logits via
a source-conditioned bias on vocabulary items.

We take the encoder representation X =
x1, . . . ,xn and learn a Token-level Vocabulary Dis-
tribution txi = gelu(xiW1)W2E ∈ R|V |, for
each token xi in the input sequence X . txi mea-
sures the contextual similarity of the input token xi
to the tokens in the vocabulary; W1 ∈ Rh×h′ and
W2 ∈ Rh′×h are parameters of newly introduced
dense layers, h′ is the intermediate filter size. We
define a Source-conditioned Vocabulary Distribu-
tion as tX = 1/n

∑n
i=1 txi ∈ R|V | as an average

of token-level vocabulary distributions for tokens
present in the input sequence X , capturing the sim-
ilarity of X to the tokens in the vocabulary.

Let aL
t ∈ Rn be the encoder-decoder attention

distribution over the source tokens for the output to-
ken yt and the final decoder layer L. We use aL

t to
produce a weighted sum of the token-level vocabu-
lary distributions to compute a dynamic vocabulary
bias, or Focus Bias ft =

∑n
i=1 a

L
t,itxi ∈ R|V | at

decoding step t. We modify the probability of pre-
dicting the next token yt from a vocabulary V as:

p(yt|Y1:t−1, X; θ) = softmax(yL
t E + ft) (2)

We call this Focused Probability Distribution, and
it modifies the output logits dynamically to put
more focus on those tokens in the vocabulary which
are similar to the attended tokens in X . The focus
bias introduces a human-inspired control to the
model where we do not generate the output in a
fully abstractive manner (as in Eq. (1)), but we
proactively generate output tokens that are similar
to the input tokens (as in Eq. (2)).

Summary-induced Topic Focused Distribution
We aim to guide our focus bias ft to be a better

representative of the topical content relevant for the
task. We achieve this by using the human-written
summary Ŷ as a proxy for the topical content of
the input and impose the following prior on the
source-conditioned vocabulary distribution tX :

LTopic(θ) = −
1

|V |

|V |∑
i=1

([vi ∈ Ŷ ] log(σ(tX,i))

+ [vi /∈ Ŷ ] log(1− σ(tX,i))).(3)

We further refine Eq. (3) by replacing Ŷ with Ŷc =
Ŷ −F , where F is a set of |F |most frequent tokens
in the vocabulary,2 to improve focus on content
words. Our final loss function is then

L = λLMLE + (1− λ)LTopic, (4)

where, λ is an hyper parameter.3

By enforcing tX to be a topic distribution for the
inputX , we encourage the focus bias ft to promote
topically relevant tokens, and subsequently gener-
ate topically consistent outputs. Importantly, our
focus bias with target-induced topic distribution
is task-agnostic and less vulnerable to reference
divergence issues (Dhingra et al., 2019; Maynez
et al., 2020), and can learn any property embodied
in the target relevant for the task. For example,
depending on the task, ft can learn to favour input
tokens (e.g., for mostly extractive summaries) or
new tokens (e.g., for mostly abstractive summaries).
This is in sharp contrast to models that introduce
task-specific priors, e.g., the pointer-generator net-
work (See et al., 2017) that can copy words from
the source text, but does not do well on extreme
summarization which is highly abstractive in nature
(Narayan et al., 2018).

Focus Sampling: Promoting Diversity in Faith-
ful Generation We introduce Focus Sampling
with FAME to construct a subset Vk ⊆ V by
sampling k tokens from the topic distribution tX
(Focussample,k). Then, we modify Eq. (2) as

p(yt|Y1:t−1, X; θ) ={
softmax(yL

t E + ft)i if vi ∈ Vk ∪ F
0, otherwise.

(5)

For document summarization, the subset Vk will
capture topically salient tokens necessary to gener-
ate a summary; F is always added to Vk to ensure

2which are usually articles or other function words.
3λ is set to 0.5 for all experiments.
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that the model has access to function words. By
tuning the parameters of sampling, we can enforce
the model to control the faithfulness or diversity of
the outputs.

Focus sampling has similarities to top-k
(Divtop,k; Fan et al., 2018) and nucleus sampling
(Divnucleus; Holtzman et al., 2020); in that they all
aim to promote diversity. At each decoding step,
the top-k sampling diversifies the generation pro-
cess by sampling a token from the top k tokens
in the final output distribution. Similarly, nucleus
sampling samples from a dynamic nucleus of to-
kens containing the vast majority (with a cumula-
tive probability p) of the probability distribution.
Both top-k and nucleus sampling shorten the tail
of the output distribution at each decoding step,
whereas focus sampling constrains the decoder to
use a fixed and topically relevant vocabulary Vk.
Unlike the other two techniques, Focussample,k can
also benefit from standard beam search decoding,
leading to superior generation that is not only di-
verse, but also consistent with the input document.

4 Experimental Setup

In this section we present our experimental setup to
assess the ability of our FAME models to generate
faithful summaries and to demonstrate that focus
sampling is more effective in generating diverse
and faithful summaries than other sampling-based
decoding methods.

