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Abstract

Named Entity Recognition (NER) is the task
of identifying spans that represent entities in
sentences. Whether the entity spans are nested
or discontinuous, the NER task can be cate-
gorized into the flat NER, nested NER, and
discontinuous NER subtasks. These subtasks
have been mainly solved by the token-level
sequence labelling or span-level classification.
However, these solutions can hardly tackle the
three kinds of NER subtasks concurrently. To
that end, we propose to formulate the NER
subtasks as an entity span sequence genera-
tion task, which can be solved by a unified
sequence-to-sequence (Seq2Seq) framework.
Based on our unified framework, we can lever-
age the pre-trained Seq2Seq model to solve
all three kinds of NER subtasks without the
special design of the tagging schema or ways
to enumerate spans. We exploit three types
of entity representations to linearize entities
into a sequence. Our proposed framework is
easy-to-implement and achieves state-of-the-
art (SoTA) or near SoTA performance on eight
English NER datasets, including two flat NER
datasets, three nested NER datasets, and three
discontinuous NER datasets 1.

1 Introduction

Named entity recognition (NER) has been a funda-
mental task of Natural Language Processing (NLP),
and three kinds of NER subtasks have been recog-
nized in previous work (Sang and Meulder, 2003;
Pradhan et al., 2013a; Doddington et al., 2004; Kim
et al., 2003; Karimi et al., 2015), including flat
NER, nested NER, and discontinuous NER. As
shown in Figure 1, the nested NER contains over-
lapping entities, and the entity in the discontinuous
NER may contain several nonadjacent spans.

∗Corresponding author.
1Code is available at https://github.com/yhcc/
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Figure 1: Examples of three kinds of NER subtasks.
(a) - (c) illustrate flat NER, nested NER, discontinuous
NER, and their corresponding mainstream solutions re-
spectively. (d) Our proposed generative solution to
solve all NER subtasks in a unified way.

The sequence labelling formulation, which will
assign a tag to each token in the sentence, has
been widely used in the flat NER field (McCal-
lum and Li, 2003; Collobert et al., 2011; Huang
et al., 2015; Chiu and Nichols, 2016; Lample et al.,
2016; Straková et al., 2019; Yan et al., 2019; Li
et al., 2020a). Inspired by sequence labelling’s
success in the flat NER subtask, Metke-Jimenez
and Karimi (2016); Muis and Lu (2017) tried to
formulate the nested and discontinuous NER into
the sequence labelling problem. For the nested and
discontinuous NER subtasks, instead of assigning
labels to each token directly, Xu et al. (2017); Wang
and Lu (2019); Yu et al. (2020); Li et al. (2020b)
tried to enumerate all possible spans and conduct
the span-level classification. Another way to effi-
ciently represent spans is to use the hypergraph (Lu

https://github.com/yhcc/BARTNER
https://github.com/yhcc/BARTNER
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and Roth, 2015; Katiyar and Cardie, 2018; Wang
and Lu, 2018; Muis and Lu, 2016).

Although the sequence labelling formulation has
dramatically advanced the NER task, it has to de-
sign different tagging schemas to fit various NER
subtasks. One tagging schema can hardly fit for
all three NER subtasks2 (Ratinov and Roth, 2009;
Metke-Jimenez and Karimi, 2016; Straková et al.,
2019; Dai et al., 2020). While the span-based mod-
els need to enumerate all possible spans, which is
quadratic to the length of the sentence and is almost
impossible to enumerate in the discontinuous NER
scenario (Yu et al., 2020). Therefore, span-based
methods usually will set a maximum span length
(Xu et al., 2017; Luan et al., 2019; Wang and Lu,
2018). Although hypergraphs can efficiently rep-
resent all spans (Lu and Roth, 2015; Katiyar and
Cardie, 2018; Muis and Lu, 2016), it suffers from
the spurious structure problem, and structural am-
biguity issue during inference and the decoding is
quite complicated (Muis and Lu, 2017). Because
the problems lie in different formulations, no publi-
cation has tested their model or framework in three
NER subtasks simultaneously to the best of our
knowledge.

