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Abstract

Transformer-based language models (LMs)
pretrained on large text collections implicitly
store a wealth of lexical semantic knowledge,
but it is non-trivial to extract that knowledge
effectively from their parameters. Inspired by
prior work on semantic specialization of static
word embedding (WE) models, we show that it
is possible to expose and enrich lexical knowl-
edge from the LMs, that is, to specialize them
to serve as effective and universal “decontex-
tualized” word encoders even when fed input
words “in isolation” (i.e., without any context).
Their transformation into such word encoders
is achieved through a simple and efficient lex-
ical fine-tuning procedure (termed LEXFIT)
based on dual-encoder network structures. Fur-
ther, we show that LEXFIT can yield effective
word encoders even with limited lexical super-
vision and, via cross-lingual transfer, in dif-
ferent languages without any readily available
external knowledge. Our evaluation over four
established, structurally different lexical-level
tasks in 8 languages indicates the superior-
ity of LEXFIT-based WEs over standard static
WEs (e.g., fastText) and WEs from vanilla
LMs. Other extensive experiments and abla-
tion studies further profile the LEXFIT frame-
work, and indicate best practices and perfor-
mance variations across LEXFIT variants, lan-
guages, and lexical tasks, also directly ques-
tioning the usefulness of traditional WE mod-
els in the era of large neural models.

1 Introduction

Probing large pretrained encoders like BERT (De-
vlin et al., 2019) revealed that they contain a wealth
of lexical knowledge (Ethayarajh, 2019; Vulić et al.,
2020). If type-level word vectors are extracted from
BERT with appropriate strategies, they can even
outperform traditional word embeddings (WEs) in
some lexical tasks (Vulić et al., 2020; Bommasani
et al., 2020; Chronis and Erk, 2020). However,
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Figure 1: Illustration of the full pipeline for obtaining
decontextualized word representations, based on lexi-
cally fine-tuning pretrained LMs via dual-encoder net-
works (Step 1, §2.1), and then extracting the represen-
tations from their (fine-tuned) layers (Step 2, §2.2).

both static and contextualized WEs ultimately learn
solely from the distributional word co-occurrence
signal. This source of signal is known to lead to
distortions in the induced representations by con-
flating meaning based on topical relatedness rather
than authentic semantic similarity (Hill et al., 2015;
Schwartz et al., 2015; Vulić et al., 2017). This also
creates a ripple effect on downstream applications,
where model performance may suffer (Faruqui,
2016; Mrkšić et al., 2017; Lauscher et al., 2020).

Our work takes inspiration from the methods to
correct these distortions and complement the distri-
butional signal with structured information, which
were originally devised for static WEs. In particu-
lar, the process known as semantic specialization
(or retrofitting) injects information about lexical
relations from databases like WordNet (Beckwith
et al., 1991) or the Paraphrase Database (Ganitke-
vitch et al., 2013) into WEs. Thus, it accentuates
relationships of pure semantic similarity in the re-
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fined representations (Faruqui et al., 2015; Mrkšić
et al., 2017; Ponti et al., 2019, inter alia).

Our goal is to create representations that take
advantage of both 1) the expressivity and lexical
knowledge already stored in pretrained language
models (LMs) and 2) the precision of lexical fine-
tuning. To this effect, we develop LEXFIT, a versa-
tile lexical fine-tuning framework, illustrated in Fig-
ure 1, drawing a parallel with universal sentence en-
coders like SentenceBERT (Reimers and Gurevych,
2019).1 Our working hypothesis, extensively evalu-
ated in this paper, is as follows: pretrained encoders
store a wealth of lexical knowledge, but it is not
straightforward to extract that knowledge. We can
expose this knowledge by rewiring their parame-
ters through lexical fine-tuning, and turn the LMs
into universal (decontextualized) word encoders.

Compared to prior attempts at injecting lexical
knowledge into large LMs (Lauscher et al., 2020),
our LEXFIT method is innovative as it is deployed
post-hoc on top of already pretrained LMs, rather
than requiring joint multi-task training. Moreover,
LEXFIT is: 1) more efficient, as it does not in-
cur the overhead of masked language modeling
pretraining; and 2) more versatile, as it can be
ported to any model independently from its archi-
tecture or original training objective. Finally, our
results demonstrate the usefulness of LEXFIT: we
report large gains over WEs extracted from vanilla
LMs and over traditional WE models across 8 lan-
guages and 4 lexical tasks, even with very limited
and noisy external lexical knowledge, validating
the rewiring hypothesis. The code is available at:
https://github.com/cambridgeltl/lexfit.

2 From Language Models to
(Decontextualized) Word Encoders

The motivation for this work largely stems from the
recent work on probing and analyzing pretrained
language models for various types of knowledge
they might implicitly store (e.g., syntax, world
knowledge) (Rogers et al., 2020). Here, we focus
on their lexical semantic knowledge (Vulić et al.,
2020; Liu et al., 2021), with an aim of extracting
high-quality static word embeddings from the pa-
rameters of the input LMs. In what follows, we
describe lexical fine-tuning via dual-encoder net-
works (§2.1), followed by the WE extraction pro-

1These approaches are connected as they are both trained
via contrastive learning on dual-encoder architectures, but they
provide representations for a different granularity of meaning.

cess from the fine-tuned layers of pretrained LMs
(§2.2), see Figure 1.

2.1 LEXFIT: Methodology
Our hypothesis is that the pretrained LMs can be
turned into effective static decontextualized word
encoders via additional inexpensive lexical fine-
tuning (i.e., LEXFIT-ing) on lexical pairs from an
external resource. In other words, they can be spe-
cialized to encode lexical knowledge useful for
downstream tasks, e.g., lexical semantic similarity
(Wieting et al., 2015; Mrkšić et al., 2017; Ponti
et al., 2018). Let P = {(w, v, r)m}Mm=1 refer to
the set of M external lexical constraints. Each item
p ∈ P comprises a pair of words w and v, and
denotes a semantic relation r that holds between
them (e.g., synonymy, antonymy). Further, let Pr

denote a subset of P where a particular relation r
holds for each item, e.g., Psyn is a set of synonymy
pairs. Finally, for each positive tuple (w, v, r), we
can construct 2k negative “no-relation” examples
by randomly pairing w with another word w¬,k′ ,
and pairing v with v¬,k′ , k′ = 1, . . . , k, ensuring
that these negative pairs do not occur in P . We re-
fer to the full set of negative pairs as NP . Lexical
fine-tuning then leverages P and NP ; We propose
to tune the underlying LMs (e.g., BERT, mBERT),
using external lexical knowledge, via different loss
functions, relying on dual-encoder networks with
shared LM weights and mean pooling, as illustrated
in Figure 1. We now briefly describe several loss
functions, evaluated later in §4.