4.1 Extreme Summarization

We evaluate FAME models on extreme document
summarization (XSUM; Narayan et al., 2018). The
XSUM summaries, are extreme in that the docu-
ments are summarized into single-sentence sum-
maries. These summaries demonstrate a high level
of abstractiveness, and generating them automat-
ically requires document-level inference, abstrac-
tion, and paraphrasing. Due to their extreme nature,
XSUM summaries are ideal to evaluate FAME mod-
els’ ability to capture the theme of the document.4

We use on the original cased version consisting
of 204,045/11,332/11,334 training/validation/test
document-summary pairs. During training, the in-
put documents are truncated to 512 tokens. The

4We further experiment with long-form story highlight
generation (CNN/DM; Hermann et al., 2015) and two text edit-
ing tasks: Sentence Fusion (Geva et al., 2019) and Sentence
Splitting (Botha et al., 2018). Their results can be found in
Appendix B and C. Our FAME models achieve SOTA on both
text-editing tasks.

length of the summaries are limited to 64.

4.2 Pretrained Models with FAME

We introduce FAME to two popular seq2seq
architectures: RoBERTa initialized seq2seq
(ROBERTAS2S, Rothe et al., 2020) and PEGASUS

(Zhang et al., 2019). We refer ROBERTAS2S mod-
els with FAME as ROBFAME and PEGASUS with
FAME with PEGFAME.

We experiment with ROBERTAS2S-Large with
shared encoder and decoder; it has 24 layers, a
hidden size of 1024, filter size of 4096, 16 attention
heads, and a vocabulary with 50K sentence pieces
(Kudo and Richardson, 2018). ROBERTAS2S has
around 455M parameters and ROBFAME has an
additional 8M parameters.

The best-performing PEGASUS model from
Zhang et al. (2019) is not directly comparable with
ROBERTAS2S. It does not share the encoder and
decoder, it only has 16 layers, a hidden size of
1024, filter size of 4096, 16 attention heads, with a
total of 568M parameters, and it also uses a much
larger vocabulary with 91K sentence pieces. Hence,
we trained our own PEGASUS model. We use the
same architecture as ROBERTAS2S and pretrain it
on a mixture of C4 (Raffel et al., 2019) and Huge-
News (Zhang et al., 2019) datasets with the original
objective of generating salient GAP-sentences.

Our experiments focus on this newly trained
PEGASUS model which has same number of pa-
rameters and vocabulary as ROBERTAS2S. But
in contrast to ROBERTAS2S, the encoder-decoder
attention in PEGASUS is pretrained. This al-
lows us to analyse how focus attention affects
pretrained (PEGASUS) vs randomly-initialized
(ROBERTAS2S) encoder-decoder attentions.5

4.3 Evaluation Metrics

Lexical Overlap We report ROUGE F1 scores
(Lin and Hovy, 2003) against reference summaries;
in particular, we report on ROUGE-1 and ROUGE-2
for informativeness and ROUGE-L for fluency.6

Semantic Similarity We report BERTScore
(Zhang et al., 2020) which computes the contextual
similarity between a candidate and its reference
summary.

5See Appendix A for implementation details and hyperpa-
rameter settings.

6We lowercased candidate and reference summaries and
used pyrouge with parameters “-a -c 95 -m -n 4 -w 1.2.”
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Models Lexical Overlap (w/ ref) Sem. Sim. Faithfulness others

ent. Feqa BERTFaithful Len. Rep.(↓) R1(P%)
R1 R2 RL BERTSc. % conf. With doc.

ROBERTAS2S 41.45 18.79 33.90 80.6 39.1 19.8 21.5 0.216 21.2 24.2 71.1
ROBFAME 42.15 19.68 34.81 80.8 41.3 21.2 22.7 0.226 20.8 20.7 72.5

PEGASUS 44.85 22.26 37.03 81.7 43.6 24.5 27.0 0.263 21.1 6.0 73.8
PEGFAME 45.31 22.75 37.46 81.9 44.8 24.8 27.3 0.269 20.8 5.3 74.3

Table 1: Abstractive Summarization results on XSUM test set comparing FAME models with their baselines. For
all our models, we use standard beam decoding with a beam size of 4 to generate the single best summary for a
document. Focus sampling is not used here. See Section 4.3 for details on the evaluation metrics reported. Best
number for each metric is boldfaced.

Faithfulness ROUGE and BERTScore do not cor-
relate well with faithfulness of the generated sum-
maries (Maynez et al., 2020). Human evaluation
is traditionally considered as the gold standard for
measuring faithfulness. But recent research has
shown that even human evaluation has shortcom-
ings (Schoch et al., 2020). Moreover, it is pro-
hibitively expensive. This has led to the proposal
of meta-evaluation metrics for various generation
tasks (Durmus et al., 2020; Kryściński et al., 2019;
Sellam et al., 2020; Rei et al., 2020).

We evaluate FAME models on semantic inference
metrics such as textual entailment (Pasunuru and
Bansal, 2018; Welleck et al., 2019b; Falke et al.,
2019; Kryscinski et al., 2019) and question answer-
ing (Arumae and Liu, 2019; Wang et al., 2020a).
In particular, we report the probability of a sum-
mary entailing (ent.) its input document (Maynez
et al., 2020) and QA-based Feqa scores (Durmus
et al., 2020). For ent. scores, we train an entail-
ment classifier by fine-tuning a BERT-Large pre-
trained model (Devlin et al., 2019) on the Multi-
NLI dataset (Williams et al., 2018). For Feqa,
we use a fine-tuned BART (Lewis et al., 2019)
language model for question generation to gener-
ate questions from the summaries, and a BERT-
base model fine-tuned on SQuAD (Rajpurkar et al.,
2018) to answer the generated questions with input
document as context.7

In addition to ent. and Feqa, we train a scorer
leveraging manually annotated document-summary
pairs for faithfulness, as a surrogate for human
evaluation and call this metric BERTFaithful.8

In particular, we finetune a BERT-Base classi-

7We used the Feqa code available here: https://
github.com/esdurmus/feqa/.

