
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5532–5542

August 1–6, 2021. ©2021 Association for Computational Linguistics

5532

De-Confounded Variational Encoder-Decoder for Logical
Table-to-Text Generation

Wenqing Chen1,2, Jidong Tian1,2, Yitian Li1,2, Hao He1,2∗, Yaohui Jin1,2∗

1MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
2State Key Lab of Advanced Optical Communication System and Network,

Shanghai Jiao Tong University
{wenqingchen, frank92, yitian_li, hehao, jinyh}@sjtu.edu.cn

Abstract

Logical table-to-text generation aims to auto-
matically generate fluent and logically faithful
text from tables. The task remains challenging
where deep learning models often generated
linguistically fluent but logically inconsistent
text. The underlying reason may be that deep
learning models often capture surface-level
spurious correlations rather than the causal re-
lationships between the table x and the sen-
tence y. Specifically, in the training stage,
a model can get a low empirical loss with-
out understanding x and use spurious statis-
tical cues instead. In this paper, we propose
a de-confounded variational encoder-decoder
(DCVED) based on causal intervention, learn-
ing the objective p(y|do(x)). Firstly, we pro-
pose to use variational inference to estimate
the confounders in the latent space and co-
operate with the causal intervention based on
Pearl’s do-calculus to alleviate the spurious
correlations. Secondly, to make the latent
confounder meaningful, we propose a back-
prediction process to predict the not-used en-
tities but linguistically similar to the exactly
selected ones. Finally, since our variational
model can generate multiple candidates, we
train a table-text selector to find out the best
candidate sentence for the given table. An
extensive set of experiments show that our
model outperforms the baselines and achieves
new state-of-the-art performance on two logi-
cal table-to-text datasets in terms of logical fi-
delity.

1 Introduction

Data-to-text generation refers to the task of gen-
erating descriptive text from non-linguistic inputs.
With the different types of inputs, this task can be
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defined more specifically, such as abstract mean-
ing representation to text (Zhao et al., 2020; Bai
et al., 2020a), infobox with key-value pairs to
text (Bai et al., 2020b), graph-to-text (Song et al.,
2020), and table-to-text (Wang et al., 2020; Parikh
et al., 2020) generation.

Among these tasks, we focus on logical table-
to-text generation, which aims to generate fluent
and logically faithful text from tables (Chen et al.,
2020a). And the ability of logical inference is
a kind of high-level intelligence, which is non-
trivial for text generation systems in reality. The
task remains challenging because the reference
sentences often convey logically inferred informa-
tion, which is not explicitly presented in the table.
As a consequence, data-driven models often gener-
ated linguistically fluent but logically inconsistent
text. Recent progress on this task mainly lies in
the use of pretrained language models (LMs) like
GPT-2 (Radford et al., 2018), which was shown to
perform much better than non-pretrained models
(Chen et al., 2020a,e).

However, it is still arguable that whether pre-
trained LMs can correctly capture the logics, as
pretrained LMs like BERT would use spurious sta-
tistical cues for inference (Niven and Kao, 2019).
The substantial difficulty for this task does not lay
on whether to use the pretrained models or not.
Instead, the difficulty is because the surface-level
spurious correlations are easier to capture than the
causal relationship between the table and the text.
For example, we have observed that a model coop-
erating with GPT-2 generated a sentence "The al-
bum was released in the United States 2 time" for a
given table. But the country where the album was
released twice is "the United Kingdom"1. In the
training stage, a model may get low training loss
by utilizing the surface-level correlations without

1The details of the table can be found in Section 5.6
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actually focusing on the selected entities. As a re-
sult, in the inference stage, the model is possible
to produce incorrect facts.

In this paper, we view the logical table-to-
text generation from the perspective of causal
inference and propose a de-confounded varia-
tional encoder-decoder (DCVED). Firstly, given
the table-sentence pair (x,y), we assume con-
founders zc existed in the latent space and con-
tributing to the surface-level correlations (e.g.,
"the United States" and "the United Kingdom").
We estimate zc in the latent space based on varia-
tional inference, and cooperate the causal interven-
tion based on Pearl’s do-calculus (Pearl, 2010) to
learn the objective p(y|do(x)) instead of p(y|x).
Secondly, to make the latent confounder mean-
ingful, we propose a back-prediction process to
ensure the latent confounder zc can predict the
not-used entities but linguistically similar to the
exactly selected ones. We also consider the ex-
actly selected entities as the mediators in our de-
confounded architecture models. Finally, since
our variational model can generate multiple can-
didates, we train a table-text selector to find out
the best text for the table. An extensive set of ex-
periments show that our model achieves new state-
of-the-art performance on two logical table-to-text
datasets in terms of logical fidelity.