Classification Loss. Similar to prior work on
sentence-level text inputs (Reimers and Gurevych,
2019), for each input word pair (w, v) we con-
catenate their d-dimensional encodings w and v
(obtained after passing them through BERT and
after pooling, see Figure 1) with their element-wise
difference |w − v|. The objective is then:

L = softmax
(
W (w ⊕ v ⊕ |w − v|)

)
. (1)

⊕ denotes concatenation, and W ∈ R3d×c is a
trainable weight matrix of the softmax classifier,
where c is the number of classification classes.
We experiment with two variants of this objective,
termed SOFTMAX henceforth: in the simpler binary
variant, the goal is to distinguish between positive
synonymy pairs (the subset Psyn) and the corre-
sponding set of 2k × |Psyn| no-relation negative
pairs. In the ternary variant (c = 3), the classi-
fier must distinguish between synonyms (Psyn),

https://github.com/cambridgeltl/lexfit
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antonyms (Pant), and no-relation negatives. The
classifiers are optimized via standard cross-entropy.

Ranking Loss. The multiple negatives ranking
loss (MNEG) is inspired by prior work on learn-
ing universal sentence encoders (Cer et al., 2018;
Henderson et al., 2019, 2020); the aim of the loss,
now adapted to word-level inputs, is to rank true
synonymy pairs from Psyn over randomly paired
words. The similarity between any two words w
and v is quantified via the similarity function S op-
erating on their encodings S(wi,wj). In this work
we use the scaled cosine similarity following Hen-
derson et al. (2019): S(wi,wj) = C ·cos(w1,w2),
whereC is the scaling constant. Lexical fine-tuning
with MNEG then proceeds in batches of B pairs
(wi, vi), . . . , (wB, vB) from Psyn, with the MNEG

loss for a single batch computed as follows:

L = −
B∑
i=1

S(wi,vi) +

B∑
i=1

log

B∑
j=1,j 6=i

eS(wi,vj) (2)

Effectively, for each batch Eq. (2) maximizes the
similarity score of positive pairs (wi, vi), and mini-
mizes the score ofB−1 random pairs. For simplic-
ity, as negatives we use all pairings of wi with vj-s
in the current batch where (wi, vj) 6∈ Psyn (Yang
et al., 2018; Henderson et al., 2019).

Multi-Similarity Loss. We also experiment with
a recently proposed state-of-the-art multi-similarity
loss of Wang et al. (2019), labeled MSIM. The
aim is again to rank positive examples from Psyn

above any corresponding no-relation 2k negatives
from NP . Again using the scaled cosine similarity
scores, the adapted MSIM loss per batch of B posi-
tive pairs (wi, vi) from Psyn is defined as follows:

L =
1

B

B∑
i=1

(
log
(
1 +

k∑
k′=1

eC(cos(wi,wi,¬,k′ )−ε)
)

+
1

C
log
(
1 + e−C(cos(wi,vi)−ε)

))
.

(3)

For brevity, in Eq. (3) we only show the formula-
tion with the k negatives associated with wi, but
the reader should be aware that the complete loss
function contains another term covering k nega-
tives vi,¬,k′ associated with each vi. C is again
the scaling constant, and ε is the offset applied on
the similarity matrix.2 MSIM can be seen as an
extended variant of the MNEG ranking loss.

2ε=1; C=20 (also in MNEG). For further technical details
we refer the reader to the original paper (Wang et al., 2019).

Finally, for any input wordw, we extract its word
vector via the approach outlined in §2.2; exactly the
same approach can be applied to the original LMs
(e.g., BERT) or their lexically fine-tuned variants
(“LEXFIT-ed” BERT), see Figure 1.

2.2 Extracting Static Word Representations

The extraction of static type-level vectors from any
underlying Transformer-based LM, both before and
after LEXFIT fine-tuning, is guided by best prac-
tices from recent comparative analyses and probing
work (Vulić et al., 2020; Bommasani et al., 2020).
Starting from an underlying LM with N Trans-
former layers {L1 (bottom layer), . . . , LN (top)}
and referring to the embedding layer as L0, we
extract a decontextualized word vector for some
input word w, fed into the LM “in isolation” with-
out any surrounding context, following Vulić et al.
(2020): 1) w is segmented into 1 or more of its
constituent subwords [swi], i ≥ 1, where [] refers
to the sequence of i subwords; 2) Special tokens
[CLS] and [SEP ] are respectively prepended and
appended to the subword sequence, and the se-
quence [CLS][swi][SEP ] is then passed through
the LM; 3) The final representation is constructed
as the average over the subword encodings further
averaged over n ≤ N layers (i.e., all layers up to
layer Ln included, denoted as AVG(≤ n)).3 Fur-
ther, Vulić et al. (2020) empirically verified that:
(a) discarding final encodings of [CLS] and [SEP ]
produces better type-level vectors – we follow this
heuristic in this work; and (b) excluding higher
layers from the average may also result in stronger
vectors with improved performance in lexical tasks.

This approach operates fully “in isolation” (ISO):
we extract vectors of words without any surround-
ing context. The ISO approach is lightweight: 1) it
disposes of any external text corpora; 2) it encodes
words efficiently due to the absence of context.
Moreover, it allows us to directly study the richness
of lexical information stored in the LM’s parame-
ters, and to combine it with ISO lexical knowledge
from external resources (e.g., WordNet).

