
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6026–6041

August 1–6, 2021. ©2021 Association for Computational Linguistics

6026

Long-Span Summarization via Local Attention and Content Selection

Potsawee Manakul and Mark J. F. Gales
Department of Engineering, University of Cambridge
pm574@cam.ac.uk, mjfg@eng.cam.ac.uk

Abstract

Transformer-based models have achieved
state-of-the-art results in a wide range of nat-
ural language processing (NLP) tasks includ-
ing document summarization. Typically these
systems are trained by fine-tuning a large pre-
trained model to the target task. One is-
sue with these transformer-based models is
that they do not scale well in terms of mem-
ory and compute requirements as the input
length grows. Thus, for long document sum-
marization, it can be challenging to train or
fine-tune these models. In this work, we ex-
ploit large pre-trained transformer-based mod-
els and address long-span dependencies in ab-
stractive summarization using two methods:
local self-attention; and explicit content se-
lection. These approaches are compared on
a range of network configurations. Experi-
ments are carried out on standard long-span
summarization tasks, including Spotify Pod-
cast, arXiv, and PubMed datasets. We demon-
strate that by combining these methods, we
can achieve state-of-the-art results on all three
tasks in the ROUGE scores. Moreover, with-
out a large-scale GPU card, our approach can
achieve comparable or better results than exist-
ing approaches.1

1 Introduction

Transformer-based models (Vaswani et al., 2017)
are ubiquitously state-of-art across many natural
language processing (NLP) tasks, including sum-
marization. To achieve the best results, the com-
munity has trained ever larger transformer models
on larger amount of data, and/or more task-specific
optimization objectives (Devlin et al., 2019; Raf-
fel et al., 2020; Lewis et al., 2020; Brown et al.,
2020). In long document summarization, the input

1Our code is available at https://github.com/
potsawee/longsum0.

sequences could be more than an order of mag-
nitude longer than the limits of these transformer
models. Although the limits can be extended, train-
ing large transformer models on long sequences is
expensive and may not be possible on a standard
GPU card because of the self-attention mechanism
that grows quadratically with sequence length.

To tackle the quadratic characteristic, recent
works have modified self-attention mechanism and
proposed variants of the transformer such that the
quadratic complexity is reduced (Tay et al., 2020b;
Kitaev et al., 2020; Child et al., 2019; Beltagy
et al., 2020; Ainslie et al., 2020; Zaheer et al.,
2020). However, pre-trained weights of the mod-
ified models are not readily available. In contrast,
standard models such as BERT (Devlin et al., 2019)
or BART (Lewis et al., 2020) have been trained on
various target tasks, including text summarization
(Liu and Lapata, 2019b). This allows practition-
ers to achieve good performance with less training
time. Thus, we are interested in exploiting pre-
trained models for long-span summarization tasks.

We study a range of design configurations empir-
ically and theoretically in regards to memory and
compute requirements as well as their performance.
We propose that long-span dependencies can be
handled by two complementary methods. Firstly,
inspired by modified self-attention transformers,
we exploit standard transformer models by con-
straining attention mechanism to be local, allow-
ing longer input spans during training. Secondly,
because abstractive summarization systems per-
form content selection implicitly (Nallapati et al.,
2016; Lebanoff et al., 2020), to reduce memory
and compute requirements an alternative method
is to perform content selection explicitly before
the abstractive stage. We study content selection
during two phases: training time and test time. At
training time, we investigate methods to select data
for training fixed-span abstractive models. At test

https://github.com/potsawee/longsum0
https://github.com/potsawee/longsum0

6027

time, we extend existing model-based selection
methods, and we propose a multitask content selec-
tion method that ranks sentences through extractive
labelling based module (Cheng and Lapata, 2016)
and attention based module (See et al., 2017). Ulti-
mately, we explore the combined approach, consist-
ing of local self-attention transformer and content
selection for long-document summarization.

We conduct our experiments using a number
of design configurations on the Spotify open-
domain Podcast summarization dataset (Clifton
et al., 2020). This dataset is challenging not only
because of its long-span nature, but also because
transcribed spoken utterances typically have lower
information density (Li et al., 2019; Manakul et al.,
2020). Furthermore, we carry out experiments on
arXiv and PubMed datasets (Cohan et al., 2018) to
further demonstrate and verify the effectiveness of
our approach as well as making comparisons to ex-
isting approaches. We highlight the strengths and
weaknesses of our approach in different resources
and tasks. The main contributions of this paper are:

• On local self-attention, we show how to ex-
ploit a standard transformer model for long-
span summarization, and we show good de-
sign considerations based on empirical results.

• On content selection, we demonstrate the best
selection method at training time, and we
propose a multitask content selection (MCS)
method outperforming baselines at test time.

• Our work has set new state-of-the-art re-
sults on Spotify Podcast, arXiv and PubMed
datasets in the ROUGE scores. Furthermore,
with a small-scale GPU card, our approach
achieves comparable or superior performance
to previous state-of-the-art systems.

2 Related Work
Efficient Transformers. Pre-trained transformer
models have shown success and become the start-
ing point for various NLP problems such as BERT
(Devlin et al., 2019) in contextual representation,
GPT2 in text generation (Radford et al., 2019),
or BART in seq2seq tasks (Lewis et al., 2020).
However, the memory and time requirements for
transformer models grow quadratically with the se-
quence length, and for long-span tasks this quickly
leads to GPU running out of memory in training.
To mitigate the quadratic nature, a wide range of
modified architectures have recently been proposed

(Tay et al., 2021). They reduce the quadratic com-
plexity of the full self-attention mechanism by us-
ing fixed attention patterns (Parmar et al., 2018;
Dai et al., 2019; Child et al., 2019; Qiu et al., 2020;
Ainslie et al., 2020; Zaheer et al., 2020; Beltagy
et al., 2020), learnable patterns (Kitaev et al., 2020;
Tay et al., 2020a), low-rank matrix approximation
(Wang et al., 2020), or kernel method (Choroman-
ski et al., 2021). Alternatively, it has been shown
that some attention heads are redundant and can
be pruned to reduce model size (Voita et al., 2019;
Michel et al., 2019). Knowledge distillation re-
duces memory and compute by compressing a
large model to a smaller one (Hinton et al., 2015;
Sanh et al., 2019). In contrast, we focus on the
dependencies of long input and target sequences
in encoder-decoder architectures, and we exploit
publicly available transformer models with summa-
rization weights to long-span summarization tasks.

Long-span Summarization. Efficient transformer
architectures have been applied to summarize long
documents such as BigBird (Zaheer et al., 2020),
and Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020), which has recently been revised par-
allel to this work.2 Hierarchical transformer archi-
tectures have been applied to multi-document sum-
marization (Liu and Lapata, 2019a), and extractive
news and table-to-text summarization (Zhang et al.,
2019; Narayan et al., 2020). Hierarchical attention
RNN system has been applied to summarize long
articles (Cohan et al., 2018).

