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Abstract

Frame Identification (FI) is a fundamental and
challenging task in frame semantic parsing.
The task aims to find the exact frame evoked
by a target word in a given sentence. It is
generally regarded as a classification task in
existing work, where frames are treated as
discrete labels or represented using one-hot
embeddings. However, the valuable knowl-
edge about frames is neglected. In this pa-
per, we propose a Knowledge-Guided Frame
Identification framework (KGFI) that inte-
grates three types frame knowledge, including
frame definitions, frame elements and frame-
to frame relations, to learn better frame rep-
resentation, which guides the KGFI to jointly
map target words and frames into the same em-
bedding space and subsequently identify the
best frame by calculating the dot-product sim-
ilarity scores between the target word embed-
ding and all of the frame embeddings. The ex-
tensive experimental results demonstrate KG-
FI significantly outperforms the state-of-the-
art methods on two benchmark datasets.

1 Introduction

Frame Identification (FI) aims to find the exact
frame evoked by a target word in a given sentence.
A frame represents an event scenario, and possess-
es frame elements (or semantic roles) that partici-
pate in the event (Hermann et al., 2014), which is
described in the FrameNet knowledge base (Bak-
er et al., 1998; Ruppenhofer et al., 2016) ground-
ed on the theory of Frame Semantics (Fillmore
et al., 2002). The theory asserts that people under-
stand the meaning of words largely by virtue of the
frames which they evoke. In general, many words
are polysemous and can evoke different frames in
different contexts.

As shown in Figure 1, the word stopped e-
vokes the frame Activity stop and the frame
∗Corresponding author.

The company stopped producing the profitable toy.

Activity_stop
stop.v

Agent Activity
Process_stop
stop.v

Process Time
The fighting has stopped for more than two years .

Figure 1: Two annotated examples with the target word
marked in bold and frame elements (semantic roles) in
rounded rectangles. The target word stopped (stop.v
denotes its form of lexical unit) evokes the frame
Activity stop and the frame Process stop respectively
in different contexts. Here, the key to distinguish these
two frames is identifying whether the subject (The com-
pony or The fighting) of stopped is an Agent or a Pro-
cess (see the frame definitions in Table 1).

Process stop respectively in two sentences. It is a
challenging task to distinguish the frames evoked
by target words in sentences. Furthermore, FI is
a key step before Frame Semantic Role Labeling
(FSRL) (Das et al., 2010, 2014; Swayamdipta et al.,
2017; Kalyanpur et al., 2020) which is widely used
in event recognition (Liu et al., 2016), machine
reading comprehension (Guo et al., 2020b,a), rela-
tion extraction (Zhao et al., 2020), etc. Through FI
process, hundreds of role labels in FrameNet are
reduced to a manageable small set (Hartmann et al.,
2017), which can significantly improve the perfor-
mance of FSRL models. Thus, FI is a fundamental
and critical task in NLP.

FI is typically regarded as a classification task,
in which class labels are frame names. In earlier s-
tudies, researchers manually construct features and
then use supervised learning methods to learn clas-
sification models (Bejan and Hathaway, 2007; Jo-
hansson and Nugues, 2007; Das et al., 2010, 2014).
These methods, however, do not take the valuable
semantic information about frames into considera-
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Frame: Activity stop Frame: Process stop
Def An Agent ceases an Activity without completing it A Process stops at a certain Time and Place

FEs core: Agent, Activity core: Process
peripheral: Degree, Duration, Manner, Time peripheral: Manner, Place, Time
extra-thematic: Depictive,Purpose, Result,... extra-thematic: Depictive, Duration, ...

LUs abandon.v, cease.v, halt.v, quit.v, stop.v, ... cease.v, halt.n, shutdown.n, stop.v,...