3 Experimental Setup

Languages and Language Models. Our language
selection for evaluation is guided by the following
(partially clashing) constraints (Vulić et al., 2020):
a) availability of comparable pretrained monolin-
gual LMs; b) task and evaluation data availabil-

3Note that this always includes the embedding layer (L0).
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ity; and c) ensuring some typological diversity of
the selection. The final test languages are English
(EN), German (DE), Spanish (ES), Finnish (FI), Ital-
ian (IT), Polish (PL), Russian (RU), and Turkish
(TR). For comparability across languages, we use
monolingual uncased BERT Base models for all
languages (N = 12 Transformer layers, 12 atten-
tion heads, hidden layer dimensionality is 768),
available (see the appendix) via the HuggingFace
repository (Wolf et al., 2020).

External Lexical Knowledge. We use the stan-
dard collection of EN lexical constraints from pre-
vious work on (static) word vector specialization
(Zhang et al., 2014; Ono et al., 2015; Vulić et al.,
2018; Ponti et al., 2018, 2019). It covers the
lexical relations from WordNet (Fellbaum, 1998)
and Roget’s Thesaurus (Kipfer, 2009); it com-
prises 1,023,082 synonymy (Psyn) word pairs and
380,873 antonymy pairs (Pant). For all other lan-
guages, we rely on non-curated noisy lexical con-
straints, obtained via an automatic word translation
method by Ponti et al. (2019); see the original work
for the details of the translation procedure.

LEXFIT: Technical Details. The implementa-
tion is based on the SBERT framework (Reimers
and Gurevych, 2019), using the suggested settings:
AdamW (Loshchilov and Hutter, 2018); learning
rate of 2e − 5; weight decay rate of 0.01, and we
run LEXFIT for 2 epochs. The batch size is 512
with MNEG, and 256 with SOFTMAX and MSIM,
where one batch always balances between B posi-
tive examples and 2k ·B negatives (see §2.1).

Word Vocabularies and Baselines. We extract
decontextualized type-level WEs in each language
both from the original BERTs (termed BERT-REG)4

and the LEXFIT-ed BERT models for exactly the
same vocabulary. Following Vulić et al. (2020),
the vocabularies cover the top 100K most fre-
quent words represented in the respective fastText
(FT) vectors, trained on lowercased monolingual
Wikipedias by Bojanowski et al. (2017).5 The
equivalent vocabulary coverage allows for a direct
comparison of all WEs regardless of the induc-
tion/extraction method; this also includes the FT

4For the baseline BERT-REG WEs, we report two variants:
(a) all performs layerwise averaging over all Transformer
layers (i.e., AVG(≤ 12)); (b) best reports the peak score when
potentially excluding highest layers from the layer averaging
(i.e., AVG(≤ n), n ≤ 12; see §2.2) (Vulić et al., 2020).

5Note that the LEXFIT procedure does not depend on the
chosen vocabulary, as it operates only on the lexical items
found in the external constraints (i.e., the set P ).

vectors, used as baseline “traditional” static WEs
(termed FASTTEXT.WIKI) in all evaluation tasks.

Evaluation Tasks. We evaluate on the following
standard and diverse lexical semantic tasks:

Task 1: Lexical semantic similarity (LSIM) is
an established intrinsic task for evaluating static
WEs (Hill et al., 2015). We use the recent com-
prehensive multilingual LSIM benchmark Multi-
SimLex (Vulić et al., 2020), which comprises 1,888
pairs in 13 languages, for our EN, ES, FI, PL, and
RU LSIM evaluation. We also evaluate on a verb-
focused EN LSIM benchmark: SimVerb-3500 (SV)
(Gerz et al., 2016), covering 3,500 verb pairs, and
SimLex-999 (SL) for DE and IT (999 pairs) (Le-
viant and Reichart, 2015).6

Task 2: Bilingual Lexicon Induction (BLI), a
standard task to assess the “semantic quality” of
static cross-lingual word embeddings (CLWEs)
(Ruder et al., 2019), enables investigations on the
alignability of monolingual type-level WEs in dif-
ferent languages before and after the LEXFIT pro-
cedure. We learn CLWEs from monolingual WEs
obtained with all WE methods using the established
and supervision-lenient mapping-based approach
(Mikolov et al., 2013a; Smith et al., 2017) with the
VECMAP framework (Artetxe et al., 2018). We
run main BLI evaluations for 10 language pairs
spanning EN, DE, RU, FI, TR.7

Task 3: Lexical Relation Prediction (RELP).
We assess the usefulness of lexical knowledge in
WEs to learn relation classifiers for standard lex-
ical relations (i.e., synonymy, antonymy, hyper-
nymy, meronymy, plus no relation) via a state-of-
the-art neural model for RELP which learns solely
based on input type-level WEs (Glavaš and Vulić,
2018). We use the WordNet-based evaluation data
of Glavaš and Vulić (2018) for EN, DE, ES; they
contain 10K annotated word pairs per language, 8K
for training, 2K for test, balanced by class and in
the splits. We extract evaluation data for two more
languages: FI and IT. We report micro-averaged F1

scores, averaged across 5 runs for each input WE
space; the default RELP model setting is used. In
RELP and LSIM, we remove all training and test

6The evaluation metric is the Spearman’s rank correlation
between the average of human LSIM scores for word pairs
and the cosine similarity between their respective WEs.

7A standard BLI setup and data from Glavaš et al. (2019) is
adopted: 5K training word pairs are used to learn the mapping,
and another 2K pairs as test data. The evaluation metric is
standard Mean Reciprocal Rank (MRR). For EN–ES, we run
experiments on MUSE data (Conneau et al., 2018).
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RELP/LSIM examples also present in the Psyn and
Pant sets to avoid any evaluation data leakage.8

Task 4: Lexical Simplification (LexSIMP) aims
to automatically replace complex words (i.e., spe-
cialized terms, less-frequent words) with their sim-
pler in-context synonyms, while retaining gram-
maticality and conveying the same meaning as
the more complex input text (Paetzold and Specia,
2017). Therefore, discerning between semantic
similarity (e.g., synonymy injected via LEXFIT)
and broader relatedness is critical for LexSIMP
(Glavaš and Vulić, 2018). We adopt the standard
LexSIMP evaluation protocol used in prior research
on static WEs (Ponti et al., 2018, 2019). 1) We use
Light-LS (Glavaš and Štajner, 2015), a language-
agnostic LexSIMP tool that makes simplifications
in an unsupervised way based solely on word simi-
larity in an input (static) WE space; 2) we rely on
standard LexSIMP benchmarks, available for EN

(Horn et al., 2014), IT (Tonelli et al., 2016), and
ES (Saggion, 2017); and 3) we report the standard
Accuracy scores (Horn et al., 2014).9

Important Disclaimer. We note that the main pur-
pose of the chosen evaluation tasks and experimen-
tal protocols is not necessarily achieving state-of-
the-art performance, but rather probing the vectors
in different lexical tasks requiring different types
of lexical knowledge,10 and offering fair and in-
sightful comparisons between different LEXFIT

variants, as well as against standard static WEs
(fastText) and non-tuned BERT-based static WEs.

