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Abstract

We propose an alternate approach to quanti-
fying how well language models learn natu-
ral language: we ask how well they match
the statistical tendencies of natural language.
To answer this question, we analyze whether
text generated from language models exhibits
the statistical tendencies present in the human-
generated text on which they were trained.
We provide a framework—paired with signif-
icance tests—for evaluating the fit of language
models to these trends. We find that neural
language models appear to learn only a subset
of the tendencies considered, but align much
more closely with empirical trends than pro-
posed theoretical distributions (when present).
Further, the fit to different distributions is
highly-dependent on both model architecture
and generation strategy. As concrete exam-
ples, text generated under the nucleus sam-
pling scheme adheres more closely to the type–
token relationship of natural language than
text produced using standard ancestral sam-
pling; text from LSTMs reflects the natural
language distributions over length, stopwords,
and symbols surprisingly well.

1 Introduction

Neural language models1 have become shockingly
good at modeling natural language data in recent
years (Merity et al., 2017; Conneau and Lample,
2019; Radford et al., 2019). Thus, to test just how
well neural language models capture language NLP
researchers have started to look beyond standard
evaluation metrics such as perplexity, endeavoring
to understand which underlying attributes of
human language these models are learning. To
this end, a nascent literature has emerged that
focuses on probing language models (Belinkov

1In this work, we do not use the term language model to
refer to cloze language models such as BERT (Devlin et al.,
2019), which do not give us a distribution over strings.

Figure 1: Average number of unique words vs. document
length, i.e., type–token, in text sampled from language
models. Values from models’ test set are plotted for reference.

and Glass, 2019), i.e., determining whether models
encode linguistic phenomena. For the most part,
these works have been limited to analyses of
sentence-level phenomenon, such as subject–verb
agreement (Gulordava et al., 2018) and garden path
effects (van Schijndel and Linzen, 2018) among
a myriad of other properties (Blevins et al., 2018;
Chowdhury and Zamparelli, 2018, inter alia).

In this work, we attempt to understand which
macro-level phenomena of human language today’s
language models reflect. That is, we pose the ques-
tion: Do neural language models exhibit the sta-
tistical tendencies of human language? Phenom-
ena that can be measured at this level provide an
alternate view of a model’s comprehension; for
example, rather than exploring whether morpho-
logical agreement is captured, we look at whether
our models learn the trends across a corpus as a
whole, e.g., the token rank–frequency (Zipf’s) re-
lationship. In comparison to standard probing tech-
niques, this framework does not require we know
a priori how linguistic phenomena should manifest
themselves. That is, when there is no law stating
the theoretical tendencies of an attribute of natural
language or we have reason to believe our language
domain does not follow such a law, we can use the



5329

statistical tendencies present in empirical data as
our baseline. This characteristic both allows us to
assess a model’s fit to highly corpus-dependent
distributions—like the length distribution—and
mitigates the biases introduced by our own precon-
ceptions regarding properties of natural language.2

More concretely, our paper describes an
experimental design and accompanying hypothesis
tests to determine precisely whether text generated
from language models follows the same empirical
trends as human language. Our experiments reveal
that adherence to natural language tendencies
varies widely with both model architecture and
generation strategy, e.g., Fig. 1 shows varying
degrees of adherence to the empirical type–token
relationship, an artifact that perplexity alone could
not reveal. Our findings suggest this framework is
a valuable tool for gaining a deeper understanding
of where today’s language models are succeeding
and failing at capturing human language.

2 Language Models

Language models are probability distributions over
natural language sentences. We define the support
of a language model p✓ with parameters ✓ as

Y := {BOS � v � EOS | v 2 V⇤} (1)

where V is the model’s vocabulary and tokens EOS
and BOS demarcate the beginning and end of a
string, respectively, and V⇤ is the Kleene closure of
V . In this paper, we term vocabularies consisting of
words closed and those consisting of BPE tokens
(Sennrich et al., 2016) open.

In the case when p✓ is locally normalized, which
is the predominant case for language models, p✓ is
defined as the product of probability distributions:

p✓(y) =

|y|Y

t=1

p✓(yt | y<t) (2)

where each p✓(· |y<t) is a distribution with support
over V̄ := V[{EOS} and y<1 = y0 := BOS. To es-
timate model parameters ✓, one typically optimizes
the log-likelihood function over a corpus Ctrain:

L(✓ | Ctrain) =
X

y2Ctrain

log p✓(y) (3)

where we call each string y a document. To
determine the goodness of fit of a model to the

2Such biases are naturally introduced by many probing
techniques that e.g., draw conclusions from carefully con-
structed challenge tasks.

empirical distribution (defined by Ctrain), it is stan-
dard practice to measure perplexity on a held-out
dataset, which is simply a monotonic function
of average (per token) log-likelihood under that
model. While low perplexity on an evaluation set
undoubtedly reflects some level of fit to natural
language, it does not give us a fine-grained view
of which linguistic attributes a model has learned.