Alternatively, earlier methods show that good
content selection helps abstractive news sum-
marization systems (Chen and Bansal, 2018;
Gehrmann et al., 2018; Hsu et al., 2018). Hy-
brid systems that select sentences and generate an
abstractive summary have been proposed such as
extractive system + TLM for scientific articles (Pi-
lault et al., 2020), simple selection + BART for
podcasts (Manakul and Gales, 2020; Song et al.,
2020), and guided summarization by BERT-based
keyword/sentence extraction + BART for news and
scientific articles (He et al., 2020; Dou et al., 2021).

Other work includes dividing the source and tar-
get into multiple smaller pairs to train abstractive
summarizers (Gidiotis and Tsoumakas, 2020). Ex-
tractive methods with and without redundancy re-
duction techniques for long-span summarization
have been studied (Xiao and Carenini, 2019, 2020).

2On the self-attention aspect, we believe this system is
the most comparable to ours (see comparisons in Sec. 6.2).

6028

ORACLEpad-rand

Multitask CS

Local Self-Attn
Transformer

Summary

Reference

len N0 len N len M

Design for large N (Sec.4)
Train-time CS (Sec.5.1)

Test-time CS (Sec.5.2) Combination (Sec.6)

Train

Test

Figure 1: Overview of the combined architecture where we highlight different aspects of this work. N0 is the
original document length, N is the input length to the generation system, and M is the summary length.

3 Experimental Setup

3.1 Dataset
Spotify Podcast.3 The dataset consists of ASR
transcripts with human descriptions as summaries
(Clifton et al., 2020). We follow the data
processing at TREC2020 (Jones et al., 2020)
in removing bad transcript-summary pairs from
a total of 105,360+1,027 episodes, resulting
in train/valid/test splits of 60,415/2,189/1,027
episodes the same as Manakul and Gales (2020).

arXiv and PubMed. Popular long document sum-
marization datasets consist of academic articles
with abstracts as summaries (Cohan et al., 2018)
and train/valid/test splits of 203,037/6,436/6,440
for arXiv and 119,924/6,633/6,658 for PubMed.

Dataset #Doc Input 90th% Target

Podcast 106k 5,727 11,677 61.1
arXiv 216k 8,584 16,108 367

PubMed 133k 3,865 7,234 260

Table 1: Length Statistics (mean & 90th%-ile).

3.2 Models
BART and LoBART. We use the publicly released
BART model (Lewis et al., 2020) fine-tuned on CN-
NDM (Hermann et al., 2015).4 Following the lo-
cal window attention in Sparse Transformer (Child
et al., 2019) and Longformer (Beltagy et al., 2020),
we modify the self-attention mechanism in the en-
coder to local self-attention (see Figure 2), and we
refer to this local self-attention BART as LoBART.
It has the same architecture as BART, e.g. the num-
ber of parameters, except that we extend positional
embedding beyond 1,024 by copying BART’s posi-
tional embedding with flipping to allow a smoother
transition. See details in Appendix B.1.

3https://podcastsdataset.byspotify.com
4https://huggingface.co/facebook/

bart-large-cnn

(a) Full (b) Local (W=9)

Figure 2: Self-Attention Pattern.

Hierarchical RNN. The content selection model
is based on a hierarchical encoder-decoder architec-
ture that has been shown effective on meeting and
long document summarization (Cohan et al., 2018;
Zhao et al., 2019; Li et al., 2019). The model con-
sists of word-level and sentence-level GRUs (Cho
et al., 2014). We add a linear layer on top of the
sentence-level GRU to perform extractive labelling.
The sentence-level attention mechanism and extrac-
tive labelling modules form our multitask content
selection (MCS). More details in Section 5.2.

We provide the full details about our implemen-
tation, model parameters, hyperparameters, opti-
mizer, and training configurations in Appendix B.

4 Longer Span via Local Self-Attention

It has been known that memory and compute com-
plexity of transformers is quadratic with the se-
quence length. However, in encoder-decoder archi-
tectures, the exact dependencies on input length N ,
target length M , and batch size B are less under-
stood. This is particularly important in long-span
seq2seq tasks because large memory or compute
requirement could make training impractical. Thus,
this work studies these dependencies, and shows
the trade-off between the size of input span and the
size of attention span in local self-attention.

4.1 Memory Analysis and LoBART Design

Firstly, through a regression analysis for an
encoder-decoder architecture such as BART, the

https://podcastsdataset.byspotify.com
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn

6029

memory required in training is:

cb1 +B(cb2M + cb3N + cb4MN + cb5M
2 + cb6N

2)

The term cb1 depends on only the model size and
optimizer, and it is constant (theoretical calculation
provided in Appendix A). The remaining terms
are activation memory associated with the activa-
tion outputs cached for backpropagation, and they
grow with N , M , and B. Table 2 shows system-
independent5 regression results for the memory in
training BART. It is apparent that as N grows the
dominant term is cb6N

2, which is associated with
the encoder self-attention. Thus, this motivates us
to modify self-attention only on the encoder side.

Term cb1 cb2M cb3N cb4MN cb5M
2 cb6N

2

GiB 6.05 0.23 0.84 0.21 0.02 1.53

Table 2: BART’s Memory Profile (N=1024, M=144).

By introducing local self-attention of width W , the
memory in training LoBART becomes:

cl1 +B(cl2M + cl3N + cl4MN + cl5M
2 + cl6NW)

For large N , the memory is now dominated by
cl6NW . The coefficient cl6 ≈ 1.72cb6, suggesting
thatW should be at most 0.58N to reduce memory.
We provide more details about the exact theoretical
calculation for model and optimizer memory as
well as time complexity in Appendix A.

The memory for training BART/LoBART in Fig-
ure 3 enables us to choose an operating point. Ad-
ditionally, other complementary techniques for re-
ducing memory in training include: (i) gradient-
checkpoint where a subset of intermediate values in
the computation graph are cached, and the rest are
re-computed during backpropagation (Chen et al.,
2016), but this requires changes to optimization
and leads to longer training time; (ii) half/mixed-
precision training (Micikevicius et al., 2018) that
would almost halve y-axis in Figure 3, but this
requires changes to the model precision and may
result in lower performance; (iii) model parallelism
with micro-batching (Huang et al., 2019), but this
method requires multiple accelerators.

4.2 BART and LoBART
We study the characteristics of the full self-
attention in BART by defining the mean attention

5system-independent across hardware and machines; al-
beit implementation-dependent. This analysis is based on
widely used PyTorch and Huggingface implementation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Input Length (N)

0

10

20

30

40

M
em

or
y

U
sa

ge
 (G

iB
) 32GiB

16GiB

12GiB

BART (Full Attn)
LoBART (Local Attn, W=1024)
LoBART (Local Attn, W=512)
LoBART (Local Attn, W=256)
LoBART (Local Attn, W=128)

Figure 3: Operating points for B=1 and M=144. (1)
Section 4 studies local attention to reduce quadratic
complexity to linear. As W decreases, the gradient of
linear complexity decreases. (2) Section 5 studies con-
tent selection to move an operating point to the left.

distance in a particular layer and head as follows:

D =
1

N

N∑
i=1

 N∑
j=1

αi,j × |i− j|

 (1)

where αi,j is the attention weight of position i

attending to position j (
∑N

j=1 αi,j = 1). This
measure corresponds to the average distance of
self-attention. If the attention weight is uniform,
DU = N2−1

3N . For N = 1024, DU = 341. In
Figure 4, our results show that most layers have a
shorter mean distance than DU , supporting that the
information is more localized. The mean distances
of differently initialized BART models computed
on the podcast data also show that the attention
mechanism is learned during pre-training stage as
there is little variation after the pre-training stage.
As illustrated in Figure 4, the average attention dis-
tance D of the BART model is around 250-350
tokens. This suggests the window size W should
be designed to be above 700, allowing half local
attention window W/2 be greater than 250-350
to effectively match BART and to exploit transfer
learning more efficiently.