4 Results and Discussion

The main results for all four tasks are summarized
in Tables 1-4, and further results and analyses are
available in §4.1 (with additional results in the ap-
pendix). These results offer multiple axes of com-
parison, discussed in what follows.

Comparison to Other Static Word Embeddings.
The results over all 4 tasks indicate that static WEs
from LEXFITed monolingual BERT 1) outperform
traditional WE methods such as FT, and 2) offer
also large gains over WEs originating from non-
LEXFITed BERTs (Vulić et al., 2020). These re-

8In BLI and RELP, we do PCA (d = 300) on all input
WEs, which slightly improves performance.

9For further details regarding the LexSIMP benchmarks
and evaluation, we refer the reader to the previous work.

10RELP and LexSIMP use WEs as input features of neu-
ral architectures; LSIM and BLI fall under similarity-based
evaluation tasks (Ruder et al., 2019).

sults demonstrate that the inexpensive lexical fine-
tuning procedure can indeed turn large pretrained
LMs into effective decontextualized word encoders,
and this can be achieved for a reasonably wide
spectrum of languages for which such pretrained
LMs exist. What is more, LEXFIT for all non-
EN languages has been run with noisy automat-
ically translated lexical constraints, which holds
promise to support even stronger static LEXFIT-
based WEs with human-curated data in the future,
e.g., extracted from multilingual WordNets (Bond
and Foster, 2013), PanLex (Kamholz et al., 2014),
or BabelNet (Ehrmann et al., 2014).

The results give rise to additional general impli-
cations. First, they suggest that the pretrained LMs
store even more lexical knowledge than thought
previously (Ethayarajh, 2019; Bommasani et al.,
2020; Vulić et al., 2020); the role of LEXFIT fine-
tuning is simply to ‘rewire’ and expose that knowl-
edge from the LM through (limited) lexical-level
supervision. To further investigate the ‘rewiring’
hypothesis, in §4.1, we also run LEXFIT with a
drastically reduced amount of external knowledge.

BERT-REG vectors display large gains over FT
vectors in tasks such as RELP and LexSIMP, again
hinting that plenty of lexical knowledge is stored
in the original parameters. However, they still lag
FT vectors for some tasks (BLI for all language
pairs; LSIM for ES, RU, PL). However, LEXFIT-ed
BERT-based WEs offer large gains and outperform
FT WEs across the board. Our results indicate that
‘classic’ WE models such as skip-gram (Mikolov
et al., 2013b) and FT are undermined even in their
last field of use, lexical tasks.

This comes as a natural finding, given that
word2vec and FT can in fact be seen as reduced and
training-efficient variants of full-fledged language
models (Bengio et al., 2003). The modern LMs
are pretrained on larger training data with more pa-
rameters and with more sophisticated Transformer-
based neural architectures. However, it has not
been verified before that effective static WEs can
be distilled from such LMs. Efficiency differences
aside, this begs the following discussion point for
future work: with the existence of large pretrained
LMs, and effective methods to extract static WEs
from them, as proposed in this work, how useful are
traditional WE models still in NLP applications?

Lexical Fine-Tuning Objectives. The scores indi-
cate that all LEXFIT variants are effective and can
expose the lexical knowledge from the fine-tuned
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Method EN EN: SV ES FI PL RU DE: SL IT: SL

FASTTEXT.WIKI 44.2 25.8 45.0 58.7 36.7 35.8 41.3 30.5

BERT-REG (all) 46.7 23.9 42.4 55.3 32.0 30.6 31.3 28.8
BERT-REG (best) 51.8 28.9 44.2 61.5 32.4 30.7 34.6 31.1

MNEG [113 min] 73.6 68.3 62.3 72.0 52.4 50.4 49.7 58.7
MSIM [174 min] 74.3 69.6 61.8 71.1 51.8 49.9 49.7 58.9
SOFTMAX (binary) [177 min] 64.3 58.8 58.9 62.4 44.7 44.6 43.7 49.4
SOFTMAX (ternary) [212 min] 67.8 61.7 59.4 66.2 46.3 38.8 45.3 52.4

Table 1: Results in the LSIM task; Spearman’s ρ correlation scores (× 100). k = 1 for the MSIM and SOFTMAX
lexical fine-tuning variants (see §3). SV = SimVerb-3500; SL = SimLex-999. The best score in each column is
in bold; the second best is underlined. Additional LSIM results are available in the appendix. The numbers in []
denote the average fine-tuning time with each LEXFIT objective per 1 epoch in English (1 GTX TITAN X GPU).

Method EN–DE EN–TR EN–FI EN–RU DE–TR DE–FI DE–RU TR–FI TR–RU FI–RU avg

FASTTEXT.WIKI 61.0 43.3 48.8 52.2 35.8 43.5 46.9 35.8 36.4 43.9 44.8

BERT-REG (all) 44.6 37.9 47.1 47.3 32.3 39.5 41.2 35.2 31.9 38.7 39.6
BERT-REG (best) 47.2 39.0 48.6 48.8 32.3 39.5 41.2 35.2 31.9 39.2 40.3

MNEG 58.1 46.2 57.7 54.0 36.2 46.1 46.7 39.6 36.7 42.4 46.4
MSIM 58.9 45.9 57.7 53.7 37.1 46.4 46.7 39.4 37.4 44.2 46.7
SOFTMAX (binary) 57.9 45.3 53.8 53.6 35.9 44.3 43.5 38.4 36.0 42.8 45.2
SOFTMAX (ternary) 57.1 44.9 54.8 52.7 35.2 44.0 44.6 38.4 34.9 41.1 44.8

Table 2: Results in the BLI task (MMR × 100). k = 1. Additional BLI results are available in the appendix.