3 Statistical Tendencies of Language

Human languages are thought to exhibit statistical
tendencies, several of which are explicitly quanti-
fied by laws (Altmann and Gerlach, 2016). In this
section, we review a subset of these distributions–
both with and without well-established forms—
over which we subsequently perform analyses.

3.1 Classical Laws
Rank–Frequency. Zipf’s law (1949), otherwise
known as the rank–frequency law, states that the
frequency of a word in a corpus decays exponen-
tially in the frequency rank of that word, i.e., the
frequency !(·) of the kth most frequent word wk

follows the power-law distribution: !(wk) / k�s.
When fit to natural language text, the free param-
eter s is typically close to 1. Zipf’s law also has a
probabilistic interpretation: the marginal probabil-
ity that a random word in our corpus takes on the
value of thekth most frequent can be expressed as

pzipf(W = wk) =
1

⇣(s)
k�s (4)

where ⇣(s) = 1/
P1

k=1 k
�s is the normalizing

constant of our probability mass function (pmf).
The adherence of language to Zipf’s law has been
widely studied and is considered one of the canon-
ical laws of quantitative linguistics (Baroni, 2009;
Li et al., 2010; Moreno-Sánchez et al., 2016).

Estimating s from an observed set of rank–
frequency pairs can be done using standard
estimation techniques. Here we use the maximum-
likelihood estimate3 (MLE), employing numerical
optimization to solve for s since the MLE of the
discrete power law lacks a closed form solution.

Type–Token. Heaps’ law (Herdan, 1960), also
known as the type–token relationship, states that

3Derivation in App. A. We may also estimate s using, e.g.,
least squares over the original or log–log transform of our
distribution. However, it has been empirically observed that
least-squares estimates under this paradigm are not reliable
(Clauset et al., 2009) and further, directly incorporate assump-
tions that contradict power law behavior (Schluter, 2020).
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the number of additional unique tokens (i.e.,
number of types) in a document diminishes as its
length increases. Formally, we can express the
expected number of types u(·) as a function of
the length l(·) of the string y via the relationship
u(y) / l(y)� where � < 1 is a free parameter.
Types may be, e.g., unigrams or bigrams.

The above formulation of Heaps’ law lacks an
obvious probabilistic interpretation. However, if
we frame Heaps’ law as modeling the expected
value of the number of types for any given length
document, then we can model the relation as a
Poisson process, where the marginal distribution
over document length follows Heaps’ proposed
power law. Specifically, we model the number
of types for a document of a given length as a
non-homogeneous Poisson process (NHPP; Ross,
1996) where our rate parameter �(l(y)) is Heaps’
power law relation. The probability that there are
k types in a document of length t is then

pheaps(u(yt) = k) =
�(t)k

k!
exp(��(t)) (5)

for �(l(y)) = ↵ · l(y)� . Similarly to Eq. (4), we
can fit parameters ↵,� using MLE (see App. A).

3.2 Other Tendencies
Natural language has other quantifiable distribu-
tions, e.g., over document length or unigrams.
While there may not exist well-established laws
for the behavior of these (often highly corpus-
dependent) distributions, we can observe their
empirical distributions w.r.t. a corpus. We review
a few here and leave the exploration of others to
future work.

Length. Using notation from earlier, we estimate
the pmf of the distribution over the length of docu-
ments in a corpus C as

p̂l(l(y) = k) /
X

y2C
{l(y) = k} (6)

We can additionally compute statistics of this
distribution, such as sample mean: µ̂l(C) =

1/|C|
P

y2C l(y).

Unigram. Notably, the rank–frequency law of
§3.1 leaves the categorical distribution over words
unspecified, i.e., it defines the frequency for thekth

ranked word without specifying the word itself. In
order to make explicit comparisons, we define the

unigram distribution w.r.t. corpus C as

p̂uni(w) /
X

w02C
{w0

= w} (7)

Stopwords and Symbols. Certain percentages
of words in a string consist of either symbols, i.e.,
numbers and punctuation, or stopwords, i.e., com-
mon words such as “that” or “so” that primarily
serve a syntactic function. We can model this per-
centage as a (continuous) random variable S and
estimate its probability density function (pdf) as

p̂stop(s < S  s+ �) (8)

/
X

y2C

n
#stop(y)

l(y)
2 (s, s+ �]

o

The pdf for symbols is defined similarly. As with
our length distribution, we can compute the means
µ̂stop, µ̂sym of these distributions.