In this paper, we propose using a novel and sim-
ple sequence-to-sequence (Seq2Seq) framework
with the pointer mechanism (Vinyals et al., 2015)
to generate the entity sequence directly. On the
source side, the model inputs the sentence, and
on the target side, the model generates the entity
pointer index sequence. Since flat, continuous and
discontinuous entities can all be represented as en-
tity pointer index sequences, this formulation can
tackle all the three kinds of NER subtasks in a uni-
fied way. Besides, this formulation can even solve
the crossing structure entity3 and multi-type en-
tity4. By converting the NER task into a Seq2Seq
generation task, we can smoothly use the Seq2Seq
pre-training model BART (Lewis et al., 2020) to
enhance our model. To better utilize the pre-trained
BART, we propose three kinds of entity representa-
tions to linearize entities into entity pointer index
sequences.

Our contribution can be summarized as follows:
2Attempts made for discontinuous constituent parsing may

tackle three NER subtasks in one tagging schema (Vilares and
Gómez-Rodrı́guez, 2020).

3Namely, for span ABCD, both ABC and BCD are entities.
Although this is rare, it exists (Dai et al., 2020).

4An entity can have multiple entity types, as proteins can
be annotated as drug/compound in the EPPI corpus (Alex
et al., 2007).

• We propose a novel and simple generative
solution to solve the flat NER, nested NER,
and discontinuous NER subtasks in a unified
framework, in which NER subtasks are for-
mulated as an entity span sequence generation
problem.

• We incorporate the pre-trained Seq2Seq
model BART into our framework and exploit
three kinds of entity representations to lin-
earize entities into sequences. The results
can shed some light on further exploration
of BART into the entity sequence generation.

• The proposed framework not only avoids the
sophisticated design of tagging schema or
span enumeration but also achieves SoTA
or near SoTA performance on eight popu-
lar datasets, including two flat NER datasets,
three nested NER datasets, and three discon-
tinuous NER datasets.

2 Background

2.1 NER Subtasks
The term “Named Entity” was coined in the Sixth
Message Understanding Conference (MUC-6) (Gr-
ishman and Sundheim, 1996). After that, the re-
lease of CoNLL-2003 NER dataset has greatly ad-
vanced the flat NER subtask (Sang and Meulder,
2003). Kim et al. (2003) found that in the field of
molecular biology domain, some entities could be
nested. Karimi et al. (2015) provided a corpus that
contained medical forum posts on patient-reported
Adverse Drug Events (ADEs), some entities recog-
nized in this corpus may be discontinuous. Despite
the difference between the three kinds of NER sub-
tasks, the methods adopted by previous publica-
tions can be roughly divided into three types.

Token-level classification The first line of work
views the NER task as a token-level classification
task, which assigns to each token a tag that usually
comes from the Cartesian product between entity
labels and the tag scheme, such as BIO and BILOU
(Ratinov and Roth, 2009; Collobert et al., 2011;
Huang et al., 2015; Chiu and Nichols, 2016; Lam-
ple et al., 2016; Alex et al., 2007; Straková et al.,
2019; Metke-Jimenez and Karimi, 2016; Muis and
Lu, 2017; Dai et al., 2020), then Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001) or tag
sequence generation methods can be used for de-
coding. Though the work of (Straková et al., 2019;
Wang et al., 2019; Zhang et al., 2018; Chen and
Moschitti, 2018) are much like our method, they all
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tried to predict a tagging sequence. Therefore, they
still need to design tagging schemas for different
NER subtasks.

Span-level classification When applying the se-
quence labelling method to the nested NER and
discontinous NER subtasks, the tagging will be
complex (Straková et al., 2019; Metke-Jimenez and
Karimi, 2016) or multi-level (Ju et al., 2018; Fisher
and Vlachos, 2019; Shibuya and Hovy, 2020).
Therefore, the second line of work directly con-
ducted the span-level classification. The main dif-
ference between publications in this line of work is
how to get the spans. Finkel and Manning (2009)
regarded the parsing nodes as a span. Xu et al.
(2017); Luan et al. (2019); Yamada et al. (2020); Li
et al. (2020b); Yu et al. (2020); Wang et al. (2020a)
tried to enumerate all spans. Following Lu and
Roth (2015), hypergraph methods which can effec-
tively represent exponentially many possible nested
mentions in a sentence have been extensively stud-
ied in the NER tasks (Katiyar and Cardie, 2018;
Wang and Lu, 2018; Muis and Lu, 2016).