Method EN DE ES FI IT

FASTTEXT.WIKI 66.0 60.1 62.2 68.2 64.8

BERT-REG (all) 71.4 67.3 65.1 69.6 66.8
BERT-REG (best) 71.8 67.9 65.5 69.9 67.2

MNEG 74.1 69.7 67.8 71.3 71.1
MSIM 74.3 69.0 68.6 72.2 71.4
SOFTMAX (binary) 74.0 68.4 67.4 71.5 70.1
SOFTMAX (ternary) 75.5 70.3 70.3 73.2 71.3

Table 3: Results in the RELP task (Micro-F1 × 100,
averaged over 5 runs). More results in the appendix.

Method EN ES IT

FASTTEXT.WIKI 11.4 16.3 14.2

BERT-REG (all) 71.6 38.3 32.7

MNEG 83.8 55.3 45.0
MSIM 84.4 56.7 45.4
SOFTMAX (binary) 84.8 56.7 45.8
SOFTMAX (ternary) 84.0 53.9 44.2

Table 4: LexSIMP results (Accuracy ×100).

BERTs. However, there are differences across their
task performance: the ranking-based MNEG and
MSIM variants display stronger performance on
similarity-based ranking lexical tasks such as LSIM
and BLI. The classification-based SOFTMAX objec-
tive is, as expected, better aligned with the RELP
task, and we note slight gains with its ternary vari-
ant which leverages extra antonymy knowledge.

This finding is well aligned with the recent find-
ings demonstrating that task-specific pretraining re-
sults in stronger (sentence-level) task performance
(Glass et al., 2020; Henderson et al., 2020; Lewis
et al., 2020). In our case, we show that task-specific
lexical fine-tuning can reshape the underlying LM’s
parameters to not only act as a universal word en-
coder, but also towards a particular lexical task.

The per-epoch time measurements from Table 1
validate the efficiency of LEXFIT as a post-training
fine-tuning procedure. Previous approaches that at-
tempted to inject lexical information (i.e., word
senses and relations) into large LMs (Lauscher
et al., 2020; Levine et al., 2020) relied on joint LM
(re)training from scratch: it is effectively costlier
than training the original BERT models.

Performance across Languages and Tasks. As
expected, the scores in absolute terms are highest
for EN: this is attributed to (a) larger pretraining
LM data as well as (b) to clean external lexical
knowledge. However, we note encouragingly large
gains in target languages even with noisy trans-
lated lexical constraints. LEXFIT variants show
similar relative patterns across different languages
and tasks. We note that, while BERT-REG vectors
are unable to match FT performance in the BLI
task, our LEXFIT methods (e.g., see MNEG and
MSIM BLI scores) outperform FT WEs in this task
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Figure 2: Varying the amount of external lexical knowledge for LEXFIT (MSIM, k = 1).
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Figure 3: Impact of the number of of negative examples k on lexical task performance. In the legends, A = MSIM;
B = SOFTMAX (the binary variant plotted for RELP and BLI, ternary for RELP). The numbers in the parentheses
denote performance of FT vectors. The full results with more languages and LEXFIT variants are in the appendix.

as well, offering improved alignability (Søgaard
et al., 2018) between monolingual WEs. The large
gains of BERT-REG over FT in RELP and LexSIMP
across all evaluation languages already suggest that
plenty of lexical knowledge is stored in the pre-
trained BERTs’ parameters; however, LEXFIT-ing
the models offers further gains in LexSIMP and
RELP across the board, even with limited external
supervision (see also Figure 2c).

High scores with FI in LSIM and BLI are aligned
with prior work (Virtanen et al., 2019; Rust et al.,
2021) that showcased strong monolingual perfor-
mance of FI BERT in sentence-level tasks. Along
this line, we note that the final quality of LEXFIT-
based WEs in each language depends on several
factors: 1) pretraining data; 2) the underlying LM;
3) the quality and amount of external knowledge.

4.1 Further Discussion

The multi-component LEXFIT framework allows
for a plethora of additional analyses, varying com-
ponents such as the underlying LM, properties of
the LEXFIT variants (e.g., negative examples, fine-
tuning duration, the amount of lexical constraints).
We now analyze the impact of these components
on the “lexical quality” of the LEXFIT-tuned static
WEs. Unless noted otherwise, for computational
feasibility and to avoid clutter, we focus 1) on a
subset of target languages: EN, ES, FI, IT, 2) on the
MSIM variant (k = 1), which showed robust perfor-
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Figure 4: Performance comparison between language-
specific monolingual BERT models (MONOBERT) and
mBERT serving as the underlying LM. MSIM (k = 1).

mance in the main experiments before, and 3) on
LSIM, BLI, and RELP as the main tasks in these
analyses, as they offer a higher language coverage.

Varying the Amount of Lexical Constraints. We
also probe what amount of lexical knowledge is
required to turn BERTs into effective decontextual-
ized word encoders by running tests with reduced
lexical sets P sampled from the full set. The scores
over different P sizes, averaged over 5 samples per
each size, are provided in Figure 2, and we note
that they extend to other evaluation languages and
LEXFIT objectives. As expected, we do observe
performance drops with fewer external data. How-
ever, the decrease is modest even when relying on
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n = 2 4 6 8 10 12

LSIM

EN:REG 51.6 51.8 50.7 49.5 48.0 46.7
EN:MSIM 58.8 61.5 64.2 65.0 71.7 74.3
FI:REG 57.3 59.8 61.5 61.1 59.3 55.3
FI:MSIM 57.0 64.1 66.6 69.6 70.2 71.1

BLI EN–FI:REG 39.2 43.8 47.6 48.6 48.3 47.1
EN–FI:MSIM 40.2 45.6 50.7 54.3 56.1 57.7

Table 5: Task performance of WEs extracted via
layerwise averaging over different Transformer layers
(AVG(≤ n) extraction variants; §2.2) for a selection of
tasks and languages. LEXFIT variant: MSIM (k = 1).
REG = BERT-REG. Highest scores per row are in bold.

only 5k external constraints (e.g., see the scores in
BLI and RELP for all languages; EN Multi-SimLex
score is 69.4 with 50k constraints, 65.0 with 5k),
or even non-existent (RELP in FI).