Subsequently, we train different configurations
of BART/LoBART models up to our GPU memory
limit of 32GiB. The results in Table 3 show that:
(i) expanding the model to accommodate longer in-
put spans improve over the baseline BART(1k) as
opposed to Manakul and Gales (2020) that trained
longer-span models by freezing bottom layers and
did not show any improvement over their baseline;
(ii) Although LoBART(8k) with W=512 can pro-
cess longer input spans than LoBART(4k) with
W=1024, it performs worse and we suggest that
this is because LoBART(8k)’s window is too small,

6030

0 2 4 6 8 10
Layer ID (Bottom=0, Top=11)

150

200

250

300

350

400

450

500

Av
er

ag
e

At
te

nt
io

n
D

is
ta

nc
e

Average Attention Distance over All Heads (mean±std)

random weights
D_U
bart-large (no-finetune)
bart-cnn
bart-podcast

Figure 4: The average mean distance across multi-
heads for each layer. The average mean distance of
the random weight model is slightly lower than DU as
some inputs are shorter than 1,024.

e.g. <700, to utilize transfer learning efficiently
and its effective receptive field is also smaller.

System W GiB R1 R2 RL

BART(1k) Full 8.9 26.43 9.22 18.35

LoBART(2k) 128 9.6 25.88 8.89 17.87
LoBART(2k) 256 10.2 25.93 8.80 17.82
LoBART(2k) 512 11.6 26.35 8.98 18.19
LoBART(2k) 1024 14.2 26.44 9.26 18.25
BART(2k) Full 14.5 26.63 9.41 18.65

LoBART(4k) 128 12.8 26.42 9.02 18.12
LoBART(4k) 256 14.1 26.66 9.22 18.33
LoBART(4k) 512 16.7 26.75 9.54 18.54
LoBART(4k) 1024 22.0 27.02 9.57 18.78

LoBART(8k) 128 19.3 26.45 9.04 18.23
LoBART(8k) 256 21.1 26.72 9.30 18.36
LoBART(8k) 512 27.1 26.90 9.47 18.50

Table 3: BART & LoBART memory requirement in
training and performance. (nk) denotes maximum in-
put length of n× 1024.

5 Longer Span via Content Selection

Some input sequences still exceed LoBART’s
longer fixed-span limit. Further extending the
input span would lead to a small local attention
span, a diminishing improvement, or GPU running
out of memory. Alternatively, it has been shown
that a better content selection improves abstractive
summarization in news (Chen and Bansal, 2018;
Gehrmann et al., 2018; Hsu et al., 2018), multi doc-
uments (Liu and Lapata, 2019a; Liu et al., 2018),
and scientific articles (Pilault et al., 2020). Thus,
we propose to tackle the excess length by content
selection. Here, we distinguish between two phases
of content selection: training time and test time.

5.1 Training-time Content Selection
During training, ground-truth targets are available.
We categorize selection methods in this phase into
two types: ground-truth based (model-free), which
is also referred to as oracle; and model-based.
Ground-truth based methods cannot be used at
test time, while model-based methods can be
applied at both phases. Although model-based
methods do not rely on ground-truth targets, they
have the advantage of matching in training and
test phases. Existing oracle methods include
using ROUGE-2 recall (Liu et al., 2018) or
the average of ROUGE-1,2,L recall (Pilault
et al., 2020). We discuss model-based methods
in Section 5.2, where we propose the MCS
method. Let the subscript (i, j) denote the
position of the j-th word in the i-th input sentence,
the full input X = {x1, ...,xi, ...,xN1} =
[x1,1, x1,2, x1,J1︸ ︷︷ ︸

sent 1

, ..., xi,1, xi,Ji︸ ︷︷ ︸
sent i

, ..., xN1,1, xN1,JN1︸ ︷︷ ︸
sent N1

].

Content selection re-ranks, truncates, and sorts X
to get Xcs for training BART/LoBART as follows:

X̄ = {xr1 ,xr2 ,xr3 , ...,xrR} (2)

Xcs = SortOrig(TruncateN(X̄)) (3)

where ri is the index of the sentence of rank i, the
TruncateN operation filters X̄ such that the total
of number of words is less than N , and SortOrig

retains the original sentence order. The following
ranking methods are considered:

• Truncation (TRC): rk = k.

• Model-based: Given the score f of model φ,
rk = {i ∈ N1 : fφ(i|X) is ranked k-th}

• Oracle (ORC): Given the ground-truth sum-
mary y and similarity measure d,
rk = {i ∈ N1 : d(xi,y) is ranked k-th}

In this work, we use ROUGE-2 recall as the sim-
ilarity measure d. For the ORC method, first, we
retain only sentences with positive d, leading to
R ≤ N1. We found that the number of sentences
with positive d is low at 21.3% of the total number
of sentences in average on podcast data. This cor-
responds to 56% of training instances being shorter
than BART input span of 1024.6 This no-padding
oracle method (ORCno-pad) is highly aggressive,
potentially preventing the downstream summarizer

6We refer to this percentage as %AgORCno-pad (the per-
centage of inputs aggressively extracted by the oracle method).

6031

from learning complex abstraction. Hence, we
propose variants of oracle methods to extend the
ORCno-pad-selected input to the max input span N :

• ORCpad-lead: Pad by leading unselected sen-
tences and keep the original sentence order.

• ORCpad-rand: Pad by random unselected sen-
tences and keep the original sentence order.

TRC MCS ORC-pad-lead ORC-pad-rand ORC-no-pad

22.0

24.0

26.0

28.0

30.0

32.0

34.0

R
O

U
G

E-
1

(F
1)

27.88 28.14

29.99
30.39

32.39

26.82
27.24

26.34
27.28

25.26
26.43 26.32

24.78
25.54

22.71

Abstractive Generation Performance of Downsteam BART

TestTime: Oracle (UpperBound)
TestTime: MCS (CurrentBest)
TestTime: Truncate (Baseline)

Figure 5: The impact of training-time content selection
methods on BART(1k) performance.