The main contributions of this work can be sum-
marized as follows:

• We propose to use variational inference to es-
timate the confounders in the latent space and
cooperated with back-prediction to make the
latent variable meaningful.

• We propose a generate-then-select paradigm
jointly considering the surface-level and log-
ical fidelity, which can be considered as an
alternative to reinforcement learning.

• The experiments have shown that our model
achieves new state-of-the-art performance on
two logical table-to-text datasets with or with-
out pretrained LMs.

2 Related Work

Table-to-Text Generation. The task of table-to-
text generation belongs to the data-to-text gener-
ation, where a key feature is the structured input
data. Lebret et al. (2016) used a seq2seq neural
model with a field-infusing strategy that obtains

field-position-aware and field-words-aware cell
embeddings to generate sentences from Wikipedia
tables. A follow-up work proposed to update
the cell memory of the LSTM by a field gate
to help LSTM identify the boundary between
different cells (Liu et al., 2018). Transformer-
based (Vaswani et al., 2017) models were also pro-
posed which improved the ability to capture long-
term dependencies between cells (Ma et al., 2019;
Wang et al., 2020; Chen et al., 2020a). It is worth
to mention that the copy mechanism (Luong et al.,
2015) is an important part to deal with the out-
of-vocabulary (OOV) words (Lebret et al., 2016;
Gehrmann et al., 2018; Chen et al., 2020a) when
not using pretrained language models.

Logical Table-to-Text Generation. While
usually fluent, existing methods often halluci-
nate phrases that contradict the facts in the table.
To benchmark models’ ability to generate logi-
cally consistent sentences, recent work proposed
a dataset collected from open domain (Chen et al.,
2020a), which would score low on those models
ignoring logical consistency. Follow-up work fur-
ther proposed another dataset that involved logical
forms as additional supervision information (Chen
et al., 2020e), which includes common logic types
paired with the underlying logical forms.

Causal Inference. Machine learning mod-
els often suffer from the spurious statistical cor-
relations brought by unmeasured or latent con-
founders (Keith et al., 2020). To eliminate the
confounding bias, one approach is applying the
causal intervention based on Pearl’s do-calculus
(Pearl, 2010). However, it remains an open prob-
lem to choose proper confounders, and the lan-
guage of text itself could be a confounder (Keith
et al., 2020). It is worth noting that high-quality
observations of the mediators can also reduce the
confounding bias, as the models will reduce the
possibility of counting on the confounders (Chen
et al., 2020d).

3 Backgrounds

Before introducing our models, we briefly re-
view the framework of VAE (Kingma and Welling,
2014), a generative model which allows to gener-
ate high-dimensional samples from a continuous
space. In the probability model framework, the
probability of data x can be computed by:

p(x) =

∫
p(x, z)dz =

∫
p(z)p(x|z)dz (1)
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where it is approximated by maximizing the evi-
dence lower bound (ELBO):

log pθ(x) ≥ E
z∼qϕ(z|x)

[log pθ(x|z)]

− KL(qϕ(z|x)∥p(z))
(2)

where pθ(x|z) denotes the decoder with parame-
ters θ and qϕ(z|x) is obtained by an encoder with
parameters ϕ, and p(z) is a prior distribution, for
example, a Gaussian distribution. And KL(·||·)
denotes the Kullback-Leibler (KL) Divergence be-
tween two distributions.

When applied to seq2seq generation where
the input and the output are denoted by x and
y respectively, the conditional variational auto-
encoder (CVAE), or often known as variational
encoder-decoder (VED), is used with following ap-
proximation:

log pθ(y|x) ≥ E
z∼qϕ(z|x,y)

[log pθ(y|x, z)]

− KL(qϕ(z|x,y)∥p(z|x))
(3)

In the vanilla CVAE formulation, such as the
ones adopted in (Kingma et al., 2014; Jain et al.,
2017), the prior distribution p(z|x) is approxi-
mated to p(z), which is independent on x and
fixed to a zero-mean unit-variance Gaussian dis-
tribution N (0, I). However, this formulation is
shown to induce a strong model bias (Tomczak
and Welling, 2018) and empirically perform worse
than non-variational models (Wang et al., 2017) in
multi-modal situation.

x y
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Figure 1: The causal graphs before and after the do-
calculus. The symbols x, y, zm, zc denote the input
table, the output sentence, the hidden mediator, and the
hidden confounder, respectively. We assume c and m
to be the proxy variables of zm and zc, respectively,
which are relatively easy to be observed.