FRs Inherits from: Process stop Inherits from: Event
Subframe of: Activity Subframe of: Process
Is Inherited by: Halt Is Inherited by: Activity stop
Uses: Eventive affecting

Table 1: The structured descriptions for frame Activity stop versus frame Process stop in FrameNet1.7. The
description of a frame is mainly composed of frame definition (Def), frame elements (FEs), lexical units (LUs)
and frame-to-frame relations (FRs). Note that the elements of FEs, LUs and FRs are partially listed due to the
limited space†. Lexical unit is expressed in the form of lemma.POS (e.g. stop.v ).

tion, and merely treat them as discrete labels.
The recent studies of FI use distributed repre-

sentations of target words and their syntactic con-
text to construct features, and construct classifica-
tion models with deep neural network (Hartmann
et al., 2017; Kabbach et al., 2018). These meth-
ods usually transform frame labels into one-hot
representations (Hermann et al., 2014; Täckström
et al., 2015), and then learn the embeddings of tar-
get words and frames simultaneously. However,
the abundant semantic information and structure
knowledge of frames contained in FrameNet are
still neglected.

Knowledge of frames defined by linguists, such
as frame definition, frame elements and frame-to-
frame relations, can enrich frame labels with rich
semantic information that can potentially guide FI
models to learn more unique and distinguishable
representations. Thus, in this paper, we propose
a Knowledge Guided Frame Identification frame-
work (KGFI) which consists of a Bert-based con-
text encoder and a frame encoder based on a spe-
cialized graph convolutional network (FrameGC-
N). In particular, the frame encoder incorporates
multiple types of frame knowledge into frame rep-
resentation which guides the KGFI to jointly map
target words and frames into the same embedding
space. Instead of predicting the frame label directly,
KGFI chooses the best suitable frame evoked by
the target word in a given sentence by calculating
the dot-product similarity scores between the target
word embedding and all of the frame embeddings.
In summary, our contribution is threefold:

• To the best of our knowledge, we are the
†See the details in https://FN.icsi.berkeley.edu/fndrupal/

first to propose a unified FI method which
leverages heterogeneous frame knowledge for
building rich frame representations.

• We design a novel Framework KGFI, con-
sisting of a Bert-based context encoder and a
GCN-based frame encoder, which learns the
model from a combination of annotated da-
ta and FrameNet knowledge base, and maps
target words and frames into the same embed-
ding space.

• Extensive experimental results demonstrate
our proposed KGFI framework outperforms
the state-of-the-art models across two bench-
mark datasets.

2 FrameNet and FI Task Definition

2.1 FrameNet

FrameNet is built on the hypothesis that people un-
derstand things by performing mental operations on
what they already know (Baker et al., 1998). Such
knowledge reflecting people’s cognitive experi-
ence is described as structured information packets
called frames. A frame represents an event scenari-
o, associated with a set of semantic roles (frame
elements (FEs)). Lexical units (LUs) are capable
of evoking the scenario (Kshirsagar et al., 2015).
Frame elements in terms of how central they are to
a particular frame can be divided into three distin-
guishing levels: core, peripheral and extra-thematic.
Each frame has a textual definition (Def), depict-
ing the scenario and how the roles interact in the
scenario. Frames are organized as a network with
several kinds of frame-to-frame relations (FRs).
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Figure 2: The overall architecture of KGFI.

Table 1 shows the structure of frame Activity stop
and frame Process stop in FrameNet.

2.2 FI Task Definition
Frame Identification (FI) is the task of predicting
a frame evoked by the target word in a sentence.
Let c=w0,w1,...,wst ,...,wen,...,wn denote a given sen-
tence, and t=wst ,...,wen (t ⊂ c) represent the target
word, where st and en are the start and end index
respectively for the target word t in the sentence.
Let F = ( f1, f2, ..., f|F |) denote the set of all frames
in FrameNet. The FI model is defined as a mapping
function G : (c, t,st,en)→ f j, subject to f j ∈ F .

3 Methodology

Table 1 illustrates the structured knowledge (Def,
FEs, LUs) of two different frames and their frame-
to-frame relations (FRs). We explicitly leverage
them to enrich the frame embeddings with semantic
information. The resulted informative frame repre-
sentations serve two purposes: 1) guide our model
to learn more distinguishable embeddings of target
words, and 2) improve FI model’s generalization
performance in the prediction phase.