Combined token-level and span-level classifi-
cation To avoid enumerating all possible spans
and incorporate the entity boundary information
into the model, Wang and Lu (2019); Zheng et al.
(2019); Lin et al. (2019); Wang et al. (2020b); Luo
and Zhao (2020) proposed combining the token-
level classification and span-level classification.

2.2 Sequence-to-Sequence Models

The Seq2Seq framework has been long studied and
adopted in NLP (Sutskever et al., 2014; Cho et al.,
2014; Luong et al., 2015; Vaswani et al., 2017;
Vinyals et al., 2015). Gillick et al. (2016) pro-
posed a Seq2Seq model to predict the entity’s start,
span length and label for the NER task. Recently,
the amazing performance gain achieved by PTMs
(pre-trained models) (Qiu et al., 2020; Peters et al.,
2018; Devlin et al., 2019; Dai et al., 2021; Yan
et al., 2020) has attracted several attempts to pre-
train a Seq2Seq model (Song et al., 2019; Lewis
et al., 2020; Raffel et al., 2020). We mainly focus
on the newly proposed BART (Lewis et al., 2020)
model because it can achieve better performance
than MASS (Song et al., 2019). And the sentence-
piece tokenization used in T5 (Raffel et al., 2020)
will cause different tokenizations for the same to-
ken, making it hard to generate pointer indexes to
conduct the entity extraction.

BART is formed by several transformer encoder

and decoder layers, like the transformer model used
in the machine translation (Vaswani et al., 2017).
BART’s pre-training task is to recover corrupted
text into the original text. BART uses the encoder
to input the corrupted sentence and the decoder
to recover the original sentence. BART has base
and large versions. The base version has 6 encoder
layers and 6 decoder layers, while the large version
has 12. Therefore, the number of parameters is
similar to its equivalently sized BERT 5.

3 Proposed Method

In this part, we first introduce the task formulation,
then we describe how we use the Seq2Seq model
with the pointer mechanism to generate the entity
index sequences. After that, we present the detailed
formulation of our model with BART.

3.1 NER Task

The three kinds of NER tasks can all be formulated
as follows, given an input sentence of n tokens
X = [x1, x2, ..., xn], the target sequence is Y =
[s11, e11, ..., s1j , e1j , t1, ..., si1, ei1, ..., sik, eik, ti],
where s, e are the start and end index of a span,
since an entity may contain one (for flat and
nested NER) or more than one (for discontinu-
ous NER) spans, each entity is represented as
[si1, ei1, ..., sij , eij , ti], where ti is the entity tag
index. We use G = [g1, ..., gl] to denote the entity
tag tokens (such as “Person”, “Location”, etc.),
where l is the number of entity tags. We make
ti ∈ (n, n+ l], the n shift is to make sure ti is not
confusing with pointer indexes (pointer indexes
will be in range [1, n]).

3.2 Seq2Seq for Unified Decoding

Since we formulate the NER task in a generative
way, we can view the NER task as the following
equation:

P (Y |X) =
m∏
t=1

P (yt|X,Y<t) (1)

where y0 is the special “start of sentence” control
token.

We use the Seq2Seq framework with the pointer
mechanism to tackle this task. Therefore, our
model consists of two components:

5Because of the cross-attention between encoder and de-
coder, the number of parameters of BART is about 10% larger
than its equivalently sized of BERT (Lewis et al., 2020).
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Figure 2: Model structure used in our method. The encoder encodes input sentences, and the decoder uses the
pointer mechanism to generate indexes autoregressively. “<s>” and “</s>” are the predefined start-of-sentence
and end-of-sentence tokens in BART. In the output sequence, “7” means the entity tag “<dis>”, and other numbers
indicate the pointer index (in range [1, 6]).