In Figure 5, since any oracle method is consid-
ered cheating at test time, the best performance
is obtained by MCS (in blue), and the upper
bound performance is obtained by optimal oracle
method (in green). The results show that although
ORCno-pad yields the highest upper bound, the ab-
stractive model in fact does not learn how to per-
form abstraction. For instance, with TRC or MCS
at test time, ORCno-pad yields the lowest perfor-
mance level. The best way to fine-tune the abstrac-
tive model shown in Figure 5 is using ORCpad-rand.
Compared to ORCpad-lead, ORCpad-rand is better as it
introduces more diversity to the abstractive model.
Compared to the model-based method, ORCpad-rand
is also computationally less expensive.

In addition, Table 5 shows that when there is
no content selection at test time (i.e. TRC ap-
plied), LoBART(4k) and LoBART(8k) benefit from
ORCpad-rand, whereas BART(1k) does not. This is
because in the 1k setting, content selection is more
aggressive; as a result, the large mismatch between
training and test leads to a poor result. Thus, we
suggest that the best content selection during train-
ing is ORCpad-rand given that content selection will
be used at test time, or model’s input span is long.

5.2 Multitask Content Selection (MCS)
To process long input sequences entirely, we con-
sider RNN, whose memory requirement grows lin-

early with the sequence length, and hierarchical
architectures which have been shown effective for
long seq2seq tasks (Cohan et al., 2018; Li et al.,
2019). In this work, the hierarchical RNN model
described in Section 3.2 has memory requirement
given the target length of 144 during training of
0.83+B(3.96×10−5+3.33×10−5N2)N1,7 where
N1 is #sentences, and N2 is the maximum number
of words in a sentence, and B is batch size. By
setting N1=1000 and N2=50, only 2% of podcast
data exceeds this limit, while taking GPU memory
to only 2.53GiB for B=1. Thus, this shows that
this model can cover long sequences.

Previous model-based methods treat content se-
lection as extractive labelling and create labels
heuristically (Pilault et al., 2020), or using encoder-
decoder attention mechanism (Manakul and Gales,
2020). To utilize both of these in one framework,
we propose a Multitask Content Selection (MCS)
method where we train the hierarchical encoder-
decoder with attention mechanism and a classifi-
cation layer on top of the encoder (described in
Section 3.2). First, the model is trained on seq2seq
abstractive summarization objective:

Lseq2seq = −
M∑

m=1

logP (ym|y<m,X) (4)

Second, we create binary labels as follows: for
sentence i, the label zi is 1 if d(xi,y) > 0; else zi
is 0, and d is the ROUGE-2 recall measure. The
extractive labelling task objective is:

Llabel = −
∑N1

i=1 (zi log ẑi + (1− zi) log(1− ẑi)) (5)

ẑi = sigmoid(WT
clshi + bcls) (6)

where hi is the sentence-level encoder output as-
sociated with sentence i, and Wcls,bcls are the
parameters of the classification layer. Thus, the
MCS training loss is defined as follows:

LMCS = γLlabel + (1− γ)Lseq2seq (7)

At inference stage, there are two modes: (i) stan-
dard abstractive summary generation, e.g. via beam
search decoding; (ii) ranking input sentences via
labelling score and seq2seq attention score. The
latter is how we use MCS during inference.8 For
sentence i, the scores are:

scorei,(label) = ẑi, scorei,(seq2seq) =
∑M

m=1 α
s
m,i

(8)
7Obtained by least-squares regression with 20 samples.
8In practice, we run beam search decoding of width 4,

and we obtain the attention score from the top beam.

6032

where αsm,i is the sentence-level attention weight
at decoder step m over input sentence i. Since
the scores are on different scales, rather than using
the scores defined in Eq. 8, we simply rank the
scores, and then normalize the score ranks into the
range 0.0 to 1.0. Let nscore denote the normalized
ranking score, the MCS inference score is:

fφ(i|X) = nscorei,(label) + nscorei,(seq2seq) (9)

In our preliminary experiments, we vary the
amount of selected sentences from the limit of
BART/LoBART to a few sentences, and we found
that more aggressive selection at test time degrades
the performance. Therefore, our MCS selects input
sentences up to the limit of BART/LoBART.

By setting γ=0.0, our method is comparable to
the attention-based method in Manakul and Gales
(2020). By setting γ=1.0, our method is similar
to the extractive models in Hsu et al. (2018); Pi-
lault et al. (2020). In Table 4, we show that when
coupled with BART, MCS yields better summariza-
tion performance than both Attn-only and Ext-only
baselines. MCS also achieves higher recall rate of
sentences with d(xi,y) > 0 than the two baselines.

System %Recall R1 R2 RL

Attn (Lseq2seq) 38.85 26.90 9.70 18.78
Ext (Llabel) 35.26 26.39 8.90 18.03

MCS (LMCS) 40.50 27.28 9.82 19.00

Table 4: The impact of test-time content selection meth-
ods on BART(1k) trained using ORCpad-rand. Optimal
γ=0.2 is tuned between 0.0-1.0 on the validation set.

6 Combined Approach

6.1 Spotify Podcast results

In Table 5, a performance gain is obtained in all
settings by adding MCS. By comparing different
configurations with MCS, it can be seen that the
gain from MCS in LoBART(8k) system is the low-
est. This is because the average length is 5,727,
meaning that many Podcasts inputs to LoBART(8k)
do not benefit from content selection.

CUED-filt, the best single-model system in Man-
akul and Gales (2020), uses an attention-based con-
tent selection at both training and test time, and
it is combined with fine-tuned vanilla BART. Our
approach outperforms CUED-filt by improved con-
tent selection at both training time and test time as

demonstrated by BART(1k)-ORC+MCS. Addition-
ally, local self-attention allows training on longer
sequences, and our LoBART(4k)-ORC+MCS sys-
tem has yielded the best results. Lastly, even
though LoBART(8k) requires more resource to
train, it does not perform as well as LoBART(4k)
due to its smaller attention window, and it also has
a lower improvement when adding MCS.

System CS-trn CS-tst R1 R2 RL

CUED-filt∗ 3 3 26.96 9.75 18.90

BART(1k) 7 7 26.43 9.22 18.35
BART(1k) 7 MCS 26.82 9.39 18.57
BART(1k) ORC 7 25.54 9.00 17.83
BART(1k) ORC MCS 27.28 9.82 19.00

LoBART(4k) 7 7 27.02 9.57 18.78
LoBART(4k) 7 MCS 27.53 9.95 19.08
LoBART(4k) ORC 7 27.36 10.04 19.33
LoBART(4k) ORC MCS 27.81 10.30 19.61

LoBART(8k) 7 7 26.90 9.47 18.50
LoBART(8k) 7 MCS 27.02 9.52 18.62
LoBART(8k) ORC 7 27.16 9.84 19.08
LoBART(8k) ORC MCS 27.49 9.98 19.25

Table 5: Podcast Results. The impact of training-time
ORCpad-rand and test-time MCS. ∗CUED systems were
the top systems by human evaluation at Spotify Chal-
lenge 2020; CUED systems use BART with a model-
based (trained on Lseq2seq) content selection in both
training and test stages.