Remarkably, the LEXFIT performance with only
10k or 5k fine-tuning pairs11 remains substantially
higher than with FT or BERT-REG WEs in all tasks.
This empirically validates LEXFIT’s sample effi-
ciency and further empirically corroborates our
knowledge rewiring hypothesis: the original LMs
already contain plenty of useful lexical knowledge
implicitly, and even a small amount of external
supervision can expose that knowledge.

Copying or Rewiring Knowledge? Large gains
over BERT-REG even with mere 5k pairs (LEXFIT-
ing takes only a few minutes), where the large por-
tion of the 100K word vocabulary is not covered
in the external input, further reveal that LEXFIT

does not only copy the knowledge of seen words
and relations into the LM: it leverages the (small)
external set to generalize to uncovered words.

We confirm this hypothesis with another experi-
ment where our input LM is the same BERT Base
architecture parameters with the same subword vo-
cabulary as English BERT, but with its parameters
now randomly initialized using the Xavier initial-
ization (Glorot and Bengio, 2010). Running LEX-
FIT on this model for 10 epochs with the full set
of lexical constraints (see §3) yields the follow-
ing LSIM scores: 23.1 (Multi-SimLex) and 14.6
(SimVerb), and the English RELP accuracy score
of 61.8%. The scores are substantially higher than
those of fully random static WEs (see also the ap-
pendix), which indicates that the LEXFIT proce-
dure does enable storing some lexical knowledge
into the model parameters. However, at the same

11When sampling all reduced sets, we again deliberately
excluded all words occurring in our LSIM benchmarks.

time, these scores are substantially lower than the
ones achieved when starting from LM-pretrained
models, even when LEXFIT is run with mere 5k
fine-tuning lexical pairs.12 This again strongly sug-
gests that LEXFIT ’unlocks’ already available lexi-
cal knowledge stored in the pretrained LM, yielding
benefits beyond the knowledge available in the ex-
ternal data. Another line of recent work (Liu et al.,
2021) further corroborates our findings.

Multilingual LMs. Prior work indicated that mas-
sively multilingual LMs such as multilingual BERT
(mBERT) (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) cannot match the performance
of their language-specific counterparts in both lex-
ical (Vulić et al., 2020) and sentence-level tasks
(Rust et al., 2021). We also analyze this conjec-
ture by LEXFIT-ing mBERT instead of monolin-
gual BERTs in different languages. The results
with MSIM (k = 1) are provided in Figure 4; we
observe similar comparison trends with other lan-
guages and LEXFIT variants, not shown due to
space constraints. While LEXFIT-ing mBERT of-
fers huge gains over the original mBERT model,
sometimes even larger in relative terms than with
monolingual BERTs (e.g., LSIM scores for EN in-
crease from 0.21 to 0.69, and from 0.24 to 0.60 for
FI; BLI scores for EN-FI rise from 0.21 to 0.37), it
cannot match the absolute performance peaks of
LEXFIT-ed monolingual BERTs.

Storing the knowledge of 100+ languages in
its limited parameter budget, mBERT still cannot
capture monolingual knowledge as accurately as
language-specific BERTs (Conneau et al., 2020).
However, we believe that its performance with
LEXFIT may be further improved by leveraging re-
cently proposed multilingual LM adaptation strate-
gies that mitigate a mismatch between shared multi-
lingual and language-specific vocabularies (Artetxe
et al., 2020; Chung et al., 2020; Pfeiffer et al.,
2020); we leave this for future work.

Layerwise Averaging. A consensus in prior work
(Tenney et al., 2019; Ethayarajh, 2019; Vulić et al.,
2020) points that out-of-context lexical knowledge
in pretrained LMs is typically stored in bottom
Transformer layers (see Table 5). However, Table 5
also reveals that this does not hold after LEXFIT-
ing: the tuned model requires knowledge from all
layers to extract effective decontextualized WEs
and reach peak task scores. Effectively, this means

12The same findings hold for other tasks and languages.
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that, through lexical fine-tuning, model “reformats”
all its parameter budget towards storing useful lexi-
cal knowledge, that is, it specializes as (decontex-
tualized) word encoder.

Varying the Number of Negative Examples and
their impact on task performance is recapped in
Figure 3b. Overall, increasing k does not benefit
(and sometimes even hurts) performance – the ex-
ceptions are EN LSIM; and the RELP task with the
SOFTMAX variant for some languages. We largely
attribute this to the noise in the target-language lex-
ical pairs: with larger k values, it becomes increas-
ingly difficult for the model to discern between
noisy positive examples and random negatives.

Longer Fine-Tuning. Instead of the standard
setup with 2 epochs (see §3), we run LEXFIT for 10
epochs. The per-epoch snapshots of scores are sum-
marized in the appendix. The scores again validate
that LEXFIT is sample-efficient: longer fine-tuning
yields negligible to zero improvements in EN LSIM
and RELP after the first few epochs, with very high
scores achieved after epoch 1 already. It even yields
small drops for other languages in LSIM and BLI:
we again attribute this to slight overfitting to noisy
target-language lexical knowledge.

5 Conclusion and Future Work

We proposed LEXFIT, a lexical fine-tuning pro-
cedure which transforms pretrained LMs such as
BERT into effective decontextualized word en-
coders through dual-encoder architectures. Our
experiments demonstrated that the lexical knowl-
edge already stored in pretrained LMs can be fur-
ther exposed via additional inexpensive LEXFIT-
ing with (even limited amounts of) external lexical
knowledge. We successfully applied LEXFIT even
to languages without any external human-curated
lexical knowledge. Our LEXFIT word embeddings
(WEs) outperform “traditional” static WEs (e.g.,
fastText) across a spectrum of lexical tasks across
diverse languages in controlled evaluations, thus
directly questioning the practical usefulness of the
traditional WE models in modern NLP.