The proposed KGFI framework consists of three
components: context encoder, frame encoder
and scoring module, as shown in Figure 2. Specif-
ically, context encoder is used to represent the
context-aware target word into an embedding with
a Bert-based module, and frame encoder is used
to incorporate three types of knowledge about a
frame into frame embeddings. With the guidance
of the knowledge about frames, two encoders joint-
ly learn the embeddings of target words and frames.
Finally, a scoring module is used to calculate the
similarity scores between the given target word em-
bedding and all frames’ embeddings, to identify
the best frame with the highest score.

3.1 Context Encoder
To get the context-aware embeddings of target
words, we employ Bert (Devlin et al., 2019) for our
context encoder, since its architecture is a multi-
layer bidirectional Transformer which can aggre-
gate information from context into the target word
through the self-attention mechanism. As we know,
Bert model is pre-trained on a large corpus and
can transfer language knowledge into the context
encoder, which is very helpful for the target word
representation as the manually labeled training data
of FI is very small.

The context encoder, which we define as Ec,
takes given sentence c containing a target word
t as input. We denote the last layer of Bert’s output
as Ht . The context encoder can be expressed as :

rt = Ec(c, t,st,en) =W T
c ht +bc (1)

where

ht =
1

en+1− st

en

∑
i=st

(Ht [i]), (2)

Wc ∈ Rn×mand bc ∈ Rm are learned parameters.

3.2 Frame Encoder
In FrameNet, all the frames are connected into a di-
rected graph through the frame-to-frame relations,
as shown in Figure 3. Moreover, the graph convolu-
tional network(GCN) (Kipf and Welling, 2017) has
been proved to be effective to model the relation-
ship between labels (Yan et al., 2019; Chen et al.,
2019; Cheng et al., 2020; Linmei et al., 2019), and
it can enrich the representation of the node through
aggregating information from its neighbors. In or-
der to make better use of frame knowledge and the
advantage of GCN, we propose a specialized GCN,
called FrameGCN, to incorporate multiple frame
knowledge into frame representations.
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Figure 3: The sub-graph of overall graph of
FrameNet1.7 corresponding to frame Activity stop and
Process stop. The nodes denote frames and the direct-
ed edges denote frame-to-frame relations. The black
”→”, red ”→” and blue ”→” denote Inheritance, Using
and Subframe relations respectively, and the direction
of an arrow is from super-frame to sub-frame.

3.2.1 Structure of FrameGCN
FrameGCN is a combination of two dedicated GC-
Ns (FEsGCN and DefGCN) and an attention net-
work, as shown in Figure 2. FEsGCN is used to
represent frame by aggregating the FEs features
of its neighbors, while DefGCN is used to repre-
sent frame by aggregating the Def features of its
neighbors. The attention network is responsible
for incorporating the outputs of two GCNs into
one unified embedding where adjacent matrix A is
shared by the two dedicated GCNs.

Frame-to-frame relation in FrameNet is a asym-
metric relation between two frames, where one
frame is called super-frame and the other is called
sub-frame, as shown in Figure 3. A frame typ-
ically obtains/inherits more information from its
super-frame than from its sub-frame. Therefore, we
define the adjacent matrix of the graph as a weight-
ed asymmetric matrix denoted as A = (ai j)|F |×|F |,
where

ai j =


3, f j = fi

2, f j is a super− f rame o f fi

1, f j is a sub− f rame o f fi

0, other

. (3)

Three types of frame-to-frames relations, includ-
ing Inherits, Using and Subframe, are used in this
study.