4 Methodology

4.1 De-Confounded VED
From a human perspective, multiple sentences can
properly describe a given table, varying with dif-

ferent concerns, different logical types or linguis-
tic realizations. Therefore, given the input data
x and the output sentence y, we can assume a
latent variable z existed leading to a conditional
generation process p(y|x, z) where z contributes
to the diversity. It suggests a CVAE framework
with Equation 3. However, as discussed in Sec-
tion 3, the vanilla CVAE will introduce a model
bias (Tomczak and Welling, 2018). In this subsec-
tion, we re-think the CVAE from the perspective
of causal inference. We assume a directed acyclic
graph (DAG) existed, which includes a mediator
zm and a confounder zc as shown in Figure 1(a).
The mediator is determined by x and has causal ef-
fects on y, while the confounder has causal effects
on both x and y.

When only considering zm, we can compute the
probability distribution p(y|x) by:

p(y|x) =
∑
zm

p(y|x, zm)p(zm|x)

= Ezm∼pφ(zm|x)p(y|x, zm)

(4)

where φ denotes the parameters of a mediator pre-
dictor. An example for zm is the selected en-
tity (e.g., United Kingdom) from the table x and
exactly appeared in y. The vanilla CVAE will
constrain zm in the continuous space, and fur-
ther approximate the prior distribution p(zm|x) to
p(zm), which produces biased information.

However, it does not mean that removing the
approximation between p(zm|x) and p(zm) is
enough. We observe that models often rely on
spurious statistical cues for prediction, resulting in
some linguistically similar but inconsistent expres-
sions in the generated sentences (e.g., using "The
United States" instead of "The United Kingdom).
The model is possible to minimize the training loss
relying on the surface-level correlations between
the selected entity and the high-frequency entity.
In this case, the high-frequency entity belongs to
the confounder zc. In the inference stage, model
may infer contradicting facts due to a high poste-
rior probability of q(zc|x).

To eliminate the spurious correlations, we ap-
ply causal intervention by learning the objective
p(y|do(x)) instead of p(y|x), which forces the
input to be the observed data x, and removes all
the arrows pointing to x as shown in Figure 1(b).
When only considering zc, we can compute the in-
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tervened probability distribution by:

p(y|do(x)) =
∑
zc

p(y|x, zc)p(zc)

= Ezc∼p(zc)p(y|x, zc)

(5)

where zc is no longer determined by x, making
p(zc|do(x)) = p(zc). When applying variational
inference to zc, we have:

p(y|do(x)) ≥ Ezc∼qϕ(zc|y)pθ(y|x, zc)

− KL(qϕ(zc|y)|p(zc))
(6)

It can be seen that the confounder zc is more
suitable than the mediator zm to cooperate with
variational inference, as cutting off the link zc →
x will naturally make p(zc|do(x)) to p(zc).

When jointly considering zm and zc, we have:

p(y|do(x)) =
∑
zm

∫
zc

p(y, zm, zc|do(x))dzc

≥ Ezm∼pφ(zm|x),zc∼qϕ(zc|y)[log pθ(y|x,
zm, zc)]− KL(qϕ(zc|y)∥p(zc))

(7)
according to the intervened causal graph in Figure
1(b). The symbols ϕ, φ and θ denote the param-
eters of three probability modeling networks, re-
spectively. It is worth noting that we do not ap-
ply variational inference to zm because finding a
proper prior distribution p(zm|x) remains another
big topic. Instead, our framework is easy to imple-
ment.

4.2 Making Latent Variables Meaningful

However, there is no guarantee that zm and zc

can represent the real mediators and confounders
in Equation 7. If we have no other observed vari-
ables, the confounder zc would mainly represent
the covariate which is naturally independent of x
and has causal effects on y.

Therefore, we further involve proxy variables
m and c for zm and zc, respectively, where the
full causal graph is shown in Figure 1. Proxy vari-
ables are the proxies of hidden or unmeasured vari-
ables (Miao et al., 2018). In practice, the medi-
ators and the confounders are often too complex
and can not be directly observed. For example, we
may not be able to directly measure one’s socio-
economic status but we are probable to get a proxy
by the zip code or job type (Louizos et al., 2017).
To make the latent variables zm and zc meaning-

ful, we add two additional networks and the learn-
ing objective is maximizing:

Ezm∼pφ(zm|x),zc∼qϕ(zc|y)[log pθ(y|x,
zm, zc)]− KL(qϕ(zc|y)∥p(zc))

+ Ezm∼pφ(zm|x)[log pΦ(m|zm)]

+ Ezc∼qϕ(zc|y)[log pΨ(c|zc)]

(8)

where Φ and Ψ denote the parameters of the two
additional networks.