Besides inducing better static WEs for lexical
tasks, following the line of lexical probing work
(Ethayarajh, 2019; Vulić et al., 2020), our goal in
this work was to understand how (and how much)
lexical semantic knowledge is coded in pretrained
LMs, and how to ‘unlock’ the knowledge from the
LMs. We hope that our work will be beneficial for
all lexical tasks where static WEs from traditional

WE models are still largely used (Schlechtweg
et al., 2020; Kaiser et al., 2021).

Despite the extensive experiments, we only
scratched the surface, and can indicate a spectrum
of future enhancements to the proof-of-concept
LEXFIT framework beyond the scope of this work.
We will test other dual-encoder loss functions, in-
cluding finer-grained relation classification tasks
(e.g., in the SOFTMAX variant), and hard (instead of
random) negative examples (Wieting et al., 2015;
Mrkšić et al., 2017; Lauscher et al., 2020; Kalan-
tidis et al., 2020). While in this work, for simplicity
and efficiency, we focused on fully decontextual-
ized ISO setup (see §2.2), we will also probe alter-
native ways to extract static WEs from pretrained
LMs, e.g., averages-over-context (Liu et al., 2019;
Bommasani et al., 2020; Vulić et al., 2020). We
will also investigate other approaches to procuring
more accurate external knowledge for LEXFIT in
target languages, and extend the framework to more
languages, lexical tasks, and specialized domains.
We will also focus on reducing the gap between
pretrained monolingual and multilingual LMs.
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Language URL

EN https://huggingface.co/bert-base-uncased
DE https://huggingface.co/bert-base-german-dbmdz-uncased
ES https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
FI https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
IT https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
PL https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
RU https://huggingface.co/DeepPavlov/rubert-base-cased
TR https://huggingface.co/dbmdz/bert-base-turkish-uncased
Multilingual https://huggingface.co/bert-base-multilingual-uncased

Table 6: URLs of the pretrained LMs used in our study, obtained via the HuggingFace repo (Wolf et al., 2020).

Method EN EN: SV ES FI RU DE: SL

FASTTEXT.WIKI 44.2 25.8 45.0 58.7 35.8 41.3

BERT-REG (all) 46.7 23.9 42.4 55.3 30.6 31.3
BERT-REG (best) 51.8 28.9 44.2 61.5 30.7 34.6
MNEG
– 73.6 68.3 62.3 72.0 50.4 49.7
MSIM
k = 1 74.3 69.6 61.8 71.1 49.9 49.7
k = 2 74.3 69.6 61.8 71.1 49.9 49.6
k = 4 75.7 71.7 61.9 68.4 48.6 47.9
k = 8 75.9 72.3 62.0 66.4 49.9 46.5
SOFTMAX (binary)
k = 1 64.3 58.8 58.8 62.4 44.6 43.7
k = 2 67.9 61.4 60.1 67.6 46.6 45.9
k = 4 70.2 64.9 60.6 69.6 46.7 47.0
k = 8 71.3 67.2 61.4 70.2 46.7 47.6
SOFTMAX (ternary)
k = 1 67.8 61.7 59.4 66.2 38.8 45.3
k = 2 68.8 62.6 60.1 66.7 42.4 46.6
k = 4 70.6 65.8 59.7 67.8 45.3 47.6
k = 8 71.6 67.8 60.9 68.5 45.0 47.0

Table 7: A summary of results in the lexical semantic similarity (LSIM) task (Spearman’s ρ correlation scores),
also showing the dependence on the number of negative examples per positive example: k. The scores for EN, ES,
FI, and RU are reported on the Multi-SimLex lexical similarity benchmark (Vulić et al., 2020) (1,888 word pairs).
The scores for DE, not represented in Multi-SimLex, are calculated on a smaller benchmark: German SimLex-
999 (Hill et al., 2015; Leviant and Reichart, 2015) (SL; 999 word pairs) For EN, we also report the scores on the
verb similarity dataset SimVerb-3500 (Gerz et al., 2016) (SV). All LEXFIT-based WEs have been induced from
“lexically fine-tuned” LMs, relying on the standard setup described in §3, and relying on lexical constraints also
summarized in §3. All results with LEXFIT variants are obtained relying on the best-performing configuration
for extracting word representations from the comparative study of Vulić et al. (2020). BERT-REG denotes the
extraction of word representations (again with the best strategy from prior work) from the regular underlying
BERT models, which were not further “LEXFIT-ed”: (all) layerwise averaging over all Transformer layers; (best)
the highest results reported by Vulić et al. (2020), often achieved by excluding several highest layers from the
layerwise averaging. The highest scores per column are in bold; the second best result per column is underlined.
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Figure 5: Impact of LEXFIT fine-tuning duration (i.e., the number of fine-tuning epochs) in three lexical tasks
(LSIM, BLI, RELP). We report a subset of results with a selection of languages and language pairs, relying on the
MSIM (k = 1) LEXFIT fine-tuning variant. Similar trends are observed with other LEXFIT variants.

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-german-dbmdz-uncased
https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/dbmdz/bert-base-turkish-uncased
https://huggingface.co/bert-base-multilingual-uncased