4 Statistical Distances

In this work, we aim to quantify the degree to which
the linguistic distributions of text generated from
language models match—or differ from—those of
natural language. To this end, we propose the use
of several probability metrics (Mostafaei and Kord-
nourie, 2011; Rachev et al., 2013) as our notion of
statistical distance.4 For each of these metrics, we
present nonparametric statistical significance tests,
i.e., tests that may be used when the underlying
distribution of observed data is not known.

4.1 Primary Metrics
Perhaps the simplest method for measuring the dis-
tance between two random variables is through dif-
ferences in expectations, e.g., means or variances.
(Semi-)distances of this nature are formally called
primary metrics. To estimate this distance, we
can use observations from random samples S1 and
S2, e.g., µ1 � µ2 ⇡ �(S1,S2) = µ̂(S1)� µ̂(S2).

Observing a value of �(S1,S2) 6= 0 on its own
is not enough to confirm a difference between µ1

and µ2; we need to assess whether the observed
distance is significantly above or below 0. Formally,
our null and alternative hypotheses are:

H0 :�(S1,S2) = 0 (9)
Ha :�(S1,S2) 6= 0

4Some of these metrics are formally pseudo-distances, as
they are not necessarily symmetric.
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In our setting, we typically do not know the
theoretical distributions of the random variables
generating S1 and S2, nor of an arbitrary test statis-
tic �. Consequently, we use resampling techniques
to construct the sampling distribution of �(S1,S2).

Permutation Tests. In a nutshell, a permutation
test provides a simple method for constructing the
sampling distribution of a test statistic � through
empirical observations. The method uses the
value of � over all possible rearrangements of the
observed data points to represent the distribution
of the test statistic under the null hypothesis. Using
this distribution, we can determine the probability
of observing a value of the test statistic (or a more
extreme value), which if low, may give us reason
to reject a specific null hypothesis. In this work,
we only consider statistics �(·, ·) over two samples.
We provide pseudocode for this case in App. B.5

4.2 Simple Metrics
Primary metrics provide only a weak measure
of the sameness of random variables as they are
completely dependent on a single statistic of
a distribution. On the other hand, we know a
random variable can be completely described by its
distribution function. As such, we turn to simple
metrics of distance between random variables.

Given cumulative density functions (cdfs) P1

and P2 over one-dimensional random variables,
the Kolmogorov–Smirnov (KS) metric is

D(P1, P2) = sup
y

|P1(y)� P2(y)| (10)

where D 2 [0, 1] and D(·, ·) = 0 indicates the dis-
tributions are identical. However, not all random
variables can be described in terms of a cdf. For
categorical distributions where the support of our
random variable is not ordinal, the natural coun-
terpart to the KS metric is the Chi-square distance.
This metric has a number of drawbacks (discussed
in App. C)—primarily that its value can be hard to
interpret and so we instead turn to the total variation
distance (TVD)—a widely used metric of distance
between probability distributions.

Given two pmfs p1 and p2, we define TVD as

TVD(p1, p2) = sup
y

|p1(y)� p2(y)| (11)

5When the number of possible permutations of the data
is computationally prohibitive, we may instead use a MC
sampling approach, where we sample from the set of possible
permutations (Good, 2000).

where similarly to the KS metric, TVD is bounded
above by 1 and a value of 0 indicates identical
distributions. In our setting, we consider two use
cases for the KS metric and TVD: as distance
metrics between an empirical and theoretical dis-
tribution (one-sample) and between two empirical
distributions (two-sample). The corresponding
hypotheses that we can test with these metrics are:

One-Sample Case: (12)
H0: Sample S is drawn from p

Ha: Sample S is not drawn from p

Two-Sample Case: (13)
H0: Samples S1 and S2 are drawn from same p

Ha: Samples S1 and S2 are not drawn from same p

where in the two-sample case, the exact form of
p does not need to be known. These hypotheses
require the following tests.