3.2.2 FEsGCN
The FEs of a frame express its semantic roles
and structure. Frames which have similar struc-
tures imply that they have close semantic, so we
regard FEs as features and use them to repre-
sent frames. Let FE = (e1,e2, ...,e|FE|) denote

the set of all frame elements in FrameNet, and
Ve ∈ R|F |×|FE| denote the feature matrix of frames
represented by FEs. The ith row of Ve is the fea-
ture vector of ith frame fi, and can be expressed as
Ve[i, :] = (ve1,ve2, ...,ve|FE|), where

ve j =

{
1, e j ∈ FE fi

0, other
, (4)

FE fi ⊂ FE is the FEs of frame fi.
FEsGCN is used to learn a map function which

maps the node (frame) vectors represented by FEs
to a new representation via convolutional operation
defined by A. We take a two-layer GCN to imple-
ment the map function, which can be expressed as:

g(0)e (A,Ve) = ReLU(AVeW
(0)
e ),

g(1)e (A,Ve) = Tanh(Ag(0)e (A,Ve)W
(1)
e ).

(5)

Here, W (0)
e ∈ R|FE|×h is an input-to-hidden weight

matrix for the hidden layer and W (1)
e ∈ Rh×m is a

hidden-to-output weight matrix.

3.2.3 DefGCN
Since the frame definition is a short text that de-
picts an event scenario and frame elements that
participate in the event, we employ Bert as a fea-
ture extractor to construct the feature matrix Vd of
frames. Specifically, we first input a frame def-
inition into Bert, and subsequently take the first
token’s representation (corresponding to the input
[CLS] token) in Bert’s last layer as the feature vec-
tor of the frame. Since the name of a frame is also
meaningful, we concatenate the frame name and
frame definition into one string, e.g. Activity stop:
an agent ceases an activity without completing it.

DefGCN is used to learn a map function which
maps the node (frame) vectors represented by def-
inition to a new representation via convolutional
operation defined by A. We use a network similar
to FEsGCN, which can be expressed as:

g(0)d (A,Vd) = ReLU(AVdW (0)
d ),

g(1)d (A,Vd) = Tanh(Ag(0)d (A,Vd)W
(1)
d ).

(6)

Here, W (0)
d ∈ Rn×h is an input-to-hidden weight

matrix for a hidden layer with h feature maps, and
W (1)

e ∈ Rh×m is a hidden-to-output weight matrix.

3.2.4 Attentive Graph Combination
We use an attention network to dynamic incorpo-
rate the outputs of FEsGCN and DefGCN into one
frame embedding through the attention weighting
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mechanism. The incorporation operation takes the
following function:

r fi = ∑
k∈{e,d}

ai,kg(1)k (A,Vk)i (7)

where r fi ∈ Rm is the embedding of ith frame,
g(1)k (A,Vk)i is the ith row of convolved represen-
tation of graph k, and ai,k is a weight of ith frame
against the graph k, which is computed as:

ai,k =
exp(wag(1)k (A,Vk)i)

∑k′∈{e,d} exp(wag(1)k′ (A,Vk′)i)
(8)

where wa ∈ Rmis a learnable vector.

3.3 Scoring and Prediction
After obtaining the embeddings of target words
and frames through context encoder and frame en-
coder respectively, we score a target word t with
each frame f j ∈ F by computing the dot product
similarity between rt and each r f for f j ∈ F :

S(rt ,r f j) = rt .r f j , j = 1,2, ..., |F | (9)

During training, all model parameters are jointly
learned by minimizing a cross-entropy loss:

L(θ) =− 1
|D|

|D|

∑
i

|F |

∑
j

yi jlog(ŷi j) (10)

where D is the number of the training data, |F | is
the total number of frames in FrameNet, yi j (one-
hot representation of frame labels) and ŷi j are true
labels. The predicted probability over frames is
calculated by the softmax function over the scores.