Back-Prediction from the Confounder. As
shown in Figure 1(a), the confounder zc inferred
from y also have a causal effect on x. Other-
wise, the confounder will collapse into the covari-
ate. The spurious correlations we have observed
are that models often generate linguistically simi-
lar but logically inconsistent outputs. For example,
"the United Kingdom" and "the United State" in-
stead of "the United Kingdom" because the two en-
tities are linguistically similar to each other. There-
fore, we assume the proxy confounders c to be the
not-mentioned entities in the given table. And we
keep those high-frequency entities in the training
set (≥ 5 times). Let c = {ci,j} ∈ RNc×Lc where
ci,j denotes the j-th token of i-th entity, and Nc

and Lc denote the number of entities and maxi-
mum length of the entity, respectively. The log-
probability log pΨ(c|zc) is computed by:

log pΨ(c|zc) =
∑
i,j

log pΨ(ci,j |zc, ci,<j) (9)

where ci,<j denotes the tokens preceding to the j-
th token in the i-th entity. Then we minimize the
cross-entropy between pΨ(c|zc) and p(c).

Supervision for the Mediator. In the logical
table-to-text generation task, from the human per-
spective, the correct mediators may be the selected
entities, the logical types, or the logical forms
(Chen et al., 2020e). In this paper, we only con-
sider the selected entities as it is relatively easy to
extract while the logical types or forms are labor-
intensive to annotate. We represent the selected
entities by m = {mi,j} ∈ RNm×Lm where mi,j

denotes the j-th token of i-th entity, and Nm and
Lm denote the number of entities and maximum
token number of the entity, respectively. The log-
probability pΦ(m|zm) is computed by:

log pΦ(m|zm) =
∑
i,j

log pΦ(mi,j |zm,mi,<j)

(10)
where mi,<j denotes the tokens preceding to the
j-th token in the i-th entity.
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4.3 Encoders and Decoders Implementation

Then we introduce the implementations of
pθ(y|x, zm, zc), pφ(zm|x), and qϕ(zc|y). We
assume that the seq2seq model consists of
an encoder Enc(·) and a decoder Dec(·) for
pθ(y|x, zm, zc). And a target-oriented encoder
T-Enc(·) is used for qϕ(zc|y).

Firstly, we need to implement pφ(zm|x) and
qϕ(zc|y). Let Hx be the hidden states of x en-
coded via Hx = Enc(x), and Ey be the embed-
dings of y before fed to the decoder Dec(·). We
use a fully-connected neural network (FCNN) to
project Hx followed with the average pooling to
obtain zm. And we use the target-oriented encoder
to encode Ey and obtain Hy = T-Enc(Ey). We
apply the mean pooling operation to Hy and ob-
tain hy. To modeling qϕ(zc|y) which is approxi-
mated to a Gaussian distribution, we use two FC-
NNs to process hy and obtain the mean vector µy

and the log variance log σ2
y which makes:

qϕ(zc|y) = N (µy, σ
2
y) (11)

To implement pθ(y|x, zm, zc), our model
cooperates an non-pretrained model "Field-
Infusing+Trans" (Chen et al., 2020a) or a
pretrained model "GPT-TabGen" (Chen et al.,
2020a). Specifically, "Field-Infusing+Trans" uses
an infusing field embedding network to produce
header-words-aware and cell-position-aware
embeddings Ep, then concatenate Ep with token
embeddings to obtain the infused embeddings
E = {ei} ∈ RLt×d where ei denotes the
embedding of i-th token in the table x, and Lt

and d denote the token number and the dimension,
respectively. Then the decoder is used to decode y
token by token: yt = Dec(Hx,y≤t, zm, zc). The
latent variables zm and zc are concatenated as one
latent variable and projected by a FCNN to get a
vector zm,c which has the same dimension with
Hx. Then we add zm,c with Ey at each decoding
step. When cooperated with "GPT-TabGen", the
difference from "Field-Infusing+Trans" is that
we use the GPT-2 as the encoder and decoder,
and use the table linearization to indicate the
cell position instead of the field-infusing method.
More details about the table linearization can be
found in (Chen et al., 2020a). And the vector
zm,c is fed to the last Transformer layer of GPT-2
instead of the first layer, which brings less impact
on the pretrained GPT-2.

4.4 Generate-then-Select Paradigm

By sampling multiple latent variables zc ∼ p(zc),
our model can generate multiple candidate sen-
tences Ỹ = (ỹ1, ỹ2, ..., ỹNc) for the table x
where Nc is the number of generated sentences.
We propose to find out the best sentence by a
trained selector. The generator optimized with
MLE may focus more on the token-level matching
than the sentence-level consistency while the se-
lector will focus on improving the sentence-level
scores. Therefore, it can be considered as an al-
ternative of reinforcement learning. The selector
scores each candidate sentence by si = Sχ(ỹ

i,x)
where χ denotes the parameters of the selector net-
work. Note that we are not designing a selector
si = Sχ(ỹ

i,y) because the reference sentence y
is not available in practice.