The Kolmogorov–Smirov Test. The KS test
(Smirnov, 1948) is a nonparametric goodness-of-fit
test originally designed to assess the fit of a
continuous cdf to empirically-observed data; the
two-sample version tests whether two samples
come from the same distribution. The method has
since been extended to discrete distributions and
is regarded as one of the most widely applicable
nonparametric goodness-of-fit tests for comparing
two distributions (Horn, 1977; Moreno-Sánchez
et al., 2016). The test uses the KS metric D as
its test statistic; under our null hypothesis, D con-
verges to 0 almost surely in the limit as our number
of samples n ! 1 by the Glivenko–Cantelli
theorem.6 We may reject the null hypothesis if
our test statistic is greater than the critical value,
which is computed based off of our sample size
and a desired significance level.7

A Test for TVD. Unlike the KS metric, we do not
have a (theoretical) limiting distribution for TVD
between samples from the same distribution that
holds for all density functions (Devroye and Győrfi,
1990). However, we can construct this distribution
using resampling techniques. Formally, when S1

and S2 are drawn from the same distribution p—
where p need not be known—then the test statistic
TVD(pS1

, pS2
) follows the sampling distribution Zp,

i.e., TVD(pS1
, pS2

) ⇠ Zp. The distribution of Zp can
6Also known as the “fundamental theorem of statistics.”
7Under the null hypothesis, our text statistic D follows a

Kolmogorov distribution. In the two sample case, the critical
value is dependent on the size of both samples.
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Figure 2: Vocabulary sizes of test set and model-generated samples. Training set (not shown) has vocabulary size of 53.2e5.
Only Transformer (AS) and trigram models have a closed vocabulary; the higher red line is the size of the former.

be computed using permutations of our samples, in
the same manner as defined in §4.1.

5 Experiments

We use the above framework to assess the degree to
which language models learn various distributions
of natural language, i.e., we report metrics outlined
in §4 measured over the distributions and quantities
defined in §3. We compare samples generated
from language models to a reserved test set taken
from the same corpus as the model’s training
data. Each set contains 1 million samples.8 We
tokenize all samples using the Moses decoder
toolkit (Koehn et al., 2007). All text is lower-cased
and only complete unigrams are considered, i.e.,
when BPE is used, only the detokenized unigram
is considered. Length of a string is computed as
the number of tokens separated by whitespace.
Note that when reporting the KS metric (D), we
always report the metric between (a) an empirical
cdf computed over the respective model-generated
samples and (b) a reference cdf, where Dp indi-
cates direct comparison with empirical cdf of the
test set. Dp✓ and Dp̂ indicate comparison with cdfs
of a parametric distribution, whose parameters are
estimated on the model and test set, respectively.

Natural Language Corpus. We use English
Wikipedia Dumps,9 preprocessing data following
the steps used for XLM (Conneau and Lample,
2019) albeit with a 44.7e6 train–1e4 valid–1e6 test
split. The test set is used in all statistical tests, how-
ever, we estimate standard deviations for statistics
in Tab. 4 (in the Appendix) using samples from

8Due to our large sample sizes, we should anticipate that
our results will almost always be significant, even when effect
sizes are trivially small. As such, we will almost assuredly
reject our null hypotheses that model-generated samples come
from the same distribution as natural language ones. While in
this light, the presentation of hypothesis tests in §4 may seem
pointless, we provide them for cases where generating many
samples for each model setting is computationally prohibitive.

9dumps.wikimedia.org/

the training set; see this table for e.g., parameter
estimates over test set.

Simulating Corpora from Language Models.
Given the distribution p✓, we may exactly com-
pute statistics and distributions for language mod-
els over the entire set Y , weighting examples by
the probability assigned to each string; however,
doing so is infeasible due to the size of the output
space and non-Markovian structure of most neural
models. Rather, we turn to sampling to create a rep-
resentative set S = hy(1), . . . ,y(N)i from p✓. We
explore three sampling schemes: ancestral random
sampling (Random), nucleus sampling (Nucleus),
and beam sampling (Beam).10

In ancestral random sampling, y(i) are con-
structed iteratively according to the distribution

y(i)t ⇠ p✓(· |y(i)
<t) (14)

where y0 = BOS. Under the local normalization
scheme of Eq. (2), sampling according to Eq. (14)
is equivalent to sampling y(i) directly from p✓. In
nucleus sampling, our distribution is truncated to
the most probable items covering portion n 2 (0, 1]
of the probability mass. Formally, we now sample

y(i)t ⇠
(
p✓(· |y(i)

<t)/Z if y(i)t 2 Vn(p✓(· |y(i)
<t))

0 otherwise
(15)

where Vn(p) ✓ V̄ is the smallest subset such thatP
y2Vn(p) p(y) � n and Z :=

P
y2Vn(p) p(y).

Beam sampling uses Eq. (14) as the sampling distri-
bution, but extends a “beam” of k sequences at each
sampling iteration. I.e., k extensions are sampled
from p✓(· |y(i)

<t) and the k most probable of the k2

sampled items remain on the beam; note that unlike
standard beam search, this is a stochastic proce-
dure.11 We use a beam size of 5 in all experiments.