6.2 ArXiv and PubMed results

To verify the effectiveness of our systems, we
re-train BART(1k) and LoBART(4k) on arXiv
and PubMed datasets. Our training is different
from Ext+TLM (Pilault et al., 2020) where their
abstractive models are trained using inputs ex-
tracted from top two sentences in ROUGE recall
for each target sentence without padding, similar
to ORCno-pad. Although in 1k setting, ORCno-pad
yields %AgORCno-pad (defined in Section 5.1) of
only 2.8% on arXiv (12% on PubMed), in 4k set-
ting this is 39% on arXiv (71% on PubMed). Based
on the best configurations on podcast data, we
train BART(1k) and LoBART(4k) using TRC or
ORCpad-rand content selection, and we train the hi-
erarchical model on arXiv/PubMed for MCS.

ArXiv. In Table 6, both BART(1k)+MCS and
LoBART(4k)+MCS outperform all existing sys-
tems. To better understand the advantages of our
approach, the following systems are compared:

6033

Type System
arXiv PubMed

R1 R2 RL R1 R2 RL
Pr

ev
io

us
W

or
k

Abs Discourse-Aware (Cohan et al., 2018) 35.80 11.05 31.80 38.93 15.37 35.21
Mix Ext+TLM (Pilault et al., 2020) 41.62 14.69 38.03 42.13 16.27 39.21
Ext ExtSum-LG+Rd(Xiao and Carenini, 2020) 44.01 17.79 39.09 45.30 20.42 40.95
Abs Pegasus (Zhang et al., 2020) 44.21 16.95 38.83 45.97 20.15 41.34
Abs DANCER (Gidiotis and Tsoumakas, 2020) 45.01 17.60 40.56 46.34 19.97 42.42
Abs BigBird(3k) (Zaheer et al., 2020) 46.63 19.02 41.77 46.32 20.65 42.33
Abs LED(4k) (Beltagy et al., 2020) 44.40 17.94 39.76 - - -
Abs LED(16k) (Beltagy et al., 2020) 46.63 19.62 41.83 - - -
Mix CTRLsum(BART+BERT) (He et al., 2020) 46.91 18.02 42.14 - - -

T
hi

s
W

or
k Abs †BART(1k) 44.96 17.25 39.76 45.06 18.27 40.84

Mix ‡BART(1k)+MCS 47.68 19.77 42.25 46.49 19.45 42.04
Abs ‡LoBART(4k) 46.59 18.72 41.24 47.47 20.47 43.02
Mix ‡LoBART(4k)+MCS 48.79 20.55 43.31 48.06 20.96 43.56

Table 6: Results on arXiv and PubMed. †denotes TRC applied, and ‡denotes ORCpad-rand applied at training time.

CTRLsum versus our BART(1k) baseline; LED
and BigBird versus our LoBART(4k) system.

CTRLsum extends BART by conditioning it with
extracted keywords v using a BERT-based model,
e.g. p(y|X,v). Their BERT-based model uses
sliding window allowing it to extract v in long
sequences, but their BART is still limited to the
first 1,024 tokens. As a result, it performs better
than BART(1k), but worse than BART(1k)+MCS.

LoBART(4k) has a similar architecture to
LED(4k) without the global attention pattern for
special tokens. Instead, our LoBART(4k) benefits
from knowledge transferred from CNNDM and the
ORCpad-rand training-time content selection, which
yields a larger gain when MCS is applied, i.e. the
system trained with truncated data has a smaller
gain when MCS is applied. Transfer learning com-
parison and additional results on the impact of
ORCpad-rand are provided in Appendix C.

Compared to BigBird, LoBART(4k) has a longer
input span, e.g. 3,072 vs. 4,096. However, BigBird
benefits from utilizing more recent summarization
specific pre-training Pegasus (Zhang et al., 2020)
which is better than our transfer learning. BigBird
incorporates a global attention pattern similar to
LED, and it also has a random attention pattern.
Hence, LoBART without MCS performs worse.

Ultimately, we show that adding MCS to either
BART(1k) or LoBART(4k) yields a significant im-
provement, resulting in state-of-the-art results in
both settings. Moreover, although the gain from
adding MCS is comparable to the gain observed
in extending LED(4k) to LED(16k), the content
selection method adds less training cost.

PubMed. Similarly, LoBART(4k)+MCS achieves
state-of-the-art results shown in Table 6. In con-
trast to the arXiv results, BART(1k)+MCS does not
outperform LoBART(4k) nor BigBird, and the gain
from MCS is not as high in both 1k and 4k settings.

6.3 Local Attention v.s. MCS.

Local attention yields better performance on
PubMed, while MCS yields better performance
on arXiv. To understand this discrepancy, a fine-
grained analysis is conducted.

0 2000 4000 6000 8000 10000 12000 14000 16000
Average input length in each partition

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Im
pr

ov
em

en
t i

n
RO

UG
E-

1

BART(1k)
BART(1k)+MCS
LoBART(4k)
LoBART(4k)+MCS

(a) arXiv (Len:Avg=8,584, 90th%=16,108)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Average input length in each partition

0.0

1.0

2.0

3.0

4.0

Im
pr

ov
em

en
t i

n
RO

UG
E-

1

BART(1k)
BART(1k)+MCS
LoBART(4k)
LoBART(4k)+MCS

(b) PubMed (Len:Avg=3,865, 90th%=7,234)

Figure 6: ROUGE-1 score relative to that of BART(1k)
system evaluated on different partitions by length.

6034

In Figure 6, we partition the test sets by input
lengths, and we evaluate the performance improve-
ment in each partition with respect to the BART(1k)
baseline.9 The results illustrate that as the input
length N increases:

• The improvement of systems with MCS in-
creases and subsequently plateaus out.

• The improvement of systems without MCS
decreases once the input exceeds the length
limit but then plateaus, suggesting that fixed-
span systems without content selection per-
form worse once the maximum fixed-span
is reached. For instance, below 4,000 input
words, LoBART(4k) without MCS performs
better than BART(1k)+MCS on both datasets.

Therefore, our MCS method is more effective on
arXiv compared to PubMed because the average
length of PubMed documents is more than twice
shorter than the average length of arXiv documents.

7 Conclusion

We study two methods for long-span summariza-
tion tasks. First, on local self-attention transform-
ers, we present the design considerations for local
self-attention BART, and we investigate the feasibil-
ity and performance of different network configura-
tions. Second, on content selection, we distinguish
between training time and test time methods, and
we provide a good practice for both phases. At
training time, we show that the oracle method with
random sentences padded (ORCpad-rand) yields the
best results. At test time, we propose multitask
content selection (MCS) that shows an improve-
ment over baselines. We demonstrate that content
selection is essential, in particular for longer docu-
ments such as the articles in the arXiv dataset. Our
BART(1k)+MCS outperforms the current best sys-
tems on Podcast and arXiv datasets, and this system
does not require a large-scale accelerator in train-
ing. Ultimately, by combining local self-attention
technique with MCS, our LoBART(4k)+MCS sys-
tem has set new state-of-the-art results in terms of
ROUGE scores in all three long-span summariza-
tion tasks. Future work will focus on training our
LoBART+MCS system in an end-to-end fashion.