During prediction, we predict the frame evoked
by the target word t to be f j ∈ F , whose representa-
tion r f j has the highest score with rt . The prediction
function is defined as:

f̂ = argmax f j∈FS(rt ,r f j) (11)

Note most of the frames contain a set of lex-
ical units (LUs) in the form of lemma.POS (e.g.
stop.v). As shown in Table 1, the LUs of the frame
Activity stop and the frame Process stop are listed
in the fourth row. Therefore, we adopt the lexicon
filtering operation to reduce the possible candidate
frame set. Firstly, we utilize lemmatization and
POS tools to convert the target word t into the form
of LU (e.g. stop.v). Secondly, we use this LU to
match the frames whose LUs contains this LU, and
then use the matched frames as the possible candi-
date frame set Ft for the target word t. At last, we
predict the frame label by the following function:

Datasets Train Dev Test |F | |FE|
FN1.7 19391 2272 6714 1221 1285
FN1.5 16621 2284 4428 1019 1170

Table 2: Statistics for FrameNet datasets.

f̂ = argmax f j∈Ft S(rt ,r f j) (12)

In the light of the coverage issue of FrameNet
(see Section 4.4), these two prediction functions
(11 and 12) can be used in different circumstances.
In general, we can first use LU to obtain candidate
frame set Ft by performing lexicon filtering and
then use function 12 to identify best frame from Ft .
However, if we can not find any candidate frame
using LUs, i.e. Ft = /0, then we have to identify
best frame from F using function 11. Note that Ft

only contains a couple of candidate frames, while
F contains more than one thousand of frames. This
requires FI models have very good generalization
performance to handle a big F set.

4 Experimental Settings

4.1 Datasets

We have employed two knowledge bases, i.e.
FrameNet1.5 and FrameNet1.7. Both of them con-
tain various documents which have been annotated
manually, including target words and correspond-
ing evoked frames. Documents and correspond-
ing annotations in FrameNet1.7 are extended from
FrameNet 1.5 and thus are more complete. Note
train, dev and test documents in both data have been
partitioned following (Swayamdipta et al., 2017).
Given a sentence in documents may contain mul-
tiple target words, we regard it as multiple pairs
of target word and sentence in train, dev and test
sets. The statistics of two datasets are illustrated in
Table 2.

To test the model’s performance on the more
challenging ambiguous data, following the previ-
ous studies, we constructed a specialized dataset
by extracting pairs of target word and annotated
sentence from test data, in which the target words
are polysemous or can evoke multiple frames.

4.2 Baselines

We first compare the KGFI against five existing
models. Semafor (Das et al., 2014) is a condi-
tional log-linear model which uses statistical fea-
tures about target word to predict the frame la-
bel. Hermann-14 (Hermann et al., 2014) is a
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joint learning model which maps frame labels and
the dependency path of target word into a com-
mon embedding space. SimpleFrameId (Hart-
mann et al., 2017) models a classifier based on the
embeddings of entire words in the sentence. Open-
Sesame (Swayamdipta et al., 2017) models a clas-
sifier based on bi-directional LSTM. Hermann-
14 converts frame labels into onehot embeddings,
while other models treat frame labels as discrete su-
pervision signals. Peng’s model (Peng et al., 2018)
is a joint learning model for FI and FSRL, which
both uses exemplars in FrameNet knowledge base
and the full-text annotation training data to train
the model.

In addition, we also implemented two additional
Bert-based baselines for fair comparison. One is
called Bert-cls that uses Bert to represent the target
word in a sentence and treats discrete frame labels
as supervision signals. The other is called Bert-
onehot, which also uses the dual-encoder archi-
tecture (Context encoder and frame encoder) and
maps target words and frames into a common em-
bedding space. The difference between KGFI and
Bert-onehot is that KGFI uses GCN-based mod-
ules to incorporate frame knowledge into frame
embeddings, while Bert-onehot uses a linear net-
work to map onehot vector of frame labels into
frame embeddings without incorporating knowl-
edge. Clearly, we will test if the knowledge plays
a significant role for better frame embeddings and
subsequent FI task.

4.3 Parameter Settings

All Bert modules in KGFI were initialized with
Bert-base. We set both the dimensions of target
word embedding rt and frame embedding r f to
128 (m=128), the hidden layer size of FEsGCN
and DefGCN to 256 (h=256). The size of Bert
embedding is n=768. The dimensions of FEs and
FRs feature vectors are related to FrameNet version
(see Table 2). For optimization, we use BertAdam
optimizer and set learning rate to 5e− 5. As for
parameter tuning, our parameters are tuned using
the development set with the early stop strategy.