(1) Encoder encodes the input sentence X into
vectors He, which formulates as follows:

He = Encoder(X) (2)

where He ∈ Rn×d, and d is the hidden dimension.
(2) Decoder is to get the index probability distri-

bution for each step Pt = P (yt|X,Y<t). However,
since Y<t contains the pointer and tag index, it can-
not be directly inputted to the Decoder. We use the
Index2Token conversion to convert indexes into
tokens

ŷt =

®
Xyt , if yt ≤ n,
Gyt−n, if yt > n

(3)

After converting each yt this way, we can get the
last hidden state hd

t ∈ Rd with Ŷ<t = [ŷ1, ..., ŷt−1]
as follows

hd
t = Decoder(He; Ŷ<t) (4)

Then, we can use the following equations to

achieve the index probability distribution Pt

Ee = TokenEmbed(X) (5)

Ĥe = MLP(He) (6)

H̄e = α ∗ Ĥe + (1− α) ∗Ee (7)

Gd = TokenEmbed(G) (8)

Pt = Softmax([H̄e ⊗ hd
t ;G

d ⊗ hd
t ]) (9)

where TokenEmbed is the embeddings shared be-
tween the Encoder and Decoder; Ee, Ĥe, H̄e ∈
Rn×d; α ∈ R is a hyper-parameter; Gd ∈ Rl×d;
[ · ; · ] means concatenation in the first dimension;
⊗ means the dot product.

During the training phase, we use the negative
log-likelihood loss and the teacher forcing method.
During the inference, we use an autoregressive
manner to generate the target sequence. We use
the decoding algorithm presented in Algorithm 1
to convert the index sequence into entity spans.

3.3 Detailed Entity Representation with
BART

Since our model is a Seq2Seq model, it is natural
to utilize the pre-training Seq2Seq model BART to
enhance our model. We present a visualization of
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Algorithm 1 Decoding Algorithm to Convert the
Entity Representation Sequence into Entity Spans

Input: Target sequence Y = [y1, ..., ym] and yi ∈
[1, n+ |G|]

Output: Entity spans E = {(e1, t1), ..., (ei, ti)}
1: E = {}, e = [], i = 1
2: while i <= m do
3: yi = Y [i]
4: if yi > n then
5: if len(e) > 0 then
6: E.add((e,Gyi−n))
7: end if
8: e = []
9: else

10: e.append(yi)
11: end if
12: i = i+ 1
13: end while
14: return E

Sentence:

After BPE: b111b1211b13111b2111b22111b31111b4111b42111b51 
Position Index: 0 1    2     3 4    5 6 7    8

BPE:

Word:

Span:

[0,1,2,5,PER] 

[0,5,PER]

[0,2,5,5,PER]

PER LOC ORG

[0,3,5,6,LOC]

[0,1,2,3,4,5,6,7,LOC] [6,7, ORG]

[6, ORG]

[0,7,LOC] [6,7, ORG]

x5x4x3x2x1

Three entity representations:

Figure 3: The bottom three lines are examples
of the three kinds of entity representations to de-
termine the entity in the sentence unambiguously.
Words in the boxes are entity words, words within
the same color box belong to the same entity,
and their corresponding entity representation is also
with the same color. There are three entities,
(x1, x3, PER), (x1, x2, x3, x4, LOC), (x4, FAC),
where LOC,PER,FAC are their corresponding en-
tity tags. The underlined position index means this is
the starting BPE of a word.

our model based on BART in Figure 2. However,
BART’s adoption is non-trivial because the Byte-
Pair-Encoding (BPE) tokenization used in BART
might tokenize one token into several BPEs. To
exploit how to use BART efficiently, we propose
three kinds of pointer-based entity representations
to locate entities in the original sentence unam-
biguously. The three entity representations are as
follows:

Span The position index of the first BPE of the
starting entity word and the last BPE of the ending

entity word. If this entity includes multiple discon-
tinuous spans of words, each span is represented in
the same way.

BPE The position indexes of all BPEs of the
entity words.

Word Only the position index of the first BPE
of each entity word is used.

For all cases, we will append the entity tag to
the entity representation. An example of the entity
representations is presented in Figure 3. If a word
does not belong to any entity, it will not appear in
the target sequence. If a whole sentence has no
entity, the prediction should be an empty sequence
(only contains the “start of sentence” (<s>) token
and the “end of sentence” (</s>) token ).

4 Experiment

4.1 Datasets

To show that our proposed method can be used in
various NER subtasks, we conducted experiments
on eight datasets.