Recent work has provided several selectors
including parsing-based and NLI-based models
(Chen et al., 2020c). We can directly use these
selectors but we aims to develop a more general
selector jointly considering surface-level fidelity
and logical fidelity. We use a mix of BLEU-3
(Papineni et al., 2002) and NLI-Acc (Chen et al.,
2020a) scores to supervise the selector. In the
training stage of the selector, we can get the gold
scores of each generated candidate with the refer-
enced sentence y by s∗i = S∗(ỹi,y). Then, we
use BERT to encode x and yi followed with the
average pooling layers to produce hs and hi

s. Fi-
nally, we score the table-sentence pair represented
by (hs,h

i
s) as follows:

hf = hs ⊕ hi
s ⊕ |hs − hi

s| ⊕ hs ⊙ hi
s

Sχ(ỹ
i,x) = σ(W shf )

(12)

where ⊕ and ⊙ denote the concatenation and
the element-wise multiplication operations, re-
spectively. And W s denotes the parameters of
the scoring network. The score Sχ(ỹ

i,x) is be-
tween 0 and 1, and better sentences need to be
closer to 1. The scores of gold reference are set
to 1. Then we use the margin-based triplet loss
for the generated sentences in two way: compar-
ing with gold sentences, and comparing between
arbitrary two generated sentences. Given Nc gen-
erated candidate sentences, we rank the generated
sentences according to the mix of BLEU-3 and
NLI-Acc scores. The ranked sentences are de-
noted by Ỹ r = (ỹ1

r , ỹ
2
r , ..., ỹ

Nc
r ) where ỹ1

r has
the highest score. Then the loss is computed as
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follows:

Lχ = max
(
0, Sχ(ỹ

i
r,x)− S(y,x) + γ1

)
+max

(
0, Sχ(ỹ

j
r,x)− S(ỹi

r,x) + γ2

)
(13)

where γ1 and γ2 are the hyperparameters repre-
senting margin values, and i and j represent the
ranked indexes. At the inference stage, we can se-
lect the best sentence with the highest score.

Dataset Vocab Tables Sentences Train / Val. / Test

LogicNLG 122K 7,392 37,015 28,450 / 4,260 / 4,305
Logic2Text 14K 5,554 10,753 8,566 / 1,095 / 1,092

Table 1: The statistics of two datasets.

5 Experiments

5.1 Datasets

We conduct experiments on two datasets: Logic-
NLG (Chen et al., 2020a) and Logic2Text (Chen
et al., 2020e). LogicNLG is constructed based
on the positive statements of the Tabfact dataset
(Chen et al., 2020c), which contains rich logical in-
ferences in the annotated statements. Logic2Text
is a smaller dataset and provides the annotation
of logical forms. Since the annotations of logical
forms are labor-intensive, we only use the table-
sentence pairs, following the task formulation of
LogicNLG. The statistics of the two datasets are
shown in Table 1.

5.2 Evaluation and Settings

The models are evaluated on the surface-level con-
sistency and the logical fidelity. In terms of the
surface-level consistency, we evaluate models on
the sentence-level BLEU scores (Papineni et al.,
2002) based on 1-3 grams matching. In terms
of logical fidelity, we follow the recent work and
apply three metrics including SP-Acc and NLI-
Acc based on semantic parsing and pretrained NLI
model, respectively (Chen et al., 2020a). The
metrics are computed with the officially released
codes2.

Compared Models. We compare our models
with both non-pretrained and pretrained models.
The non-pretrained models include "Field-Gating"
(Liu et al., 2018) and "Field-Infusing" (Lebret
et al., 2016) with LSTM decoder or Transformer

2https://github.com/wenhuchen/LogicNLG

decoder, which are strong baselines among non-
pretrained models. The pretrained models include
"BERT-TabGen" and "GPT-TabGen" with the base
size (Chen et al., 2020a). Moreover, for the Log-
icNLG dataset, we compare with a two-phrase ap-
proach denoted by "GPT-Coarse-to-Fine", which
first generates a template and then generates the
final sentence conditioning on the template (Chen
et al., 2020a). For the variational models, we com-
pare with the vanilla CVAE (Kingma et al., 2014)
that approximates the prior distribution p(z|x) to
p(z).