10The latter two sampling designs do not result in samples
drawn according to our original p✓ . As such, the schemes lead

https://dumps.wikimedia.org/%20
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Figure 3: Distinct vs. unique token distributions (unigram and bigram) for test set and text generated from models.

# params
(millions)

Test Set
Perplexity

Transformer 205 23.52
Transformer (adaptive softmax) 315 32.66
Gated Convolutional Network 133 48.96
LSTM (3 decoder layers) 59 49.29

Table 1: Neural language model statistics.

Models. We perform our tests on neural models
with three different architectures: a transformer
(Vaswani et al., 2017; Baevski and Auli, 2019)
(only decoder portion), LSTM (Hochreiter and
Schmidhuber, 1997), and Convolutional Neural
Network (Dauphin et al., 2017). All models are
implemented and trained using fairseq.12 We
train models on corpora processed both with and
without BPE. We include details for each model in
Tab. 1. We additionally estimate a trigram model
on the training data; formally, we build a model
where the probability of observing token x 2 V̄
at position i of the text is estimated as

p(x | xi�2, xi�1) (16)

=
c(hxi�2, xi�1, xi)P

x02V̄ c(hxi�2, xi�1, x0i)

where c(·) denotes the function counting occur-
rences of a sequence in some implicit C. Note that
we do not employ smoothing techniques in this
model, thus, perplexity over a held-out dataset may
diverge and so is not reported in Tab. 1. Vocabulary
statistics for each sample are shown in Fig. 2. We
provide samples of model-generated text in App. E.

to two “new” distributions, p(n)
✓ and p(b)✓ , respectively.

11Note that this is the default sampling scheme for language
generation in the fairseq library.

12github.com/pytorch/fairseq/

5.1 Rank–Frequency
To understand the rank–frequency relationship
implicitly learned by language models—and how
it relates to the rank–frequency distribution present
in natural language—we compute the three KS
metrics previously described: Dp✓ , Dp̂, and Dp.
Specifically, for the first two values, we use the
cdf of a Zipfian distribution parameterized by s as
our reference—where s is estimated using model
generated samples or the test set, respectively.13

These metrics give us a sense of how well the
rank–frequency distribution under our language
models match a Zipfian distribution. Since the
power-law behavior of the token rank–frequency
distribution is known to fall off at higher ranks
(Piantadosi, 2014; Moreno-Sánchez et al., 2016),
we consider solely the first 10,000 ranks in each
sample, including when computing Dp. We report
these values in Tab. 2. Values of estimates of s and
plots of rank–frequency are shown in App. D.

Our results indicate that our models’ empirical
rank–frequency distributions do not adhere very
closely to a standard Zipfian distribution (as shown
by Dp✓ and Dp̂ � 0), despite appearing to at a
superficial level (see App. D). However, the same
is true for our test (Dp̂ = 0.148), which suggests
that our models fit a Zipfian distribution perhaps
no more poorly than natural language does. Rather,
the model produces qualitatively worst text (see
App. E)—a trigram model under the beam sam-
pling generation strategy—follows a power law
trend the most closely of any of our samples. On
the other hand, the small values of Dp suggest our

13s is known to vary with the corpus size |C| (Powers, 1998),
however |C| is the same for all sets, so this should not affect
our analysis.

https://github.com/pytorch/fairseq/
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Rank–Frequency Unigram
Dp✓ Dp̂ Dp TVD

Model R N B R N B R N B R N B

Transformer 0.150 0.145 0.170 0.150 0.142 0.170 3.7e-3 0.029 0.024 6.9e-3 6.9e-3 6.9e-3
Transformer (AS) 0.145 0.142 0.150 0.143 0.142 0.142 0.013 0.041 0.046 0.014 0.014 0.038
CNN 0.145 0.142 0.167 0.144 0.142 0.167 0.013 0.039 0.022 6.9e-3 6.9e-3 8.6e-3
LSTM 0.147 0.143 0.175 0.144 0.142 0.178 0.016 0.043 0.034 3.4e-3 0.010 9.2e-3
Trigram 0.151 0.148 0.119 0.154 0.146 0.152 4.9e-3 0.020 0.251 2.9e-3 3.0e-3 0.075

Table 2: KS metrics (lower implies closer fit) between models’ empirical cdf and reference cdfs for the rank–frequency
relationship. Dp✓ and Dp̂ indicate statistical distance from a Zipfian distribution, where parameter s is estimated using the
model and test sets, respectively. Dp indicates direct comparison with empirical cdf of test set. p-values (estimated using Monte
Carlo simulations (Wood and Altavela, 1978)) for all KS metrics are ⌧ 0.001. For the unigram distribution, we report TVD
between empirical cdfs of model and test set. All p-values are < 0.001 (see App. D).