8A very similar scorer was used in the GEM benchmark
(Gehrmann et al., 2021) to identify and extract the subset with
faithful reference summaries from the XSum dataset (Narayan
et al., 2018).

fier on 500 manually annotated document and
gold summary pairs for the XSum dataset from
Maynez et al. (2020) to predict whether a sum-
mary is faithful to the input document or not.9

We report the percentage of summaries that were
faithful ( 1

N

∑
i 1[pi(faithful) > 0.5]) and the

model’s confidence to generate faithful summaries
( 1
N

∑
i pi(faithful)); N is the total number of ex-

amples in the test set.

Diversity We report the number of times (out
of n), a model is able to generate a completely
new summary (Unique), and Distinct-N (Li et al.,
2016a), measuring the lexical diversity in the gen-
erated summaries. Distinct-N is estimated as the
number of distinct n-grams of order n divided by
the total number of n-grams of the same order, in
all generated summaries.

Finally, we also report the average length of sum-
maries (Len.), repetition errors (Rep., estimated as
the percentage of summaries with at least one rep-
etition of rare or content words), and ROUGE-1
precision against the input document (R1, P%), to
better understand their quality.

5 Results

FAME Summaries are More Fluent, Informa-
tive and Faithful. Table 1 presents results com-
paring our FAME models, ROBFAME and PEG-
FAME, against their counterparts ROBERTAS2S

9Out of 500, 90% of the document-summary pairs were
used for training and the rest 50 document-summary pairs
were used for validation. We used the validation set to estimate
Spearman’s correlation coefficients of different metrics with
the human assessment for faithfulness. We found that both
entailment scores (ent.) and BERTFaithful are moderately
correlated with faithfulness with correlation coefficients of
0.4387 and 0.3889, respectively. As such, we believe that
BERTFaithful works as an efficient proxy for expensive human
evaluation for faithfulness for XSum summaries. More work
is needed to understand if BERTFaithful generalizes to other
datasets.

https://github.com/esdurmus/feqa/
https://github.com/esdurmus/feqa/
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Metrics Unique Dist.-N ROUGE ent. BERTSc.1 2 3 R1 R2 RL

ROBERTAS2S (Divtop,k) 9.98 2.5 25.0 57.7 33.6 12.0 26.5 21.8 76.9
ROBERTAS2S (Divnucleus) 9.99 4.1 30.1 62.2 32.4 11.4 25.6 19.7 75.7

ROBFAME (Divtop,k) 9.99 2.3 25.0 58.1 32.7 11.3 25.7 20.3 76.6
ROBFAME (Divnucleus) 9.99 4.1 30.7 63.2 31.3 10.6 24.7 18.0 75.4

ROBFAME (Focussample,k) 1.61 3.5 22.4 43.9 38.0 15.7 31.0 34.3 78.6

ROBFAME (Focussample,k, Divtop,k) 9.99 2.1 20.3 51.8 31.8 10.2 24.7 24.3 75.4
ROBFAME (Focussample,k, Divnucleus) 9.98 1.9 18.4 48.2 32.9 11.1 25.8 25.9 76.1

PEGASUS (Divtop,k) 9.98 1.9 23.2 55.3 36.6 14.3 28.8 27.7 78.4
PEGASUS (Divnucleus) 9.99 3.8 30.5 63.1 34.1 12.8 26.9 22.7 76.5

PEGFAME (Divtop,k) 9.98 1.9 23.2 55.5 36.7 14.5 29.0 28.5 78.5
PEGFAME (Divnucleus) 9.99 3.8 30.4 63.1 34.2 12.8 27.0 23.2 76.6

PEGFAME (Focussample,k) 2.77 2.4 16.5 34.2 37.5 15.4 30.3 33.6 77.9

PEGFAME (Focussample,k, Divtop,k) 8.99 2.8 23.0 54.7 31.5 10.3 24.4 22.8 74.7
PEGFAME (Focussample,k, Divnucleus) 9.98 2.6 20.8 50.9 32.5 11.0 25.3 24.8 75.3

Table 2: Assessment of diversity, relevance and faithfulness with focus sampling on the XSUM test set.

and PEGASUS, respectively. Both FAME mod-
els clearly outperform their vanilla counterparts
in terms of generating summaries that are more
fluent (see RL and Rep.), more informative (see
R1, R2 and BERTSc.) and more faithful (see ent.,
Feqa and BERTFaithful). Among all four models,
PEGFAME summaries are most fluent, informative
and faithful.

We further did pairwise comparisons for all mea-
sures in Table 1 and found that all differences
are statistically significant except for BERTScore
and faithfulness measures between PEGASUS and
PEGFAME.10 These assessments demonstrate that
FAME models aid both ROBERTAS2S and PEGA-
SUS in generating fluent, faithful and relevant sum-
maries, but are more effective in ROBERTAS2S
than in PEGASUS for extreme summarization.