Hyperparameters. For the non-pretrained
models, we set the dimension of LSTM or Trans-
former to 256. Our model is based on "Field-
Infusing+Trans" which includes 3-layer Trans-
formers in the encoder and decoder respectively.
The posterior network qϕ(zc|y) contains a two-
layer Transformer. For the pretrained models, we
use the base version of BERT and GPT-2 which
have an embedding size of 768. The KL loss is
minimized with the annealing trick where the KL
weight is set to 0 for 2 epochs and grows to 1.0 in
another 5 epochs. The learning rate is initialized
to set to 0.0001 and 0.000002 for non-pretrained
and pretrained models, respectively. Each model
is trained for 15 epochs. A special setting for our
model is that we generate 10 candidate sentences
for each table, and report the average performance
and the best performance based on the selector, re-
spectively. We set the hyperparameters γ1 = 0.2
and γ2 = 0.2 for the selector.

5.3 Main Results

Table 2 and 3 present the performance of our
model as well the compared models on the surface-
level consistency and the logical fidelity. As
shown, without the selector, our model DCVED
already outperforms the baseline models "Field-
Infusing" and "GPT-TableGen" on both Logic-
NLG and Logic2Text datasets. Specifically, when
compared with "Field-Infusing", our model in-
creases the BLEU-3, SP-Acc, and NLI-Acc scores
by 1.4, 3.7, and 3.9 points, respectively on the
LogicNLG dataset, and 0.2, 2.4, and 2.8 points on
the Logic2Text dataset. When cooperating with
GPT-2, our model outperforms "GPT-TableGen"
by 1.6, 2.2, and 5.2 points of BLEU-3, SP-Acc,
and NLI-Acc scores, respectively on the Logic-
NLG dataset, and 0.2, 1.3, and 5.4 points on
the Logic2Text dataset. Moreover, our model
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Model Type
Surface-Level Fidelity Logical Fidelity

BLEU-1 BLEU-2 BLEU-3 SP-Acc NLI-Acc

Non-Pretrained Models

Field-Gating + LSTM - 42.3 19.5 6.9 38.0 56.8
Field-Gating + Trans - 44.1 20.9 8.3 38.5 57.3
Field-Infusing + LSTM - 43.1 19.7 7.1 38.6 57.1
Field-Infusing + Trans - 43.7 20.9 8.4 38.9 57.3
CVAE + Field-Infusing + Trans - 46.4 23.1 9.4 39.8 59.0
DCVED + Field-Infusing + Trans - 46.2 22.9 9.8 42.6 61.2
DCVED + Field-Infusing + Trans Trained Selector 47.4 23.4 10.6 42.1 62.5
DCVED + Field-Infusing + Trans Oracle NLI-Acc ‡ 45.0 22.2 9.0 41.7 86.8
DCVED + Field-Infusing + Trans Oracle BLEU-3 ‡ 55.2 32.9 15.9 41.8 60.3

Pretrained Models

BERT-TabGen - 47.8 26.3 11.9 42.2 68.1
GPT-TabGen - 48.8 27.1 12.6 42.1 68.7
GPT-TabGen Adv-Reg 45.8 23.1 9.6 40.9 68.5
GPT-TabGen RL 45.1 23.6 9.1 43.1 67.7
GPT-Coarse-to-Fine - 46.6 26.8 13.3 42.7 72.2
CVAE + GPT-TabGen - 49.0 27.9 13.5 42.6 71.8
DCVED + GPT-TabGen - 49.3 28.3 14.2 44.3 73.9
DCVED + GPT-TabGen Trained Selector 49.5 28.6 15.3 43.9 76.9
DCVED + GPT-TabGen Oracle NLI-Acc ‡ 49.7 28.5 14.5 46.1 92.2
DCVED + GPT-TabGen Oracle BLEU-3 ‡ 59.7 38.0 22.1 45.0 74.2

Table 2: The experimental results of different models on the test split of LogicNLG dataset, where we split the
table into non-pretrained and pretrained models. The bold represents the best scores. Adv-Reg and RL denote
adversarial regularization and reinforcement learning, respectively. Oracle-x represents the upper bound of the
generated sentences.