Figure 4: KS metrics (lower implies closer fit) with reference distributions for the type–token relationship as a function of
document length. Dp✓ and Dp̂ statistical distance from NHPP distribution for params fit to model text and test sets, respectively;
Dp is computed directly against the empirical cdf of test set. Shading indicates significance of the statistic.

models learn the empirical rank–frequency trends
of human text quite well, something that would
not be evident by simply looking at adherence to
a Zipfian distribution. The combination of these
results suggest the limitation of using adherence
to Zipf’s law as a gauge for a model’s consistency
with natural language.

5.2 Type–Token

Fig. 3 shows the type–token trend for all corpora
and generation schemes. While most models
appear not to follow the same trend as the natural
language distribution (as depicted by our test set),
we observe that transformers under the nucleus
sampling generation scheme match it most closely.
Indeed, both models based on the transformer
architecture exhibit remarkably similar trends
in these experiments, despite having different
vocabulary sizes and hyperparameters: both in
their generally close fit to the natural language
type–token distribution and in their visible fall-off
for longer length sequences. The latter observation
reveals a deficiency that is seemingly specific to the
transformer architecture—one that may be linked
to observations in natural language generation
tasks. More specifically, we take this as quantita-

tive evidence for recent qualitative observations
that when left to generate lots of text, neural lan-
guage models based on the transformer architecture
tend to babble repetitively (Holtzman et al., 2020;
Cohen and Beck, 2019; Eikema and Aziz, 2020).

To provide a more mathematically rigorous anal-
ysis, we compute KS metrics,14 again presenting
three values: Dp✓ , Dp̂, and Dp. In Fig. 4, we can
see that model-generated text follows a NHPP
parameterized by Heaps’ law moderately well
(Dp✓ ); there are larger divergences at the tails of
document length. However, most do not follow
an NHPP with the same parameters as our test set
(Dp̂). Further, in contrast to rank–frequency, the
type–token distribution is more disparate from the
empirical natural language distribution than our
parameterized ones, as shown by high values of
Dp. While both transformers exhibit the closest
fit for all document lengths, which is in-line with
our observations in Fig. 3, statistical distance from
the natural language distribution for all models and
in all settings increases with document length.

14§3.1 provides motivation for comparing distributions at
individual time steps rather than collectively over time; analyz-
ing Eq. (5) for all document lengths simultaneously would not
give us a sense of how the power-law fit changes as a function
of document length.
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5.3 Unigram Distribution
Because we do not have a well-established law dic-
tating the form of the natural language unigram
distribution, we compare only empirical pmfs from
model-generated samples and the test set directly.
Further, as the distribution over unigrams is cate-
gorical, we employ TVD following §4.2. Our re-
sults in Tab. 2 indicate that language models gen-
erally capture the unigram distribution quite well.
The transformer (AS), which has a closed vocabu-
lary, consistently performs poorly in comparison to
other models. While we might speculate this out-
come is a result of disparate tails between empirical
cdfs—i.e., the part of the distribution over infre-
quent words, which may have been omitted from
the closed vocabulary but could still be generated
using BPE—the TVD metric in this setting should
generally be robust to tail probabilities.15 This sug-
gests that BPE (or similar) vocabulary schemes
may lead to models that can better fit this natural
language distribution.

5.4 Length, Stopwords and Symbols
Similarly to the unigram distribution, for length,
stopwords and symbols, we compare solely em-
pirical cdfs. We use the set of English stopwords
defined by NLTK (Bird et al., 2009). We define
the set of symbols as tokens consisting solely of
punctuation and numerical values. Our results in
Tab. 3 demonstrate that our language models—at
least when using random and nucleus sampling—
mimic these natural language distributions quite
well. Notably, text generated from an LSTM using
random sampling follows all three distributions
the closest of any model, suggesting LSTMs may
have an inductive bias that is helpful for capturing
these distributions. On the other hand, using beam
sampling leads to strong divergence from natural
language distributions across the board. Results for
differences in distribution means in the permutation
testing framework can be found in App. D.

With respect to the length distribution, these
results are perhaps surprising: the local-
normalization scheme used by the majority of lan-
guage generation models (and by those in these
experiments) has been claimed to result in models
that favor shorter than typical sequences (Sountsov
and Sarawagi, 2016; Murray and Chiang, 2018).
The results in Tab. 3 and Fig. 5 suggest otherwise.