9For arXiv/PubMed, each test set consists of over 6,000
instances, while Podcast test set has only 1,027 instances. The
same analysis is conducted on Podcast, but the results are
noisy due to the smaller size of its test set (see Appendix C).

Acknowledgments

This paper reports on research supported by ALTA
institute, Cambridge Assessment English, Univer-
sity of Cambridge, and Cambridge International &
St John’s College Scholarship. Thanks to Yiting
Lu, Qingyun Dou, Xixin Wu, Raf Czlonka, and
Kate Knill for interesting discussions and comput-
ing resource support. Thanks to the anonymous
reviewers for their helpful comments.

References

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284, Online. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 675–686, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494, Berlin, Germany. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/P16-1046

6035

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In Interna-
tional Conference on Learning Representations.

Ann Clifton, Sravana Reddy, Yongze Yu, Aasish Pappu,
Rezvaneh Rezapour, Hamed Bonab, Maria Eske-
vich, Gareth Jones, Jussi Karlgren, Ben Carterette,
and Rosie Jones. 2020. 100,000 podcasts: A spo-
ken English document corpus. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 5903–5917, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. GSum: A gen-
eral framework for guided neural abstractive summa-
rization. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4830–4842, Online. Association for
Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 28:3029–
3040.

Junxian He, Wojciech Kryściński, Bryan McCann,
Nazneen Rajani, and Caiming Xiong. 2020. CTRL-
sum: Towards generic controllable text summariza-
tion. arXiv preprint arXiv:2012.04281.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1693–1701.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 132–141, Melbourne, Australia. Association
for Computational Linguistics.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Xu Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. 2019. Gpipe: Efficient training of gi-
ant neural networks using pipeline parallelism. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 103–112.

Rosie Jones, Ben Carterette, Ann Clifton, Maria Es-
kevich, Gareth J. F. Jones, Jussi Karlgren, Aasish
Pappu, Sravana Reddy, and Yongze Yu. 2020. Trec
2020 podcasts track overview. In The 29th Text Re-
trieval Conference (TREC) notebook.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://openreview.net/forum?id=Ua6zuk0WRH
https://www.aclweb.org/anthology/2020.coling-main.519
https://www.aclweb.org/anthology/2020.coling-main.519
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/2021.naacl-main.384
https://www.aclweb.org/anthology/2021.naacl-main.384
https://www.aclweb.org/anthology/2021.naacl-main.384
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/P18-1013
https://doi.org/10.18653/v1/P18-1013
https://doi.org/10.18653/v1/P18-1013
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

6036

ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Logan Lebanoff, Franck Dernoncourt, Doo Soon Kim,
Walter Chang, and Fei Liu. 2020. A cascade ap-
proach to neural abstractive summarization with con-
tent selection and fusion. In Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the Associ-
ation for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 529–535, Suzhou, China. Associ-
ation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:
Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2190–2196, Florence, Italy. Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Yang Liu and Mirella Lapata. 2019a. Hierarchical
transformers for multi-document summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5070–5081, Florence, Italy. Association for Compu-
tational Linguistics.

Yang Liu and Mirella Lapata. 2019b. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Potsawee Manakul and Mark Gales. 2020.
CUED speech at TREC 2020 podcast sum-
marisation track. arXiv preprint arXiv:2012.02535.

Potsawee Manakul, Mark J.F. Gales, and Linlin Wang.
2020. Abstractive Spoken Document Summariza-
tion Using Hierarchical Model with Multi-Stage At-
tention Diversity Optimization. In Proc. Interspeech
2020, pages 4248–4252.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 14014–
14024.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Joshua Maynez, Jakub Adamek,
Daniele Pighin, Blaz Bratanic, and Ryan McDon-
ald. 2020. Stepwise extractive summarization and
planning with structured transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4143–4159, Online. Association for Computational
Linguistics.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages
4052–4061. PMLR.

Jonathan Pilault, Raymond Li, Sandeep Subramanian,
and Chris Pal. 2020. On extractive and abstractive
neural document summarization with transformer
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9308–9319, Online. As-
sociation for Computational Linguistics.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguis-

https://openreview.net/forum?id=rkgNKkHtvB
https://www.aclweb.org/anthology/2020.aacl-main.52
https://www.aclweb.org/anthology/2020.aacl-main.52
https://www.aclweb.org/anthology/2020.aacl-main.52
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.18653/v1/P19-1210
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://openreview.net/forum?id=Hyg0vbWC-
https://openreview.net/forum?id=Hyg0vbWC-
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.21437/Interspeech.2020-1683
https://doi.org/10.21437/Interspeech.2020-1683
https://doi.org/10.21437/Interspeech.2020-1683
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/2020.emnlp-main.339
https://doi.org/10.18653/v1/2020.emnlp-main.339
http://proceedings.mlr.press/v80/parmar18a.html
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.18653/v1/2020.findings-emnlp.232

6037

tics: EMNLP 2020, pages 2555–2565, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Kaiqiang Song, Chen Li, Xiaoyang Wang, Dong Yu,
and Fei Liu. 2020. Automatic summarization of
open-domain podcast episodes. arXiv preprint
arXiv:2011.04132.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020a. Sparse sinkhorn attention.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pages 9438–9447. PMLR.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2021.
Long range arena : A benchmark for efficient trans-
formers. In International Conference on Learning
Representations.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Sinong Wang, Belinda Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wen Xiao and Giuseppe Carenini. 2019. Extractive
summarization of long documents by combining
global and local context. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3011–3021, Hong Kong,
China. Association for Computational Linguistics.

Wen Xiao and Giuseppe Carenini. 2020. Systemati-
cally exploring redundancy reduction in summariz-
ing long documents. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 516–528, Suzhou, China. Associ-
ation for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 5059–5069, Florence, Italy. Association for
Computational Linguistics.

Zhou Zhao, Haojie Pan, Changjie Fan, Yan Liu, Linlin
Li, and Min Yang. 2019. Abstractive meeting sum-
marization via hierarchical adaptive segmental net-
work learning. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17,
2019, pages 3455–3461. ACM.

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D19-1298
https://doi.org/10.18653/v1/D19-1298
https://doi.org/10.18653/v1/D19-1298
https://www.aclweb.org/anthology/2020.aacl-main.51
https://www.aclweb.org/anthology/2020.aacl-main.51
https://www.aclweb.org/anthology/2020.aacl-main.51
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.1145/3308558.3313619
https://doi.org/10.1145/3308558.3313619
https://doi.org/10.1145/3308558.3313619

6038

A Detailed Memory & Time Analysis

Our memory analysis is system-independent, al-
beit implementation-dependent. We carry out the
experiments using PyTorch version 1.2.0. We use
pytorch_memlab10 to compute GPU memory
during forward and backward passes. Our nota-
tion is: input length N , target length M , local
self-attention width W , and batch size B.