4.4 Test Settings

FrameNet has a few coverage issues in that: (1) the
LUs set is incomplete for some frames; (2) many
words that should evoke frames are not included in
LUs set of frames. Thus, we design two types of
test settings: test without lexicon filtering, or test

FN 1.7 FN 1.5

Models All Amb All Amb
Semafor - - 83.60 69.19
Hermann-14 - - 88.41 73.10
SimpleFrameId 83.00 71.70 87.63 73.80
Open-Sesame 86.55 72.40 86.40 72.80
Peng’s model* 89.10 77.50 90.00 78.00
Bert-cls 90.17 79.87 90.13 78.32
Bert-onehot 90.57 80.66 91.46 80.78
KGFI(1-layer) 91.71 82.98 92.13 82.34
KGFI(2-layers) 92.40 84.41 91.91 81.84
Max4 1.83 3.75 0.67 1.56

Table 3: Frame identification accuracy with lexicon
filtering setting on FrameNet test dataset. ’ALL’ and
’Amb’ denote testing on test data and on ambiguous
data respectively. ’Max4’ denotes the accuracy differ-
ence between our best KGFI model and the strongest
baseline Bert-onehot. ’*’ denotes the training data and
exemplars in FrameNet are both used in training phase.

that does not use LUs (use Fun 11) and test with
lexicon filtering, or test that uses LUs (use Fun 12).

5 Evaluation

5.1 Overall Results

The overall testing results, as shown in Table 3,
demonstrate that Bert-cls and Bert-onehot are t-
wo strong baselines, outperforming all of the prior
work that does not incorporate pre-training mod-
ules into their systems. Bert-onehot slightly out-
performs Bert-cls in all of the testing settings, in-
dicating joint learning target word embedding and
frame embedding is helpful for FI task.

Our best KGFI models, including KGFI (2-
layers) for FrameNet1.7 and KEFI (1-layer) for
FrameNet1.5, outperform all the baseline model-
s of FI in terms of accuracy. Compared with the
stronger Bert-onehot model, our model achieves
absolute 1.83% and 0.67% improvements on two
datasets respectively in All test setting. With the
help of lexicon filtering with LUs in FrameNet, the
model predicts the exact frame evoked by the target
word among a small set of candidate frames. Clear-
ly, the improvements are credited to the model’s
performance improvement in predicting frames for
ambiguous target words, since the model achieves
absolute 3.75% and 1.56% improvements in Amb
test setting on two datasets respectively.

To the best of our knowledge, few previous work
focus on frame prediction without lexicon filtering
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FN 1.7 FN 1.5

Models All Amb All Amb
SimpleFrameId 76.10 - 77.49 -
Bert-onehot 80.09 75.29 82.00 76.11
KGFI(1-layer) 84.95 79.78 85.63 80.07
KGFI(2-layers) 85.81 80.66 85.00 79.66
Max4 5.72 5.37 3.63 3.96

Table 4: Frame identification accuracy without lexicon
filtering on FrameNet test dataset. ’ALL’ and ’Amb’
denote testing on test data and on ambiguous data re-
spectively. ’Max 4’ denotes the accuracy difference
between our best KGFI model and the strongest base-
line Bert-onehot.

Models top-1 top-2 top-3 top-5
Bert-onehot 80.09 87.17 88.96 90.12
KGFI(2-layer) 85.81 90.22 91.59 92.88

Table 5: Top-K accuracy of frame identification with-
out lexicon filtering on FrameNet1.7.

except for SimpleFrameId model, so we choose
SimpleFrameId and the stronger Bert-onehot mod-
el as our baseline to compare our best model’s
performance under no-lexicon filter setting. As
shown in Table 4, in comparison with the stronger
Bert-onehot model, our model achieves absolute
5.72% and 3.63% improvements on two datasets
respectively in all setting (without using LUs and
compared with more than 1000 frames), signify-
ing the generalization performance of our model
achieves significant improvement, considering that
the model predicts the exact frame evoked by the
target word among all the frames without knowing
the possible candidate frames of the target word in
no-lexicon filtering setting.