Generating Diverse and Faithful Summaries
with Focus Sampling. Table 2 presents re-
sults assessing focus sampling (Focussample,k),
top-k sampling (Divtop,k) and nucleus sampling
(Divnucleus), for their abilities to generate diverse
and faithful summaries. For Focussample,k, we
choose k = 10, 000. We follow Holtzman et al.
(2020) and choose k = 640 and the nucleus prob-
ability p = 0.95, for Divtop,k and Divnucleus, re-
spectively. For Focussample,k, we decode with a
beam size of 4. We also report Focussample,k with
Divtop,k and Divnucleus to assess if they can bene-
fit one-another. In each setting we sample 10 sum-

10All significance tests in this work are pairwise com-
parisons (one-way ANOVA with posthoc Tukey HSD tests;
p < 0.01).

maries for each input document. For all metrics,
we report the average over all 10 samples.11

Both Divtop,k and Divnucleus almost always gen-
erate a new summary. In comparison Focussample,k

generates 1.61 and 2.77 unique summaries us-
ing ROBFAME and PEGFAME models, respec-
tively. Divnucleus tends to generate the most dis-
tinct unigrams, bigrams, and trigrams. Interest-
ingly, Focussample,k summaries have a more di-
verse collection of unigrams than in Divtop,k sum-
maries (3.5% vs 2.3% for ROBFAME and 2.4% vs
1.9% for PEGFAME).

The high diversity in Divtop,k and Divnucleus
comes at the cost of faithfulness; summaries gener-
ated with these sampling techniques have poor en-
tailment scores. Focussample,k, on the other hand,
generates summaries which entail documents the
most. It also has the highest ROUGE scores across
the board. Some of the generated examples can
be seen in Figure 1. More predictions from other
models can be found in Appendix E. Augmenting
Divtop,k and Divnucleus with Focussample,k is not
desirable because, though it increases diversity in
terms of uniqueness and Distinct-3 scores, faithful-
ness suffers again.

Comparing results in Table 2 to the results in Ta-
ble 1, it is clear that diversity comes at the cost
of quality (e.g., RL/ent. scores for ROBFAME

and ROBFAME-Focussample,k are 34.81/41.3 and
31.0/34.3, respectively). However, Focussample,k

is superior to both Divtop,k and Divnucleus in gen-

11Feqa and BERTFaithful scores are dropped due to time
constraints.
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erating better quality summaries.

Figure 3: Top 40 sentence pieces and their logits from
topic distribution tX in ROBFAME and PEGFAME for
the XSUM article discussed in Figure 1.

Figure 4: ROUGE-1 F1 scores of ROBFAME and
PEGFAME models with different top-k vocabularies
(Eq. (5)) on the XSUM test set. Similar patters are ob-
served for ROUGE-2 and ROUGE-L scores.

Focus Attention and Sampling Work Differ-
ently in ROBFAME and PEGFAME. Since both
encoder-decoder and focus attention parameters of
ROBFAME are randomly initialized, they learn to
compliment each other and learn a peaky topic dis-
tribution. On the other hand, since PEGFAME’s
encoder-decoder attention is pre-trained, there is
a push-pull effect between it and focus attention.
This results in a smoother topic distribution, as seen
in Figure 3.12

Although we see that both models’ token sets
capture the target intent well, the peaky distribu-

12This difference in topic distributions is consistent across
the whole test set. We compute the peakiness score of a topic
distribution as the slope of the line connecting logits of the
top-1st token to the top-100th token. The average peakiness
scores across the XSUM testset for ROBFAME and PEGFAME
are 1.25 (51◦) and 0.45 (24.3◦), respectively.

Models R1 R2 RL

Lead 16.30 1.61 11.95
PtGen (See et al., 2017) 29.70 9.21 23.24

ConvS2S (Narayan et al., 2018) 31.89 11.54 25.75
MMN (Kim et al., 2019) 32.00 12.10 26.00

MASS (Song et al., 2019) 39.75 17.24 31.95
BART (Lewis et al., 2019) 45.14 22.27 37.25

PEGASUS (Zhang et al., 2019) 47.21 24.56 39.25

ROBERTAS2S (Rothe et al., 2020) 41.45 18.79 33.90
ROBFAME (w/o Eq. (3)) 41.27 18.86 33.90

ROBFAME 42.15 19.68 34.81
ORACLE 72.22 42.22 53.89

PEGASUS (ours) 44.85 22.26 37.03
PEGFAME (w/o Eq. (3)) 44.54 22.00 36.83

PEGFAME 45.31 22.75 37.46
ORACLE 82.39 60.61 69.19

Table 3: Ablations and SOTA comparisons on XSUM
dataset. The underlined bold results are from the best
performing models from literature and the bold results
are the best performing FAME models.

tion of ROBFAME enables more accurate predic-
tions than that of PEGFAME, in a controlled gen-
eration setting. A comparison is presented in Fig-
ure 4 where we show how ROUGE-1 scores vary
when we use only top-k tokens from tX for gener-
ation.13 We observe that ROBFAME consistently
outperforms PEGFAME with the lower values of
k ∈ {50, 100, 200, 500, 1000}.

Further, we observe that ROBFAME gener-
ates fewer unique summaries (1.61 vs 2.77) but
has higher Distinct-N scores (3.5/22.4/43.9 vs
2.4/16.5/34.2) than PEGFAME, with Focussample,k

in Table 2. This can be again be attributed to how
FAME works differently in ROBFAME and PEG-
FAME. When Vk is sampled from ROBFAME’s
peaky distribution, the beam search decoding often
tends to generate similar summaries (leading to a
lower Uniqueness score) as the sampled Vks do
not diverge by much from each other. But when it
does diverge, the decoder tends to generate com-
pletely new summaries (leading to higher Distinct-
N scores).