5282

(a) Training dictionary: 5,000 word translation pairs

Method EN–DE EN–TR EN–FI EN–RU DE–TR DE–FI DE–RU TR–FI TR–RU FI–RU avg

FASTTEXT.WIKI 61.0 43.3 48.8 52.2 35.8 43.5 46.9 35.8 36.4 43.9 44.8

BERT-REG (all) 44.6 37.9 47.1 47.3 32.3 39.5 41.2 35.2 31.9 38.7 39.6

MNEG
– 58.1 46.2 57.7 54.0 36.2 46.1 46.7 39.6 36.7 42.4 46.4
MSIM
k = 1 58.9 45.9 57.6 53.7 37.1 46.4 46.7 39.4 37.4 44.2 46.7
k = 2 57.2 44.4 56.7 52.8 35.7 44.7 46.1 39.3 37.4 42.2 45.7
k = 4 57.0 43.6 55.2 51.5 35.5 43.6 44.8 38.0 35.1 39.3 44.4
k = 8 55.4 44.0 53.0 49.1 34.0 41.8 42.2 36.5 32.0 37.5 42.6
SOFTMAX (binary)
k = 1 57.9 45.3 53.8 53.6 35.9 44.3 43.5 38.4 36.0 42.8 45.2
k = 2 55.8 44.6 55.4 51.9 34.7 43.8 41.9 39.1 34.6 40.0 44.2
k = 4 55.8 43.8 54.9 51.4 34.6 42.8 39.9 37.9 33.3 39.0 43.3
k = 8 54.2 43.1 54.4 50.2 33.3 42.0 39.7 36.8 32.9 38.7 42.5
SOFTMAX (ternary)
k = 1 57.1 44.9 54.8 52.7 35.2 44.0 44.6 38.4 34.9 41.1 44.8
k = 2 55.7 45.2 54.4 53.2 34.1 43.6 42.6 38.4 34.5 40.7 44.2
k = 4 55.5 44.7 55.1 52.6 34.0 42.8 40.2 38.6 33.4 40.7 43.8
k = 8 54.9 44.2 53.3 51.5 33.3 41.3 38.7 37.2 32.9 37.8 42.5

(b) Training dictionary: 1,000 word translation pairs

Method EN–DE EN–TR EN–FI EN–RU DE–TR DE–FI DE–RU TR–FI TR–RU FI–RU avg

FASTTEXT.WIKI 53.9 31.7 35.4 39.0 23.0 31.5 37.8 21.4 22.2 29.6 32.6

BERT-REG (all) 26.4 20.6 25.8 25.4 17.4 24.6 23.4 20.4 15.6 21.4 22.1

MNEG
– 55.2 34.1 44.8 40.3 25.9 33.9 31.7 29.2 22.3 30.1 34.8
MSIM
k = 1 54.3 33.2 45.1 39.3 26.0 33.9 31.4 29.1 23.8 30.8 34.7
k = 2 54.3 32.0 43.3 38.8 24.6 32.7 30.0 28.4 22.1 27.1 33.3
k = 4 53.0 31.8 41.6 38.1 24.3 30.9 27.4 25.2 20.1 26.1 31.9
k = 8 51.4 30.6 40.1 36.4 22.7 28.7 24.9 24.2 17.8 23.7 30.1
SOFTMAX (binary)
k = 1 54.1 32.0 40.4 39.7 25.6 32.1 31.6 27.2 23.1 29.4 33.5
k = 2 52.3 32.3 43.7 39.6 25.5 33.4 31.3 28.9 22.8 27.8 33.8
k = 4 52.7 31.9 42.4 37.4 25.5 32.2 29.6 27.5 21.0 26.5 32.7
k = 8 52.2 31.1 42.1 38.0 23.5 30.0 28.4 25.9 20.8 25.8 31.8
SOFTMAX (ternary)
k = 1 53.5 32.0 42.8 38.7 24.2 32.0 31.0 27.6 22.0 28.6 33.2
k = 2 52.7 32.7 43.0 38.0 23.9 30.4 29.6 27.1 21.8 27.5 32.7
k = 4 52.9 31.7 42.8 37.0 22.9 32.0 29.8 26.9 22.3 27.9 32.6
k = 8 51.8 31.6 41.2 36.8 23.1 29.8 27.8 26.1 20.2 25.3 31.4

Table 8: Results in the BLI task across different language pairs and dual-encoder lexical fine-tuning (LEXFIT)
objectives (MNEG, MSIM, SOFTMAX). The size of the training dictionary is (a) 5,000 or (b) 1,000 word translation
pairs. MRR scores reported; avg refers to the average score across all 10 language pairs. All results with LEXFIT
variants are obtained relying on the best-performing configuration for extracting word representations from the
comparative study of Vulić et al. (2020). BERT-REG denotes the extraction of word representations (again with the
best strategy from prior work) from the regular underlying BERT models, which were not further “LEXFIT-ed”:
(all) layerwise averaging over all Transformer layers. The highest scores per column for each training dictionary
size are in bold; the second best result is underlined.
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Method EN DE ES FI

RANDOM.XAVIER 47.3±0.3 51.2±0.8 49.7±0.9 51.8±0.5

FASTTEXT.WIKI 66.0±0.8 60.1±0.7 62.2±1.6 68.2±0.3

BERT-REG (all) 71.4±1.2 67.3±0.3 65.1±1.1 69.6±0.6

BERT-REG (best) 71.8±0.2 67.9±0.8 65.5±1.2 69.9±0.5

MNEG
– 74.1±1.1 69.7±1.0 67.8±0.3 71.3±1.5

MSIM
k = 1 74.3±1.3 69.0±0.6 68.6±0.7 72.2±0.4

k = 2 73.8±0.8 68.6±1.2 68.4±0.5 72.3±0.3

k = 4 73.5±1.0 68.8±1.2 67.1±1.1 72.0±0.9

k = 8 72.1±0.9 68.9±0.6 67.6±1.3 71.2±1.3

SOFTMAX (binary)
k = 1 74.0±1.6 68.4±0.7 67.4±0.3 71.5±0.6

k = 2 73.8±1.0 69.4±0.5 67.4±0.8 71.2±0.9

k = 4 73.9±1.0 69.4±0.9 67.2±1.1 72.7±0.7

k = 8 73.2±1.0 68.2±1.1 67.8±1.1 71.4±1.1

SOFTMAX (ternary)
k = 1 75.5±0.5 70.3±0.7 70.3±0.6 73.2±1.2

k = 2 75.7±0.8 68.8±0.8 69.8±0.8 73.2±0.5

k = 4 74.4±0.8 69.9±0.5 69.9±0.5 72.2±0.6

k = 8 74.0±0.2 68.1±0.9 68.1±0.9 72.3±0.4

Table 9: A summary of results in the relation prediction (RELP) task, also showing the dependence on the number
of negative examples per positive example: k. Micro-averaged F1 scores, obtained as averages over 5 experimental
runs for each input word vector space; standard deviation is also reported in the subscript. RANDOM.XAVIER
are 768-dimensional vectors for the same vocabularies, randomly initialized via Xavier initialization (Glorot and
Bengio, 2010). The highest scores per column are in bold, the second best is underlined.