To further test the performance of our best KGFI
model, we use the top-K accuracy to measure the
model performance without lexicon filtering. The
higher top-K accuracy indicates that the model has
learned better frame representations. Furthermore,
the model can reduce the candidate frame set into
a small frame subset (containing K most possible
frames), which is useful for the downstream tasks,
such as LUs induction for FrameNet, FSRL, etc. As
shown in Table 5, compared with Bert-onehot base-
line, our best KGFI model achieves higher top-K
(K=1,2,3,5) accuracy, which further demonstrates
the model has learned the better frame representa-
tion through incorporating the frame knowledge.

Models All-L All-nL
Bert-onehot 90.57 80.09
KGFI(w/ FrameGCN) 92.40 85.81

w/ DefGCN 91.49 82.10
w/ FEsGCN 92.01 85.00
w/o attention 92.31 85.19

Table 6: Ablation analysis on FrameNet1.7 dataset in
All-L and All-nL setting. The sign ’w/’ and ’w/o’ de-
note that the KGFI is constructed with and without the
corresponding module respectively. ’-L’ and ’-nL’ de-
note testing with and without lexicon filtering respec-
tively.

Considering FrameNet1.5 dataset is relatively
small, the performance of simple structure model
(using 1-layer GCN) achieves the best performance,
while the performance of the model using 2-layers
GCN drops slightly. In general, no matter how
many layers are adopted, our models outperform
all the baselines and achieve the best performance
on two datasets in all settings consistently.

5.2 Ablation Studies

To test the function of each component in KGFI,
we conduct the ablation study. As shown in Ta-
ble 6, the results demonstrate that all of the three
components, i.e. DefGCN, FEsGCN and attention
network, are helpful for enhancing the model’s per-
formance. Even with DefGCN or FEsGCN individ-
ually, the performance of our model is still better
than the stronger baseline Bert-onehot, which in-
dicates the frame definition, FEs and FRs are all
useful knowledge for frame representation, and
our proposed GCN-based model architecture is ef-
fective to incorporate them into the informative
embeddings. Compared with frame definition, FEs
are more useful for frame representation, since the
performance of GKFI (with FEsGCN) outperforms
KGFI (with DefGCN), although it slightly lags be-
hind KGFI full model (with FrameGCN). Note that
the attention module is removed when DefGCN or
FEsGCN is used as the frame encoder.

As for the attention module, the performance of
KGFI (with FrameGCN) drops when we replace it
with a simple addition operation, suggesting it is
necessary to use attention mechanism to integrate
the outputs of DefGCN and FEsGCN.

5.3 Weighting Method for Adjacent Matrix

To test the rationality of our proposed weighting
method for adjacent matrix A, we conduct a set of
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Models A All-L All-nL
KGFI(w/ FrameGCN) W 92.4 85.81
KGFI(w/ FrameGCN) B 91.80 83.10
KGFI(w/ DefGCN) W 91.49 82.10
KGFI(w/ DefGCN) B 91.26 81.11
KGFI(w/ FEsGCN) W 92.01 85.00
KGFI(w/ FEsGCN) B 91.78 82.10

Table 7: The results of KGFI models on FrameNet1.7
dataset under different value settings of adjacent matrix
A. ’W’ and ’B’ denote the matrix A is weighted and
binary respectively. ’-L’ and ’-nL’ denote testing with
and without lexicon filtering respectively.

comparison experiments, in which the weighted
matrix is replaced with a binary matrix. Binary
matrix is widely used approach to express the re-
lations between nodes in graph modeling. Our
weighting method expresses the hierarchy relation-
ships between frames straightforwardly. The re-
sults demonstrate that the weighted method has
significant impact on the model’s performance, and
our proposed weighting method for adjacent matrix
is quite reasonable, since the performance of all the
models using weighted matrix outperforms their
counterparts using binary matrix, shown in Table 7.