Currently, we set k = 10, 000 for our focus sam-
pling experiments following our observations in
Figure 4. Future work will focus on how to bet-
ter leverage trade-off between diversity and faith-
fulness by controlling the peakiness of the topic
distribution tX .

Ablations and SOTA Comparisons We empha-
size that FAME or focus sampling does not aim to
improve on state-of-the-results in terms of ROUGE,
but to generate more faithful or diverse summaries

13Additional results and model predictions for these experi-
ments can be found in Appendix D.



6086

while maintaining their quality. For completeness,
we compare our ROBFAME and PEGFAME models
to their ablations and other state-of-the-art models
on XSUM in Table 3.

We report ROUGE scores for FAME in the ideal
scenario (ORACLE) where it focuses on all the
correct tokens in the input, i.e., the topic distri-
bution tX is identical to the distribution observed
in the reference summary. These models generate
summaries with very high ROUGE scores when the
model is given the correct tokens to focus on. The
gap between the ORACLE and FAME scores sug-
gests that there is still a lot of work to be done in
this space. Focus attention without any topical su-
pervision (models w/o Eq. (3)) is not significantly
better than the baselines. But ROBFAME and PEG-
FAME (trained with joint supervision in Eq. (4))
significantly outperform ROBERTAS2S and PEGA-
SUS, respectively.

Our best model PEGFAME performs better than
PtGen (See et al., 2017), ConvS2S (Narayan et al.,
2018), MMN (Kim et al., 2019), MASS (Song
et al., 2019) and BART (Lewis et al., 2019), but
worse when the original PEGASUS (Zhang et al.,
2019). This can be expected as the number of
parameters in PEGFAME is far less than that in the
original PEGASUS.

6 Conclusion

We introduced FAME, a new attention mechanism
which dynamically biases the decoder to proac-
tively generate tokens that are topically similar to
the input. FAME enhances the faithfulness of exist-
ing state-of-the-art abstract summarization models
while improving their overall ROUGE scores. Fi-
nally, our newly introduced focus sampling tech-
nique is a better alternative to top-k or nucleus
sampling to generate diverse set of faithful sum-
maries.
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Ethical Considerations

The nature of text generation leads to multiple eth-
ical considerations when applied to applications.
The main failure mode is that the model can learn
to mimic target properties in the training data that
are not desirable.

Faithfulness and Factuality Since models cre-
ate new text, there is the danger that they may nei-
ther be faithful to the source material nor factual.
This can be exacerbated when the data itself has
highly abstractive targets, which require the model
to generate words not seen in the source material
during training. This often leads the model to gen-
erate content inconsistent with the source mate-
rial (Kryscinski et al., 2020; Maynez et al., 2020;
Gabriel et al., 2020).

Trustworthy Data If the data itself is not trust-
worthy (comes from suspect or malicious sources)
the model itself will naturally become untrustwor-
thy as it will ultimately learn the language and
topics of the training data. For instance, if the train-
ing data is about Obama birther conspiracies, and
the model is asked to generate information about
the early life of Obama, there is a risk that such
false claims will be predicted by the model.

Bias in Data Similarly, biases in the data around
gender, race, etc., risk being propagated in the
model predictions, which is common for most NLP
tasks. This is especially true when the models are
trained from non-contemporary data that do not
represent current norms and practices (Blodgett
et al., 2020).

The above considerations are non-malicious, in
that the model is merely learning to behave as its
underlying source material. If users of such models
are not aware of these issues and do not account
for them, e.g., with better data selection, evalu-
ation, etc., then the generated text can be damaging.

Generation models can also be misused in
malicious ways. These include generating fake
news, spam, and other text meant to mislead large
parts of the general population.
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A Implementation and Reproducibility
Details

Following Rothe et al. (2020), the encoder and de-
coder of ROBERTAS2S and ROBFAME models are
initialized with public RoBERTa checkpoints. The
encoder and decoder parameters are shared in both
cases. Only the encoder-decoder attention parame-
ters are initialized randomly. For ROBFAME, the
focus attention parameters are also randomly initial-
ized. We experiment with large RoBERTa check-
points with 24 layers, a hidden size of 1024, filter
size of 4096, 16 attention heads, and a vocabulary
with 50K sentence pieces (Kudo and Richardson,
2018). ROBERTAS2S has around 455M param-
eters and ROBFAME has 463M parameters, with
an additional 8M parameters. Our PEGASUS and
PEGFAME implementation also have the same con-
figuration, except for the encoder-decoder attention
parameters which are pretrained.

We used Cloud TPU v3 accelerators for training.
All models are fine-tuned on the target task using
Adam with a learning rate of 0.05. We use a linear
learning rate warm up with 40k steps, normalized
by the square root of the hidden size, and a square
root decay. We do not perform any tuning on these
hyperparameters. We use a global batch size of 128
document-summary pairs. We adapt to different
number of training steps depending on the training
data sizes. Models are trained for 400k and 200k
steps for CNN/DM and XSUM respectively, sav-
ing check-points every 1000 steps. We choose the
best model based on ROUGE-L performance on the
respective validation set.