Flat NER Datasets We adopt the CoNLL-2003
(Sang and Meulder, 2003) and the OntoNotes
dataset 6 (Pradhan et al., 2013b). For CoNLL-2003,
we follow Lample et al. (2016); Yu et al. (2020) to
train our model on the concatenation of the train
and development sets. For the OntoNotes dataset,
we use the same train, development, test splits as
Pradhan et al. (2012); Yu et al. (2020), and the New
Testaments portion were excluded since there is no
entity in this portion (Chiu and Nichols, 2016).

Nested NER Datasets We conduct experiments
on ACE 20047 (Doddington et al., 2004), ACE
20058 (Walker and Consortium, 2005), Genia
corpus (Kim et al., 2003). For ACE2004 and
ACE2005, we use the same data split as Lu and
Roth (2015); Muis and Lu (2017); Yu et al. (2020),
the ratio between train, development and test set is
8:1:1. For Genia, we follow Wang et al. (2020b);
Shibuya and Hovy (2020) to use five types of enti-
ties and split the train/dev/test as 8.1:0.9:1.0.

6https://catalog.ldc.upenn.edu/
LDC2013T19

7https://catalog.ldc.upenn.edu/
LDC2005T09

8https://catalog.ldc.upenn.edu/
LDC2006T06

9In the reported experiments, they included the document
context. We rerun their code with only the sentence context.
The lack of document context might cause performance
degradation is also confirmed by the author himself in
https://github.com/juntaoy/biaffine-ner/
issues/8#issuecomment-650813813.

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://github.com/juntaoy/biaffine-ner/issues/8#issuecomment-650813813
https://github.com/juntaoy/biaffine-ner/issues/8#issuecomment-650813813
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CoNLL2003 OntoNotes
Models P R F P R F

Clark et al. (2018)[GloVe300d] - - 92.6 - - -
Peters et al. (2018)[ELMo] - - 92.22 - - -
Akbik et al. (2019)[Flair] - - 93.18 - - -

Straková et al. (2019)[BERT-Large] - - 93.07 - - -
Yamada et al. (2020)[RoBERTa-Large] - - 92.40 - - -

Li et al. (2020b)[BERT-Large]† 92.47 93.27 92.87 91.34 88.39 89.84
Yu et al. (2020)[BERT-Large]‡ 92.85 92.15 92.5 89.92 89.74 89.83

Ours(Span)[BART-Large] 92.31 93.45 92.88 88.94 90.33 89.63
Ours(BPE)[BART-Large] 92.60 93.22 92.96 90.00 89.52 89.76
Ours(Word)[BART-Large] 92.61 93.87 93.24 89.99 90.77 90.38

Table 1: Results for the flat NER datasets. “†” indicates we rerun their code. “‡” means our reproduction with only
the sentence-level context 9.

ACE2004 ACE2005 Genia
Models P R F P R F P R F

Luan et al. (2019)[ELMO] - - 84.7 - - 82.9 - - 76.2
Straková et al. (2019)[BERT-Large] - - 84.33 - - 83.42 - - 76.44

Shibuya and Hovy (2020)[BERT-Large]? 85.23 84.72 84.97 83.30 84.69 83.99 77.46 76.65 77.05
Li et al. (2020b)[BERT-Large]† 85.83 85.77 85.80 85.01 84.13 84.57 81.25 76.36 78.72
Yu et al. (2020)[BERT-Large] ‡ 85.42 85.92 85.67 84.50 84.72 84.61 79.43 78.32 78.87

Wang et al. (2020a)[BERT-Large]? 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19

Ours(Span)[BART-Large] 84.81 83.64 84.22 81.41 83.24 82.31 78.87 79.6 79.23
Ours(BPE)[BART-Large] 86.69 83.83 85.24 82.08 83.44 82.75 78.15 79.06 78.60
Ours(Word)[BART-Large] 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.3 78.93

Table 2: Results for nested NER datasets,“†” means our rerun of their code. “‡” means our reproduction with only
sentence-level context9. “?” for a fair comparison, we only present results with the BERT-Large model.

Discontinuous NER Datasets We follow Dai
et al. (2020) to use CADEC (Karimi et al., 2015),
ShARe13 (Pradhan et al., 2013a) and ShARe14
(Mowery et al., 2014) corpus. Since only the Ad-
verse Drug Events (ADEs) entities include discon-
tinuous annotation, only these entities were consid-
ered (Dai et al., 2020; Metke-Jimenez and Karimi,
2016; Tang et al., 2018).