Model Type
Surface-Level Fidelity Logical Fidelity

BLEU-1 BLEU-2 BLEU-3 SP-Acc NLI-Acc

Non-Pretrained Models

Field-Infusing + Trans - 37.7 21.0 10.5 38.5 42.4
CVAE + Field-Infusing + Trans - 37.1 20.4 9.3 38.1 41.6
DCVED + Field-Infusing + Trans - 38.8 21.6 10.7 40.9 45.2
DCVED + Field-Infusing + Trans Trained Selector 39.4 22.0 11.0 40.4 48.2
DCVED + Field-Infusing + Trans Oracle NLI-Acc ‡ 38.5 21.5 10.9 41.3 72.5
DCVED + Field-Infusing + Trans Oracle BLEU-3 ‡ 45.6 29.0 16.7 40.8 44.7

Pretrained Models

GPT-TabGen - 46.5 30.9 19.9 42.4 66.5
CVAE + GPT-TabGen - 46.2 30.8 19.7 41.0 67.8
DCVED + GPT-TabGen - 46.4 31.2 20.1 43.7 71.9
DCVED + GPT-TabGen Trained Selector 48.9 32.7 21.4 43.9 73.8
DCVED + GPT-TabGen Oracle NLI-Acc ‡ 46.5 31.2 20.1 43.8 89.9
DCVED + GPT-TabGen Oracle BLEU-3 ‡ 52.1 37.5 26.1 43.5 72.0

Table 3: The experimental results of different models on the test split of Logic2Text dataset, where we split the
table into non-pretrained and pretrained models. The bold represents the best scores. Oracle-x represents the upper
bound of the generated sentences.

also outperforms the recent SOTA model "GPT-
Coarse-to-Fine" which increases the NLI-Acc
score from 72.2 to 73.9 points on the Logic2Text
dataset. When combining with the trained se-
lector, our model further increases the NLI-Acc

scores to 76.9 and 73.8 points on LogicNLG and
Logic2Text datasets, respectively. We also show
the upper bound of our model on BLEU and NLI-
Acc scores. Assume that two optimum selectors
have access to the ground-truth sentences, and
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Dataset Model BLEU-3 SP-Acc NLI-Acc

LogicNLG

CVAE 9.4 39.8 59.0
DCVED (zc) 9.0 40.8 60.3
DCVED (zc, c) 9.3 40.1 60.2
DCVED (zc, zm, m) 10.2 41.8 60.6
DCVED (Full) 9.8 42.6 61.2

Logic2Text

CVAE 9.3 38.1 41.6
DCVED (zc) 9.7 40.2 42.3
DCVED (zc, c) 9.6 39.4 43.5
DCVED (zc, zm, m) 11.2 40.8 44.8
DCVED (Full) 10.7 40.9 45.2

Table 4: The performances of ablated models as well
as the full model on the two datasets.

would select the best sentence according to the
BLEU-3 and NLI-Acc scores, respectively. As
shown, a higher BLEU-3 score does not lead
to a higher NLI-Acc score. Similarly, a higher
NLI-Acc score does not yield a higher BLEU-3
score. The findings indicate that selecting candi-
dates only by BLEU-3 or only by NLI-Acc is not
enough. Instead, our trained selector comprehen-
sively considers the BLEU-3 and NLI-Acc scores.

5.4 Ablation Study

To analyze which mechanisms are driving the im-
provements, we present an ablation study in Table
4. We show different ablated models with differ-
ent combinations of zc, zm, c and m. All these
models are based on "Field-Infusing". Moreover,
the vanilla CVAE is also compared, which can be
considered as a baseline making both zm and zc
independent from x.

As shown, both the mediators and the con-
founders are influential. The full model achieve
the best SP-Acc and NLI-Acc scores with slightly
lower BLEU-3 scores than the ablated model,
DCVED (zc, zm, m). Eliminating c from the full
model leads to a drop of NLI-Acc by 0.6 and 0.4
points on LogicNLG and Logic2Text, respectively.
Further eliminating zm and m leads to a drop of
NLI-Acc by 0.9 and 2.9 points on LogicNLG and
Logic2Text, respectively. An interesting finding is
that DCVED (zc, c) performs worse than DCVED
(zc) on SP-Acc. The reason may be that predicting
c from zc without considering the mediators zm
may also lead to a bias, similar to CVAE. However,
the ablated models all perform better than CVAE
on SP-Acc and NLI-Acc.

5.5 Human Evaluation

Following recent work (Chen et al., 2020a), we
also perform human evaluation on the fluency and

fluency % logical fidelity %

GPT-TabGen 96.4 19.1
+ DCVED 98.3 25.8
+ DCVED + Trained Selector 99.5 30.8
+ DCVED + Oracle NLI Selector 98.0 37.1

Table 5: The results of human evaluation on the Logic-
NLG dataset.

logical fidelity. We randomly select 200 tables in
the LogicNLG dataset, and generate one sentence
per table for each model. Then we present the
generated sentences to four raters without telling
which model generates them. The raters are all
post-graduate students majoring in computer sci-
ence. We ask the raters to finish two binary-
decision tasks: 1) whether a generated sentence
is fluent; and 2) whether the fact of a gener-
ated sentence can be supported by the given table.
We report the averaged results in Table 5, from
which we can see that our model "DCVED + GPT-
TabGen" mainly increases the logical fidelity over
the baseline model "GPT-TabGen" from 19.1% to
25.8%. When cooperated with the trained selec-
tor and the oracle NLI selector, our model further
increase the logical fidelity to 30.8% and 37.1%,
respectively. It is worth noting that the NLI selec-
tor can be represented by the scorer PNLI(ỹ,x),
which does not require the ground-truth sentence
y to be available (Chen et al., 2020a). It means
that the setting of using the oracle NLI selector is
acceptable.