The vocabulary for functional tokens F is con-
structed by taking the most frequent sentence
pieces in the training set. We tune |F | using the re-
spective validation sets; for XSUM, we choose f =
500 frequent sentence pieces and for CNN/DM,
f = 1000. For all our experiments with the FAME

models, the beam size is set to 4.
We use Cloud TPU v3 accelerators for comput-

ing entailment scores which takes about 20 minutes
for the two datasets’ test sets. Question generation
and answering for Feqa are run on a NVIDIA V100
GPU, and it takes between 8-12 hours for one set-
ting of each test set.

B Abstractive Summarization Results on
CNN/DailyMail

The CNN/DM dataset (Hermann et al., 2015)
consists of 287,227/13,368/11,490 train-

Models CNN/DM
R1 R2 RL

Lead 39.60 17.70 36.20
PtGen (See et al., 2017) 39.53 17.28 36.38

Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34
SAGCopy (Xu et al., 2020) 42.53 19.92 39.44

MASS (Song et al., 2019) 42.12 19.50 39.01
UniLM (Dong et al., 2019a) 43.33 20.21 40.51

BART (Lewis et al., 2019) 44.16 21.28 40.90
T5 (Raffel et al., 2019) 43.52 21.55 40.69

PEGASUS (C4, Zhang et al., 2019) 43.90 21.20 40.76
PEGASUS (HugeNews, Zhang et al., 2019) 44.17 21.47 41.11

ProphetNet (Qi et al., 2020) 44.20 21.17 41.30

ROBERTAS2S (Rothe et al., 2020) 39.88 18.66 37.22
ROBFAME (ours) 40.27 18.43 37.51
PEGASUS (ours) 42.62 20.38 39.61
PEGFAME (ours) 42.95 20.79 39.90

Table 4: Abstractive summarization results on
CNN/DM datasets. The underlined bold results are
from the best performing models from literature and
the bold results are the best performing FAME models.

ing/validation/test document-summary pairs.
The CNN/DM summaries are in the form of
bullet-point story highlights and exhibit a high
degree of extraction, requiring the models to
learn to copy from the source documents. The
XSUM summaries, on the other hand, are extreme,
in that the documents are summarized into
single-sentence summaries with a high level of
abstractiveness. For comparison, the XSUM sum-
maries show a much larger percentages of novel
constructions than found in CNN/DM summaries
(35.8/83.5/95.5/98.5 vs 16.8/54.3/72.4/80.4
novel 1/2/3/4-grams). We use the original cased
version. During training, the input documents
are truncated to 512 tokens and the length of the
summaries are limited to 128 tokens.

Table 4 and 5 present complete results for
CNN/DM dataset. We see similar kind of improve-
ments as observed in Table 1, except for ROUGE-2
for ROBFAME which is 0.23 points worse than
the ROBERTAS2S baseline. Our best model PEG-
FAME performs better than both copy mechanism
models: LSTM-based PtGen (See et al., 2017)
and Transformer-based SAGCopy (Xu et al., 2020).
PEGFAME performs worse when compared with T5
(Raffel et al., 2019), the original PEGASUS (Zhang
et al., 2019) and ProphetNet (Qi et al., 2020). This
can be expected as the number of parameters in
PEGFAME is almost half of T5 or ProphetNet, and
is 100M less than that in the original PEGASUS.

ROBFAME performs worse than ROBERTAS2S
on both ent. and Feqa measures for CNN/DM, sim-
ilar to ROUGE-2 in Table 4. We hypothesize that
this is due to the extractive nature of the CNN/DM

dataset and the fact that it is not able to copy to-
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Models Len. Rep. R1(P%) doc. → sum. Feqa BERTSc.% With doc. ent. (↑) ¬ cont. acc. avg.(#Q)

ROBERTAS2S 52.1 77.6 92.7 88.8 96.4 37.3 18.1 76.0
ROBFAME 55.5 79.6 92.5 87.3 96.3 35.2 19.3 76.1
PEGASUS 58.1 69.4 95.0 90.9 97.5 40.3 21.0 76.8
PEGFAME 58.5 71.0 95.3 91.0 97.6 41.1 21.1 76.9

Table 5: Faithfulness and qualitative assessment of summaries on CNN/DM dataset.

kens from the input to the necessary extent as the
encoder-decoder attention is not pre-trained. More-
over, Feqa scores for ROBERTAS2S and ROBFAME

may not be fully comparable due to variation in
their summary lengths and the number of Feqa
questions generated; the ROBFAME summaries, on
average, are 3 words longer and generate 1.2 more
questions than that of ROBERTAS2S. Nevertheless,
we don’t see this kind of drop in ¬cont. scores (i.e.,
summary not contradicting, either entailed by or
neutral to the document) and BERTScores.

C Text Editing Results

We also train the FAME models on two text editing
tasks: (i) for sentence fusion – the problem of com-
bining multiple sentences into a single coherent
sentence – we used the “balanced Wikipedia” por-
tion of the DiscoFuse dataset (Geva et al., 2019),
and (ii) for split-and-rephrase – the reverse task of
sentence fusion – we used the WikiSplit dataset
(Botha et al., 2018), which consists of 1M exam-
ples of sentence splits extracted from the Wikipedia
edit history. As the name suggests, both text editing
tasks require a low degree of abstraction.

For both the tasks, we train the models for 300k
steps with a global batch size of 256. The input and
output are padded to a length of 128, which covers
100% of the training, evaluation and test data. The
vocabulary for functional tokens F is constructed
by taking the top 100 and 500 sentence pieces for
DiscoFuse and WikiSplit respectively.