4.2 Experiment Setup

We use the BART-Large model, whose encoder
and decoder each has 12 layers for all experiments,
making it the same number of transformer layers as
the BERT-Large and RoBERTa-Large model. We
did not use any other embeddings, and the BART
model is fine-tuned during the optimization. We
put more detailed experimental settings in the Sup-
plementary Material. We report the span-level F1.

5 Results

5.1 Results on Flat NER

Results are shown in Table 1. We do not com-
pare with Yamada et al. (2020) since they added
entity information during the pre-training process.
Clark et al. (2018); Peters et al. (2018); Akbik et al.
(2019); Straková et al. (2019) assigned a label to
each token, and Li et al. (2020b); Yu et al. (2020)
are based on span-level classifications, while our
method is based on the entity sequence generation.
And for both datasets, our method achieves better
performance. We will discuss the performance dif-
ference between our three entity representations in
Section 5.4.

5.2 Results on Nested NER

Table 2 presents the results for the three nested
NER datasets, and our proposed BART-based gen-
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CADEC ShARe13 ShARe14
Model P R F P R F P R F

Metke-Jimenez and Karimi (2016) 64.4 56.5 60.2 - - - - - -
Tang et al. (2018) 67.8 64.9 66.3 - - - - - -

Dai et al. (2020)[ELMo] 68.9 69.0 69.0 80.5 75.0 77.7 78.1 81.2 79.6

Ours(Span)[BART-Large] 71.55 68.59 70.04 80.42 78.15 79.27 76.85 83.59 80.08
Ours(BPE)[BART-Large] 69.45 70.51 69.97 82.07 76.45 79.16 75.88 84.37 79.90
Ours(Word)[BART-Large] 70.08 71.21 70.64 82.09 77.42 79.69 77.2 83.75 80.34

Table 3: Results for discontinuous NER datasets.

Entity Flat NER Nested NER Discontinuous NER
Representation CoNLL2003 OntoNotes ACE2004 ACE2005 Genia CADEC ShARe13 ShARe14

Span 3.0/3.0 3.0/3.0 3.0/3.0 3.0/3.0 3.0/3.0 3.17/3.0 3.15/3.0 3.2/3.0
BPE 3.55/3.0 3.39/3.0 4.15/3.0 3.84/3.0 5.21/5.0 4.08/4.0 3.92/3.0 4.34/4.0
Word 2.44/2.0 2.86/2.0 3.53/2.0 3.26/2.0 3.09/3.0 2.72/3.0 2.63/3.0 3.74/3.0

Table 4: The average (before /) and median entity length (including the entity label) for each entity representations
in the respective testing set.

erative models are comparable to the token-level
classication (Straková et al., 2019; Shibuya and
Hovy, 2020) and span-level classification (Luan
et al., 2019; Li et al., 2020b; Wang et al., 2020a)
models.

5.3 Results on Discontinuous NER

Results in Table 3 show the comparison between
our model and other models in three discontinuous
NER datasets. Although Dai et al. (2020) tried to
utilize BERT to enhance the model performance,
they found that ELMo worked better. In all three
datasets, our model achieves better performance.

5.4 Comparison Between Different Entity
Representations

In this part, we discuss the performance differ-
ence between the three entity representations. The
“Word” entity representation achieves better perfor-
mance almost in all datasets. And the comparison
between the “Span” and “BPE” representations is
more involved. To investigate the reason behind
these results, we calculate the average and median
length of entities when using different entity rep-
resentations, and the results are presented in Table
4. It is clear that for a generative framework, the
shorter the entity representation the better perfor-
mance it should achieve. Therefore, as shown in
Table 4, the “Word” representation with smaller

average entity length in CoNLL2003, OntoNotes,
CADEC, ShARe13 achieves better performance
in these datasets. However, although the aver-
age entity length of the “BPE” representation is
longer than the “Span” representation, it achieves
better performance in CoNLL2003, OntoNotes,
ACE2004, ACE2005, this is because the “BPE”
representation is more similar to the pre-training
task, namely, predicting continuous BPEs. And
we believe this task similarity is also the reason
why the “Word” representation (Most of the words
will be tokenized into a single BPE, making the
“Word” representation still continuous.) achieves
better performance than the “Span” representation
in ACE2004, ACE2005, and ShARe14, although
the former has longer entity length.