5.6 Case Study

To directly see the effect of our model, we present
a case study in Figure 2. Several GPT-2 based
models generate sentences describing two tables
in the LogicNLG test set. The underlined red
words represent the facts contradicting the table.
As shown, for the first table, CVAE generates the
sentence "The album was released in the United
State 2 time", where the correct entity should be
"the United Kingdom" according to the table. In-
stead, our model DCVED acknowledges that "The
album was released in the United Kingdom 2
time". Moreover, compared with those determin-
istic models like GPT-TableGen and GPT-Coarse-
to-Fine, our model can generate sentences with
different logical types. For the second table, we
can see that many contradicting facts exist in re-
cent models. For example, GPT-TableGen gener-
ates an incomplete sentence, which uses superla-
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country date
Europe 17 october 2008
Australia 18 october 2008
United Kingdom 20 october 2008
United Kingdom 1 december 2008
United States 20 october 2008
Japan 22 october 2008
Germany 5 december 2008
Global ( itunes ) 19 november 2012

Case 1: Black Ice (Album)

GPT-TableGen: The album was released in the United State. 
GPT-Coarse-to-Fine: Black Ice was released in Germany and Japan. 
CVAE:  The album was released in the United State 2 time. 
DCVED:  The album was released in the United Kingdom 2 time. 
DCVED:  The album was released in the United State before the 
release of the album in Japan.

Case 2: Green Party of Canada

election of candidates nominated
1984 60
1988 68
1993 79
1997 79
2000 111
2004 308
2006 308
2008 303

GPT-TableGen: The Green Party Of Canada had the highest 
number of Candidate Nominated. 
GPT-Coarse-to-Fine: The Green Party Of Canada had 308 more 
Candidate Nominated than 1984. 
CVAE:  The Green Party Of Canada had the highest number Of 
Nomination in the 2000 Election. 
DCVED:  The Green Party Of Canada had the highest number Of 
Nomination in 2004. 
DCVED:  The Green Party Of Canada had more Candidate 
Nominated in 2004 than in 2000.

Figure 2: The case study of different GPT-2 based
models for two tables in the LogicNLG test set. The
underlined red words represent the facts not supported
by the table. For our model DCVED, we present two
generated sentences for each table.

tive logic but not mentions a specific year. Instead,
our model produces two logically consistent sen-
tences with superlative and comparative logic.

5.7 Limitations

Although our model can improve the logical fi-
delity to a certain degree, all the models still get
low scores in terms of the logical fidelity in hu-
man evaluation, which reflects the challenge of the
task. Especially, we find that models do not per-
form well on certain types of tables: 1) contain-
ing and comparing between large numbers, e.g.,
18,013 and 29,001 in a table; and 2) containing
mixed logics so that models require multi-hop rea-
soning, e.g., models generating "there were 3 na-
tions that won 2 gold medals" while the correct
nation number is 4.

To deal with these problems, we believe that
two directions of work may be workable: 1) en-
hancing the mediators. For example, the logi-
cal forms (Chen et al., 2020e) can be utilized as
the mediator. But as mentioned in Section 4.2,
it is label-intensive to annotate the logical forms;
2) large-scale knowledge grounded pre-training,
which may be a more promising way. This type
of work utilized the existing knowledge graphs
or crawled data from Wikipedia (Chen et al.,
2020b) to help models better encode/represent
non-linguistic inputs, such as the numbers, the
time, or the scores in the tables.

6 Conclusion

In this paper, we propose a de-confounded varia-
tional encoder-decoder for the logical table-to-text
generation. Firstly, we assume two latent variables
existed in the continuous space, representing the
mediator and the confounder respectively. And we
apply the causal intervention method to reduce the
spurious correlations. Secondly, to make the latent
variables meaningful, we use the exactly selected
entities to supervise the mediator and the not se-
lected but linguistically similar entities to super-
vise the confounder. Finally, since our model can
generate multiple candidates for a table, we train
a selector guided by both surface-level and logi-
cal fidelity to select the best sentence. The exper-
iments show that our model yields competitive re-
sults with recent SOTA models.
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