We report corpus-level BLEU14, the exact match
accuracy, and SARI scores (Xu et al., 2016)15. The
results can be seen in Table 6. The vanilla PEGA-
SUS model already beats the current state-of-the-art
on both DiscoFuse and WikiSplit. The PEGFAME

14We use NLTK v3.2.2 with case sensitive scoring to esti-
mate BLEU scores.

15SARI is a lexical similarity metric which com-
pares the model’s output to multiple references and
the input in order to assess the model’s ability to add,
delete, and keep an n-gram. It’s implementation is
available at: https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
utils/sari_hook.py.

DiscoFuse Exact SARI BLEU

(Geva et al., 2019) 51.1 84.5 –
LaserTagger (Malmi et al., 2019) 53.8 85.5 –

Felix (Mallinson et al., 2020) 61.3 88.8 –
ROBERTAS2S (Rothe et al., 2020) 66.6 90.3 –

PEGASUS (ours) 67.4 90.5 95.8
PEGFAME (ours) 67.8 90.7 95.9

WikiSplit Exact SARI BLEU

(Botha et al., 2018) 14.3 61.5 76.4
LaseTagger (Malmi et al., 2019) 15.2 61.7 76.3

ROBERTAS2S (Rothe et al., 2020) 16.4 63.8 77.4
PEGASUS (ours) 16.6 64.1 77.4
PEGFAME (ours) 16.8 64.1 77.3

Table 6: Text editing results on Discofuse and Wik-
iSplit. The underlined scores beat the current state-of-
the-art and the bold scores are the new state-of-the-art.

model performs better, albeit by a small margin, on
all metrics on DiscoFuse. On WikiSplit, it has a
higher exact match accuracy while maintaining the
SARI score and performs 0.1 BLEU worse than
PEGASUS.

D Controlled Generation with focus
attention using Top-k tokens

Table 7 presents results from our controlled sum-
mary generation experiments with top-k tokens
from tX using focus attention (Focustop,k) on the
XSUM test set. In Figures 3 and 4, we describe how
ROBFAME consistently outperforms PEGFAME at
lower values of k ∈ {50, 100, 200, 500, 1000} due
to their peaky and smooth tX , respectively. While
Figure 4 only plots ROUGE-1 F1 scores, Table 7 ad-
ditionally reports ROUGE-2, ROUGE-L, entailment,
Feqa, and BERTScores. Figure 6 presents predic-
tions from models using Focustop,k for the article
presented in Figures 1 and 5.

E Diverse Summarization with Divtop,k,
Divnucleus and Focussample,k

Figures 7 show the diverse summaries generated us-
ing Focussample,k for the article shown in Figure 5.
The predictions from Divtop,k and Divnucleus are
omitted due to the prescribed limit on the num-
ber of pages allowed for the Appendix. Please find
them on the arXiv version at https://arxiv.org/
abs/2105.11921.

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://arxiv.org/abs/2105.11921
https://arxiv.org/abs/2105.11921
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Metrics ROUGE ent. Feqa BERTScoreR1 R2 RL

ROBERTAS2S 41.45 18.79 33.90 39.1 19.8 80.6
ROBFAME 42.15 19.68 34.81 41.3 21.2 80.8

ROBFAME (Focustop,k=50) 30.90 10.60 24.85 27.1 10.6 74.2
ROBFAME (Focustop,k=100) 33.62 12.39 27.14 30.3 12.4 74.2
ROBFAME (Focustop,k=200) 35.99 14.12 29.23 32.4 13.9 77.3
ROBFAME (Focustop,k=500) 38.29 16.04 31.30 35.8 15.9 78.6

ROBFAME (Focustop,k=1000) 39.58 17.18 32.49 37.3 17.3 79.3
ROBFAME (Focustop,k=10000) 41.58 19.13 34.30 40.7 20.2 80.5

PEGASUS 44.85 22.26 37.03 43.6 24.5 81.7
PEGFAME 45.31 22.75 37.46 44.8 24.8 81.9

PEGFAME (Focustop,k=50) 24.30 7.52 19.32 20.8 8.0 68.8
PEGFAME (Focustop,k=100) 27.77 9.26 22.09 24.1 9.3 71.3
PEGFAME (Focustop,k=200) 31.05 11.14 24.82 27.0 10.8 73.6
PEGFAME (Focustop,k=500) 34.99 13.65 28.19 31.0 13.0 76.2

PEGFAME (Focustop,k=1000) 37.40 15.30 30.16 33.6 14.9 75.9
PEGFAME (Focustop,k=10000) 42.76 19.89 34.97 40.2 20.1 80.5

Table 7: Assessment of controlled summary generation with focus sampling Focustop,k on the XSUM test set.
We experiment with limiting FAME models to different sizes of vocabulary Vk using the topic distribution tX ; in
particular, we experiment with k = {50, 100, 200, 500, 1000, 10000}. We also report numbers for ROBERTAS2S,
ROBFAME, PEGASUS and PEGFAME, using the whole vocabulary of size 50k. The bold results in each block are
the best performing ROBERTAS2S-based and PEGASUS-based models.

GOLD Australia has expelled an Israeli diplomat saying Israel was behind the forging of Australian
passports linked to the murder of a Hamas operative in Dubai.