15We observe this empirically; calculating TVD between
distributions truncated to the (union of the) first 1000 ranked
unigrams lead to almost the exact same result.

Figure 5: Boxplots showing the distribution of sample length
per model and generation scheme. Distribution of test set is
repeated in each group for reference.

Specifically, we see that our models fit the natural
language length distribution of our corpus quite
closely, in terms of both overall distributions and
means (see App. D). Rather, it appears that the
generation strategy may be the cause of prior ob-
servations. This finding raises further questions:
since models capture the length distribution well,
is a language model more likely to produce degen-
erate text (e.g., repetitions) than the EOS token if
only long documents are used in training? We posit
that corpus preprocessing should perhaps be more
carefully considered in light of these results.

5.5 Consistent Trends
Across results, we observe that text generated us-
ing the nucleus sampling decoding scheme often
aligns with natural language more closely than text
produced using other generation strategies. This
suggests that nucleus sampling performs a help-
ful alteration to a standard distribution learned via
MLE, which may in turn provide motivation for
recent efforts to employ truncated or sparse prob-
ability distributions directly at training time, e.g.,
truncated loss (Kang and Hashimoto, 2020) or ↵-
entmax loss (Peters et al., 2019).

We additionally observe large discrepancies in
both §5.1 and §5.2 between the results when using
empirical natural language cdfs vs. parametric ones.
We take this as a warning that assumptions about
the forms of linguistic distributions—such as the
ones employed by challenge tasks in probing—can
have significant effects on results.

6 Related Work

In the last few years, a number of works have
extended language model analysis beyond simple
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Model Length Stopword Symbol
Random Nucleus Beam Random Nucleus Beam Random Nucleus Beam

Transformer 0.031 0.034 0.481 0.023 0.062 0.323 0.081 0.065 0.205
Transformer (AS) 0.037 0.041 0.477 0.047 0.015 0.378 0.083 0.072 0.252
CNN 0.034 0.051 0.491 0.036 0.102 0.324 0.069 0.054 0.213
LSTM 0.014 0.036 0.516 0.008 0.069. 0.382 0.037 0.048 0.271
Trigram 0.093 0.084 0.214 0.126 0.145 0.490 0.044 0.037 0.061

Table 3: KS metrics (Dp) between empirical length, stopword, and symbol distributions of test set and model generated text.
p-values (estimated using Monte Carlo simulations (Wood and Altavela, 1978)) for all KS metrics are ⌧ 0.001.

evaluation metrics—like perplexity—in order to
understand what attributes of human language
these models are learning. Some use task-based
approaches, i.e., they design a set of tasks that
require a specific subset of linguistic knowledge
then evaluate model performance on these tasks
(Linzen et al., 2016; Gulordava et al., 2018; Jiang
et al., 2020, inter alia). Others use model-based
approaches, where a separate model is trained to
perform some auxiliary task on representations
learned by the model under test (Blevins et al.,
2018; Giulianelli et al., 2018; Sorodoc et al., 2020,
inter alia). We direct readers to Belinkov and
Glass (2019) for a full survey of probing methods.

These approaches have drawbacks; for example,
introducing a secondary model to determine
what the original model has learned presents
confounding factors (Hewitt and Liang, 2019). The
designing of auxiliary tasks for assessing linguistic
knowledge requires large manual effort and
lends itself to implicit bias about how linguistic
phenomena should manifest. In contrast, our work
allows us to take a hands-off approach to analyzing
language models. We see the benefit of this in §5,
where our results without an assumed model of
statistical tendencies give us a much different sense
of which empirical properties of human-generated
text our models have learned.

Our work is closest to that of Takahashi and
Tanaka-Ishii (2017, 2019) who use model gen-
erated text to visually analyze whether language
models reflect well-established statistical tenden-
cies. In contrast, our work provides a quantitative
framework, along with appropriate significance
tests,16 for evaluating distribution fits. We addition-
ally assess the fit of language models to our test
set directly, rather than solely to established laws.
Further, our analysis includes different generation
strategies, multiple neural architectures, and a
wider variety of empirical language distributions.

16In this respect, our work is similar to Dror et al. (2018),
whom also present statistical tests for use in NLP.

7 Conclusion and Future Directions

In this work, we present a framework for determin-
ing the linguistic properties learned by language
models through analysis of statistical trends in gen-
erated text. We find that neural language models
accurately capture only a subset of natural language
distributions and that this subset is highly depen-
dent on both model architecture and generation
strategy; no one configuration stands out as captur-
ing all linguistic distributions. Ultimately, we see
this analysis framework as a means for a more fine-
grained evaluation of language models than per-
plexity alone can provide. Uncovering which lin-
guistic properties language models have learned—
and which they have not—should help us to under-
stand both the inductive biases of various models
and via which avenues they can still be improved.