A clear outlier is the Genia dataset, where the
“Span” representation achieves better performance
than the other two. We presume this is because
in this dataset, a word will be tokenized into a
longer BPE sequence (this can be inferred from the
large entity length gap between the “Word” and
“BPE” representation.) so that the “Word” repre-
sentation will also be dissimilar to the pre-training
tasks. For example, the protein “lipoxygenase iso-
forms” will be tokenized into the sequence “[‘Ġlip’,
‘oxy’, ‘gen’, ‘ase’, ‘Ġiso’, ‘forms’]”, which makes
the target sequence of the “Word” representation be
“[‘Ġlip’, ‘Ġiso’]”, resulting a discontiguous BPE
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Flat NER Nested NER Discontinuous NER
Errors CoNLL2003 OntoNotes ACE2004 ACE2005 Genia CADEC ShARe13 ShARe14

E1 0.05% 0.02% 0.23% 0.06% 0.0% 0.31% 0.0% 0.01%

E2 0.04% 0.03% 0.13% 0.22% 0.11% 1.02% 0.18% 0.16%

E3 0.05% 0.02% 0.30% 0.26% 0.06% 0.0% 0.08% 0.02%

Table 5: Different invalid prediction probability for the “Word” entity representation. E1 means the predicted
indexes contain index which is not the start index of a word, E2 means the predicted indexes within an entity are
not increasing, E3 means duplicated entity prediction.
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Figure 4: The recall of entities in different entity sequence positions, the number of entities in that position is the
number in the bracket (the unit is 1000).

sequence. Therefore, the shorter “Span” represen-
tation achieves better performance in this dataset.

6 Analysis

6.1 Recall of Discontinuous Entities

Since only about 10% of entities in the discontin-
uous NER datasets are discontinuous, only evalu-
ating the whole dataset may not show our model
can recognize the discontinuous entities. Therefore,
like in Dai et al. (2020); Muis and Lu (2016) we re-
port our model’s performance on the discontinuous
entities in Table 6. As shown in Table 6, our model
can predict the discontinuous named entities and
achieve better performance.

ShARe13 ShARe14
Model P R F P R F

Dai et al. (2020) 78.5 39.4 52.5 56.1 43.8 49.2
Ours(Word) 57.5 52.8 55.0 49.6 56.2 52.7

Table 6: Performance on the discontinuous entities of
the tesing dataset of ShARe13 and ShARe14.

6.2 Invalid Prediction

In this part, we mainly focus on the analysis of the
“Word” representation since it generally achieves
better performance. We do not restrict the output
distribution; therefore, the entity prediction may
contain invalid predictions as show in Table 5, this

table shows that the BART model can learn the
prediction representations quite well since, in most
cases, the invalid prediction is less than 1%. We
exclude all these invalid predictions during evalua-
tion.

6.3 Entity Order Vs. Entity Recall

Its appearance order in the sentence determines
the entity order, and we want to study whether the
entity that appears later in the target sequence will
have worse recall than entities that appear early.
The results are provided in Figure 4. The latter the
entity appears, the larger probability that it can be
recalled for the flat NER and discontinuous NER.
While for the nested NER, the recall curve is quite
involved. We assume this phenomenon is because,
for the flat NER and discontinuous NER (more than
91.1% of entities are continuous) datasets, different
entities have less dependence on each other. While
in the nested NER dataset, entities in the latter
position may be the outermost entity that contains
the former entities. The wrong prediction of former
entities may negatively influence the later entities.

7 Conclusion

In this paper, we formulate NER subtasks as an en-
tity span sequence generation problem, so that we
can use a unified Seq2Seq model with the pointer
mechanism to tackle flat, nested, and discontinu-
ous NER subtasks. The Seq2Seq formulation en-
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ables us to smoothly incorporate the pre-training
Seq2Seq model BART to enhance the performance.
To better utilize BART, we test three types of en-
tity representation methods to linearize the entity
span into sequences. Results show that the entity
representation with a shorter length and more sim-
ilar to continuous BPE sequences achieves better
performance. Our proposed method achieves SoTA
or near SoTA performance for eight different NER
datasets, proving its generality to various NER sub-
tasks.
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A Supplemental Material

A.1 Hyper-parameters
The detailed hyper-parameter used in different
datasets are listed in Table 7. We use the slanted
triangular learning rate warmup. All experiments
are conducted in the Nvidia Ge-Force RTX-3090
Graphical Card with 24G graphical memory.