A.1 BART Memory
We collect 30 samples, spanning N ∈ [64, 3000]
and M ∈ [36, 576] using batch size of 1. Our
least-squared regression of the memory equation
memory = cb1+B(cb2M+cb3N+cb4MN+cb5M

2+
cb6N

2) yields R2 = 1,RMSE = 0.026, and the
coefficients are: cb1 = 6.054, cb2 = 1.594 × 10−3,
cb3 = 8.192 × 10−4, cb4 = 1.418 × 10−6, cb5 =
1.077× 10−6, cb6 = 1.456× 10−6.

Model and Optimizer
The constant term cb1 = 6.054 GiB is independent
of batch size, system, or implementation (given
the same floating-point precision). This term com-
prises model and optimizer memory as follows (in
32-bit floating point, 1 variable takes 4 bytes):

1. Model Parameter: BART has 406,290,432 pa-
rameters, yielding 406290432× 4 = 1.625×
109bytes = 1.51 GiB.

2. Model Gradient: Each parameter has one cor-
responding gradient variable, e.g. .grad in
PyTorch. Thus, this also occupies 1.51 GiB.

3. Optimizer: Adam optimizer (Kingma and Ba,
2015) stores first moment and second moment
for each and every model parameters, hence,
taking 3.02 GiB.

Activation
The terms corresponding to cb2, ..., c

b
6 are associated

with activation buffers cached for computing gradi-
ents in backpropagation. These terms grow linearly
with batch size. The dominant term cb6N

2B grows
quadratically with the input length N , motivating
encoder’s local self-attention design.

Chen et al. (2016) proposes a method to save
the activation memory by only caching buffers of
a subset of layers, and re-computing the rest dy-
namically during backpropagation. This results in
repeated computations and more training time.

10https://github.com/Stonesjtu/
pytorch_memlab

A.2 LoBART Memory
We collect 36 samples, spanning N ∈ [512, 4096],
M ∈ [100, 400], and W ∈ [32, 512] using batch
size of 1. Our least-squared regression of the mem-
ory equation memory = cl1 + B(cl2M + cl3N +
cl4MN + cl5M

2 + cl6NW) yields RMSE = 0.010,
and the coefficients are: cl1 = 6.104, cl2 = 1.443×
10−3, cl3 = 1.032 × 10−3, cl4 = 1.487 × 10−6,
cl5 = 1.277×10−6, cl6 = 2.503×10−6. The model
and optimizer memory is similar to the analysis for
BART. The activation memory is now dominated
by cl6NW ×B, where cl6 = 1.72cb6. Thus, we high-
light that once W > 0.58N , LoBART no longer
reduces memory. Note that we also tried incorpo-
rating the terms N2 and W in the least-squared
regression analysis, but their resulting coefficients
are small, making both terms negligible. This is
expected as quadratic self-attention is replaced by
local attention of width W , and the width W only
determines the receptive field of each and every
position in N , resulting in the NW term.

A.3 Time: BART & LoBART
Unlike memory, time requirement is both system
and implementation dependent. In this analysis, we
show the results on our infrastructure consisting of
a 32 GiB V100 GPU and 32-core Intel Xeon 4215R
CPU (3.20GHz). We compute the time required
for 50 forward and backward passes in 12 settings
for each model configuration. Similar to the mem-
ory analysis, we perform least-squared regression
where the results are shown in Figure 7. It can
be seen that although LoBART reduces memory
requirement, when it comes to time requirement,
LoBART is only comparable to BART. This is due
to the implementation of local self-attention that
involves more processes such as chunking.

1000 2000 3000 4000 5000 6000 7000 8000 9000
Input Length (N)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

se
co

nd
/b

at
ch

BART (Full Attn)
LoBART (Local Attn, W=1024)
LoBART (Local Attn, W=512)
LoBART (Local Attn, W=256)
LoBART (Local Attn, W=128)

Figure 7: Quadratic time complexity of BART and Lin-
ear time complexity of LoBART for M=144 and B=1.

https://github.com/Stonesjtu/pytorch_memlab
https://github.com/Stonesjtu/pytorch_memlab

6039

B Implementation Details

B.1 Models
BART & LoBART.
We use publicly released BART-large.11 For Lo-
BART, our local self-attention is based on Hugging-
Face’s implementation (Wolf et al., 2020).12 The
number of parameters in BART is 406M.

The positional embedding of LoBART beyond
1,024 is created by copying BART’s positional em-
bedding with flipping to allow a smoother transition
as shown in Figure 8, and the number of parameters
in LoBART(nk) is 406M + 50,264×(n-1)×1,024.

0 1000 2000 3000 4000
Position

Po
st

io
na

l E
m

be
dd

in
g

Va
lu

e

original
filpped

Figure 8: LoBART positional embedding is initialized
by copying and flipping BART’s positional embedding.

Hierarchical RNN.
The encoder consists of word-level and sentence-
level bidirectional GRUs. The word-level GRU
takes embedding vector ei,j of word i in sentence j,
and outputs forward representation h

(f)
i,j and back-

ward representation h
(b)
i,j . The sentence-level GRU

takes concatenated vector [h(f)
Nj ,j

;h(b)
1,j], and outputs

sentence representation hj . The decoder consists
of a unidirectional GRU. Each of the encoder GRUs
has 2 layers with a dropout layer (p=0.1), and the
decoder GRU has 1 layer. There are word-level
and sentence-level attention mechanisms connect-
ing the encoder and decoder. The classification
head is a single-layer feedforward layer. The di-
mension of embedding space is 256, and the hidden
size is 512. The number of parameters is 52M.

B.2 Training & Inference Hyperparameters
We process data using the same byte-pair-encoding
tokenizer as the BART-large tokenizer, and we use
NLTK tokenizer for sentence splitting. We use 32-
bit precision training. We stop training when the
loss on the validation set stop improving for 3 times.
For example, the training steps are approximately:

11https://huggingface.co/facebook/
bart-large-cnn

12https://huggingface.co/transformers/

180k for Podcast; 240k for arXiv; 160k for PubMed.
We report the validation performance when training
is stopped in Table 10. Adam optimizer is used for
all experiments with learning rate:

lr = 0.002×min(step−0.5, step× warmup−1.5)

Parameter Podcast arXiv/PubMed

max. tgt len M 144 400
dropout 0.1 0.1
batch size 1 1
gradient accum. 2 2
warmup 10,000 20,000
valid step 20,000 20,000

loss cross entropy
compute (BART) 1×GTX TITAN X (12GiB)
compute (LoBART) 1×V100 (32GiB)

Table 7: BART/LoBART Training Hyperparameters.

Parameter Podcast arXiv/PubMed

max. src #sent 1000 640
max. src #words-in-sent 50 120
max. tgt len M 144 400
dropout 0.1 0.1
batch size 2 2
gradient accum. 1 1
warmup 20,000 20,000
valid step 20,000 20,000

loss∗ Lseq2seq & Lext
compute 1×GTX TITAN X (12GiB)

Table 8: RNN Training Hyperparameters. ∗Both loss
functions are cross entropy based.

Parameter Value

beam width 4
length penalty 2.0
min length 56
max length∗ 144 & 400
no repeat trigram size 3

Table 9: Inference Hyperparameters. ∗144 for Podcast,
and 400 for arXiv/PubMed.