There are a number of important axes of varia-
tion that this work does not explore: perhaps most
importantly, our results are limited to a single cor-
pora in the English language. A cross-linguistic
analysis may reveal whether different model archi-
tectures exhibit inductive biases compatible with
different languages; observing how these metrics
change as a function of corpus size would have im-
plications about the effects of data availability. An
exploration of the correlation of these metrics with
other quantifications of model performance, such
as perplexity or a model’s ability to capture sen-
tence level phenomenon, may help us understand
how comprehensive other evaluation metrics are.
We leave these analyses as future work.
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2019. Sparse sequence-to-sequence models. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1504–
1519. Association for Computational Linguistics.

S. Piantadosi. 2014. Zipf’s word frequency law in natu-
ral language: A critical review and future directions.
Psychonomic Bulletin and Review, 21:1112–1130.

David M. W. Powers. 1998. Applications and explana-
tions of Zipf’s law. In New Methods in Language
Processing and Computational Natural Language
Learning.

Svetlozar Rachev, Lev Klebanov, Stoyan Stoyanov, and
Frank Fabozzi. 2013. The Methods of Distances in
the Theory of Probability and Statistics, pages 479–
516. Springer.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

S.M. Ross. 1996. Stochastic processes. Wiley series in
probability and statistics: Probability and statistics.
Wiley.

Marten van Schijndel and Tal Linzen. 2018. A neural
model of adaptation in reading. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4704–4710. Asso-
ciation for Computational Linguistics.

Christian Schluter. 2020. On Zipf’s law and the bias of
Zipf regressions. Empirical Economics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.
Association for Computational Linguistics.

N. Smirnov. 1948. Table for estimating the goodness of
fit of empirical distributions. Annals of Mathemati-
cal Statistics, 19(2):279–281.

Ionut-Teodor Sorodoc, Kristina Gulordava, and
Gemma Boleda. 2020. Probing for referential
information in language models. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4177–4189.
Association for Computational Linguistics.

Pavel Sountsov and Sunita Sarawagi. 2016. Length
bias in encoder decoder models and a case for global
conditioning. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1516–1525. Association for Com-
putational Linguistics.

Shuntaro Takahashi and Kumiko Tanaka-Ishii. 2017.
Do neural nets learn statistical laws behind natural
language? PLOS ONE, 12(12):1–17.

Shuntaro Takahashi and Kumiko Tanaka-Ishii. 2019.
Evaluating computational language models with
scaling properties of natural language. Transactions
of the Association for Computational Linguistics,
45(3):481–513.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

http://www.jstor.org/stable/2529319
http://www.jstor.org/stable/2529319
http://www.jstor.org/stable/2529319
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://dl.acm.org/doi/10.5555/1557769.1557821
https://dl.acm.org/doi/10.5555/1557769.1557821
https://doi.org/10.3390/e12071743
https://doi.org/10.3390/e12071743
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
https://doi.org/10.1371/journal.pone.0147073
https://doi.org/10.1371/journal.pone.0147073
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/P19-1146
https://www.aclweb.org/anthology/W98-1218
https://www.aclweb.org/anthology/W98-1218
https://doi.org/10.1007/978-1-4614-4869-3_20
https://doi.org/10.1007/978-1-4614-4869-3_20
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://books.google.de/books?id=ImUPAQAAMAAJ
https://doi.org/10.18653/v1/D18-1499
https://doi.org/10.18653/v1/D18-1499
https://doi.org/10.1007/s00181-020-01879-3
https://doi.org/10.1007/s00181-020-01879-3
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.18653/v1/2020.acl-main.384
https://doi.org/10.18653/v1/2020.acl-main.384
https://doi.org/10.18653/v1/D16-1158
https://doi.org/10.18653/v1/D16-1158
https://doi.org/10.18653/v1/D16-1158
https://doi.org/10.1371/journal.pone.0189326
https://doi.org/10.1371/journal.pone.0189326
https://doi.org/10.1162/coli_a_00355
https://doi.org/10.1162/coli_a_00355
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


5339

Constance L. Wood and Michele M. Altavela.
1978. Large-sample results for kolmogorov-smirnov
statistics for discrete distributions. Biometrika,
65(1):235–239.

George K. Zipf. 1949. Human Behavior and the Prin-
ciple of Least Effort. Addison-Wesley Press.

http://www.jstor.org/stable/2335304
http://www.jstor.org/stable/2335304