Hyper Value

Epoch 30
Warmup step 0.01
Learning rate [1e-5,2e-5,4e-5]
Batch size 16
BART Large
α 0.5
Beam size [1, 4]

Table 7: Hyper-parameters used for CoNLL2003,
OntoNotes, ACE2004, ACE2005, Genia, CADEC,
ShARe13, ShARe14.

A.2 Beam Search
Since our framework is based on generation, we
want to study whether using beam search will in-
crease the performance, results are depicted in Fig-
ure 5, it shows the beam search almost has no effect
on the model performance. The litte effect on the
F1 value might be caused the the small searching
space when generating.

A.3 Efficiency Metrics
In this section, we compare the memory footprint,
training and inference time of our proposed model
and BERT-based models. The experiments are
conducted on the flat NER datasets, CoNLL-2003
(Sang and Meulder, 2003) and OntoNotes (Pradhan
et al., 2012). We use the BERT-MLP and BERT-
CRF models as our baseline models. BERT-MLP
and BERT-CRF are sequence labelling based mod-
els. For an input sentence X = [x1, ..., xn], both
models use BERT (Devlin et al., 2019) to encode
X as follows

H = BERT(X) (10)

where H ∈ Rn×d, d is the hidden state dimension.
Then for the BERT-MLP model, it decodes the

tags as follows

F = Softmax(max(HWb + bb, 0)Wa + ba)
(11)
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Figure 5: The F1 change curve with the increment of
beam size. The beam size has limited effect on the F1
score.

where Wa ∈ Rd×|T | and |T | is the number of tags,
ba ∈ R|T |, Wb ∈ Rd×d, bb ∈ Rd, F ∈ Rn×|T |

is the tag probability distribution. Then we use
the negative log likelihood loss. And during the
inference, for each token, the tag index with the
largest probability is deemed as the prediction.

For the BERT-CRF model, we use the condi-
tional random fields (CRF) (Lafferty et al., 2001)
to decode tags. We assue the golden label sequence
is Y = [y1, ..., yn], then we use the following equa-
tions to get the probability of Y

M = max(HWb + bb, 0)Wa + ba (12)

M = log softmax(M) (13)

P (Y |X) =

∑n
i=1 e

M[i,yi]+T[yi−1,yi]∑Y(s)
y′

∑n
i=1 e

M[i,y′i]+T[y′i−1,y
′
i]
,

(14)

where M ∈ Rn×|T |, Y(s) is all valid label se-
quences, T ∈ R|T |×|T | is the transitation matrix, an
entry (i, j) in T means the transition score from tag
i to tag j. After getting the P (Y |X), we use nega-
tive log likelihood loss to optimize the model. Dur-
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Dataset Model Memory Training Time Evaluation Time

CoNLL-2003
BERT-MLP 7G 98s 3s
BERT-CRF 7G 122s 5s
Ours(Word)[BART] 8G 115s 12s

OntoNotes
BERT-MLP 7G 421s 9s
BERT-CRF 7G 523s 13s
Ours(Word)[BART] 7G 493s 38s

Table 8: The training memory usage, training time and evaluation time comparison between three models.

ing the inference, the Viterbi Algorithm is used to
find the label sequence achieves the highest score.

We use the BERT-base version and BART-base
version to calculate the memory footprint during
training, seconds needed to iterate one epoch (one
epoch means iterating over all training samples),
and seconds needed to evaluate the development
set. The batch size is 16 and 48 for training and
evaluation, respectively. The comparison is pre-
sented in Table 8.

During the training phase, we can use the casual
mask to make the training of our model in paral-
lel. Therefore, our proposed model can train faster
than the BERT-CRF model, which needs sequential
computation. While during the evaluating phase,
we have to autoregressively generate tokens, which
will make the inference slow. Therefore, further
work like the usage of a non-autoregressive method
can be studied to speed up the decoding (Gu et al.,
2018).