Article Australia’s foreign minister said these were “not the actions of a friend”.
The UK took similar action in March, after concluding that Israel was responsible for the use of
forged UK passports in the plot.
The Israeli foreign ministry said Australia’s decision was disappointing.
Ministry spokesman Yigal Palmor said it was “not in line with the importance and the quality of
the relationship between our countries”.
’Sorrow not anger’
At least four forged Australian passports were used in the killing of Mahmoud al-Mabhouh in
Dubai in January. The originals belonged to Australians living in Israel.
The Australian government said a police investigation had left it in no doubt that the Israeli
authorities were behind “the abuse and counterfeiting of the passports”.
As a result Foreign Minister Stephen Smith asked Israel to withdraw a diplomat, whom he did
not identify.
“The decision to ask Israel to remove from Australia one of its officers at the Israeli embassy in
Canberra is not something which fills the Australian government with any joy,” he said.
“On the contrary, the decision was made much more in sorrow than in anger.”
Passports from France, Ireland, Germany and Britain were used in the operation, and in March,
the British government expelled an Israeli diplomat from London.
The Israeli government has said there is no proof that it was behind the killing, although Dubai
officials have said they are 99.9% sure that agents from Mossad were responsible.

ROBERTAS2S Australia has asked Australia to withdraw an Israeli diplomat from its embassy in Canberra after
an alleged plot to kill a Abu Dhabi militant in Dubai.

ROBFAME Australia has asked Israel to withdraw one of its diplomats from its embassy in Canberra after it
admitted it used forged passports.

PEGASUS Australia has expelled an Israeli diplomat after concluding that forged Australian passports used
in the killing of a Hamas militant in Dubai were issued by Israel.

PEGFAME The Australian government has expelled an Israeli diplomat over the use of forged Australian
passports in the killing of a Hamas militant in Dubai.

Figure 5: A 2010 BBC article from the XSUM testset, its human written summary and model predictions from
ROBERTAS2S, and PEGASUS, with and without FAME. The text in orange is not supported by the input article.
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ROBFAME (Focustop,k=50) Australia has said it will not be expelled an ambassador from Australia following the
alleged s agent for the so-called Arab Arab State.

ROBFAME (Focustop,k=100) Australia has said it will not be expelled an ambassador from Australia following the
killing of a terror agent in the Arab world.

ROBFAME (Focustop,k=200) Australia has said it will not be expelled an ambassador from Australia following the
killing of an Australian terror suspect in the Arab world.

ROBFAME (Focustop,k=500) Australia has asked Israel to end its diplomatic investigation into an alleged plot to
murder an Australian terror suspect.

ROBFAME (Focustop,k=1000) Australia has asked Israel to strip an ambassador from its embassy following the death
of an Arab man in Dubai.

ROBFAME (Focustop,k=10000) Australia has asked Israel to withdraw one of its diplomats from its embassy in Canberra
following the death of a terror suspect.

PEGFAME (Focustop,k=50) The Israeli government has been expelled from the country after it was found that the
country’s security agency, the Israeli intelligence agency, was to be to be found to have
used a number of the country’s out-of-country p when it was used in the Emirates car-j
best.

PEGFAME (Focustop,k=100) The Israeli government has been expelled from the country after it was found that the
country’s security agency, the Israeli intelligence agency, had used the country’s visas in
the Emirates terror.

PEGFAME (Focustop,k=200) The Australian government has expelled an Israeli diplomats after it found that the
country’s security agency, the Israeli intelligence agency, had used the country’s visas in
the Emirates terror attack.

PEGFAME (Focustop,k=500) The Australian government has expelled an Israeli diplomatic staff after accusing the
country’s security agency, the Israeli intelligence agency, of using a number of Australian
visas in the Emirates terror attack.

PEGFAME (Focustop,k=1000) Australia has expelled an Israeli diplomatic staff after accusing the country’s security
agency, the Israeli military’s intelligence agency, of being responsible for the use of
Australian visas used in the killing of a Palestinian.

PEGFAME (Focustop,k=10000) Australia has expelled an Israeli diplomat over the use of forged Australian passports in
the killing of a Hamas militant in Dubai.

Figure 6: Model predictions with focus sampling Focustop,k, a controlled generation setting. The text in orange is
not supported by the input article. We note that with smaller values of k, both ROBERTAS2S-based and PEGASUS-
based models tend to hallucinate more often.

ROBFAME (Focussample,k)
Australia has asked Israel to strip one of its diplomats from its embassy following the death of an Arab man in Dubai.
Australia has asked Israel to end its diplomatic investigation into an alleged plot to murder an Australian terror suspect.
Australia has asked Israel to strip one of its diplomats from its embassy in Australia over the death of a terror suspect.

PEGFAME (Focussample,k)
The Australian government has expelled an Israeli diplomatic staff after accusing it of using a number of Australian
visas in the killing of a Palestinian in a car bombing.
The Australian government has expelled an Israeli diplomatic staff after it said the country was responsible for the use of
Australian visas used in the killing of a Palestinian in a car bombing.
Australia has expelled an Israeli diplomatic staff after accusing the country’s security agency, the Israeli military’s
intelligence agency, of being responsible for the use of Australian visas used in the killing of a Palestinian.
Australia has expelled an Israeli diplomatic mission after accusing the country’s security agency, the Israeli military’s
intelligence agency, of being responsible for the use of Australian visas used in the killing of a Palestinian in the Arab
city of Emirates.
The Australian government has expelled an Israeli diplomatic staff after it said the country was responsible for the use of
Australian visas used in the killing of a Palestinian in the Middle East.

Figure 7: FAME model predictions with Focussample,k (k = 10000). The text in orange is not supported by the
input article.