B.3 Evaluation
Our ROUGE (Lin, 2004) scoring tool is pyrouge,
which is a wrapper for perl script.13

13https://pypi.org/project/pyrouge/

https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/transformers/
https://pypi.org/project/pyrouge/

6040

System Attn-Width CS-train Podcast arXiv PubMed

BART(1k) Full Truncate 2.767 2.179 1.867
LoBART(4k) 1024 Truncate 2.680 1.878 1.530
∗LoBART(4k) 1024 ORCpad-rand 2.647 1.721 1.474

Table 10: Performance measured by the average cross-entropy on validation set. ∗Best system on the test set.

System CS-train CS-test
arXiv PubMed

R1 R2 RL R1 R2 RL

BART(1k) 7 7 44.96 17.25 39.76 45.06 18.27 40.84
BART(1k) 7 MCS 46.11 18.79 40.83 46.46 19.54 41.91
BART(1k) ORC 7 42.03 15.62 37.15 43.20 17.02 39.19
BART(1k) ORC MCS 47.68 19.77 42.25 46.49 19.45 42.04

LoBART(4k) 7 7 46.90 18.88 41.50 47.40 20.43 42.95
LoBART(4k) 7 MCS 48.05 20.11 42.58 47.76 20.76 43.27
LoBART(4k) ORC 7 46.59 18.72 41.24 47.47 20.47 43.02
LoBART(4k) ORC MCS 48.79 20.55 43.31 48.06 20.96 43.56

Table 11: Extended results on arXiv and PubMed (in Table 6). ORC is ORCpad-rand training-time content selection.

System Initialization R1 R2 RL

BART(1k)
Random 14.61 0.82 11.54
BART-large 25.82 9.07 17.99
BART-large-CNNDM 26.43 9.22 18.35

Table 12: Podcast results. The impact of transfer learning. Truncation is applied at both training and test stages.

System CS-train Initialization R1 R2 RL

LED(4k) Truncate ∗BART-large 44.40 17.94 39.76

LoBART(4k)

Truncate BART-large 46.17 17.96 40.74
Truncate BART-large-CNNDM 46.90 18.88 41.50
ORCpad-rand BART-large 45.25 17.40 39.96
ORCpad-rand BART-large-CNNDM 46.59 18.72 41.24

Table 13: arXiv results. The impact of transfer learning on initializing LoBART. At test time, there is no content
selection. ∗To our understanding, LED-large was initialized from BART-large as described in Beltagy et al. (2020).

C Additional Results

Losses on Validation Sets
In Table 10, we show the standard cross entropy
losses on validation sets of our BART/LoBART.

BART and LoBART on arXiv/PubMed
In Table 11, we provide configurations in addition
to Table 6. These results (as well as Podcast results
in Table 5) show that: in all settings, applying MCS
at test time yields a performance gain; and with
ORC applied at training, a larger gain is observed.

Transfer Learning from CNN/DailyMail
In Table 12, we show the impact of transfer learn-
ing on fine-tuning BART to Podcast. In Table 13,
LED(4k) should be very close to LoBART(4k)-
TRC-BART-large, we believe that the performance
difference is due to the stochastic nature of training.

Nevertheless, our experiments are carried out us-
ing the same training setting, e.g. hyperparameters,
optimizer, etc. Thus, based on the results, we be-
lieve that there is an observable improvement due
to transfer learning from CNNDM.

Fine-grained analysis on Podcast test set

Figure 9: ROUGE-1 score relative to that of BART(1k)
on Spotify Podcast (Len:Avg=5,727, 90th%=11,677).

6041

Reference Summary: This week, Irwin and I discuss the iconic designs of the Rolex Submariner and the
Porsche 911. Remaining subjectively unchanged through the years. We talk about the subtle changes over
the years for this special car and watch and what are the similarities from their history. If you love cars
and watches you’ll enjoy the show. Grail Watch and Grail Porsche: Irwin: 1959 Rolex Submariner 5512 x
1967 Porsche 911s Anthony: 2020 Moser Streamliner Chronograph x 1988 Porsche 911 959.

LoBART(4k)+MCS: In this episode we talk to @grandobsessionsirwin about his passion for Porsche
and vintage Rolex. We talk about the Submariner and 911 Submariners, the design evolution over the
decades and the future of Porsche in the world of watchmaking. We also chat about the evolution of the
Rolex submariner from the 1950s to the present day.

Table 14: Spotify Podcast test set sample #31.

Reference Summary: we present data from our investigation of the anomalous orange - colored afterglow
that was seen in the gammev chameleon afterglow search (chase) . these data includes information about
the broad band color of the observed glow , the relationship between the glow and the temperature of
the apparatus , and other data taken prior to and during the science operations of chase . while differing
in several details , the generic properties of the afterglow from chase are similar to luminescence seen
in some vacuum compounds . contamination from this , or similar , luminescent signatures will likely
impact the design of implementation of future experiments involving single photon detectors and high
intensity light sources in a cryogenic environment .

LoBART(4k)+MCS: the gammev chameleon afterglow search (chase) experiment at the fermilab
tevatron reported the discovery of an anomalous afterglows in its apparatus after shining a high - power
pulsed laser into the bore of a cryogenic vacuum chamber immersed in a magnetic field . we present all of
our data that pertains materially to the characterization of the “ orange glow “ signal . we do not claim any
specific explanation of the source or cause of the orange glow , though the dependence upon temperature
suggests strongly that the effect is due to some chemical or material property that is excited by the input
laser . the data and discussion presented here may be useful for the design of future experiments that use
high intensity light sources in conjunction with single photon detectors in cryogenic environments .

Table 15: arXiv test set sample #315.

Reference Summary: the survey of how canadian intensive care units (icus) prevent and diagnose
venous thromboembolism (vte) presented in this issue of critical care illustrates considerable variability .
lack of optimal patient care reflects how vte is rated in icus . the discussion should no longer focus on the
incidence of thrombosis , but rather on its prevention . unfractionated heparin remains the most commonly
used agent to prevent vte , despite the recognized efficacy and safety of low - molecular - weight heparins
(lmwhs) in the icu setting . in addition , too few icu directors consider the use of mechanical prophylactic
measures , such as graded elastic stockings and venous foot pump . the present situation calls for large
randomized controlled trials in either medical or surgical icu patients , and for new education programmes
in order to modify the care of icu patients with regard to vte .

LoBART(4k)+MCS: deep vein thrombosis (dvt) remains an underestimated problem in intensive care
unit (icu) patients , despite the findings of many randomized controlled trials performed in the field of
dvt prophylaxis after surgery during the past few decades . the canadian survey reported in the present
issue of critical care provides a useful snapshot of daily clinical practice in canada with regard to dvt
prevention in icu patients . it strongly suggests that studies dedicated to this topic should be performed
in order to develop useful recommendations . furthermore , a great effort should be made to educate
physicians regarding both dvt screening and pharmacological aspects .

Table 16: PubMed test set sample #3150.