5.4 Case Studies

Figure 4 shows that KGFI (w/FEsGCN) model
tends to predict correct frame by finding the se-
mantic relatedness between FEs and the context
of target word. For instance, in sentence 1), the
target word stopped may evoke Activity stop or
Process stop, and the phrase the fighting is the
key to distinguish two frames evoked by the word
stopped, since these two frames differ in that the
subject of stopped is an Agent or a Process. Our
KGFI(w/FEsGCN) model has learned the seman-
tic relation between the fighting phrase and FE
Process, and outputs the correct frame, since FE
Agent is related to an entity in general. The Bert-
onehot model can’t grasp this relation, so it out-
puts a wrong prediction Activity stop. On the oth-
er hand, the KGFI(w/ DefGCN) model tends to
predict the frame with the semantic similarities
between frame definition and the sentence. For
instance, in sentence 2), the word Traversing in
definition is similar to phrase passed through, so
the model outputs the correct frame Traversing.

In sentence 3), the KGFI(w/ DefGCN) model
outputs a wrong prediction Quitting a place due

1) The fighting has stopped for more than two years .
FEs of Process_stop : (Process,..) FEs of Activity_stop: (Agent,...)

2) Steve passed through the Rome airport customs?
Traversing: A Theme changes location with respect to a salient location.

3) Ferries depart from Central to Silvermine Bay .
FEs of Departing : (Theme, Source,Goal,..)o
A. Motion, B.Quitting_a_place, C.Departing, D. Departing

A. Motion, B.Traversing, C.Departing, D. Traversing

A. Activity_stop, B.Process_stop, C.Process_stop, D. Process_stop

×

Figure 4: The case studies of our proposed models
and Bert-one baseline. A, B, C and D denote the pre-
dicted frames of the following FI models: Bert-onehot,
KGFI(w/ DefGCN), KGFI(w/ FEsGCN) and KGFI(w/
FrameGCN). The correct frames are marked in blue.
The target words are in bold in each sentence.

to the similar meaning of the word depart in the
sentence and the word leaves in the frame defi-
nition (Quitting a place: a Self mover leaves an
initial Source location.). The KGFI(w/ FEsGC-
N) model, on the other hand, has learned that the
word Ferries in the sentence is more closely related
to FE Theme of frame Departing (Departing: a
Theme moves away from a Source.) rather than FE
self mover of frame Quitting a place, and outputs
the correct frame Departing, since the self mover
generally refers to a living object (e.g. a person, an
animal). Note that the frame Departing is inher-
ited by the frame Quitting a place, so they have
nearly the same FEs set except for FE Theme and
FE self mover. In other words, our KGFI(w/ De-
fGCN) and KGFI(w/ FEsGCN) are complementary
to each other to some extent. KGFI(w/ FEsGCN)
can capture the subtle differences between differ-
ent frames, even if the frames have close frame-to-
frame or semantic relations.

The case studies show that KGFI models can in-
corporate frame knowledge into its representations
and guide the context encoder to learn the seman-
tic relations between frames and the context-aware
representations of target words and frames through
joint learning.

6 Related work

Researchers have made great effort to tackle the FI
problem since it has been proposed in the Semeval-
2007 (Baker et al., 2007). It is generally regarded
as a classification task. The best system (Johansson
and Nugues, 2007) in the SemEval-2007 adopt-
ed SVM to learn the classifier to identify frames
with a set of features, such as target lemma, target
word, and so on. SEMAFOR (Das et al., 2014) uti-
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lized a conditional model that shares features and
weights across all targets, frames, and prototypes.
These approaches use manually designed features
and traditional machine learning methods to learn
the classification models, while the class labels as
supervision signals are discrete frame names.

Recently, distributed feature representation and
models based on neural network are used to tackle
FI. According to the model architecture, there are
two trends of work. One is joint learning approach
that converts the discrete frame labels into continu-
ous embedding by learning the embeddings of tar-
get words and frames simultaneously. For instance,
Hermann-14 (Hermann et al., 2014) implemented
a model that jointly maps possible frame labels and
the syntax context of target words into the same
latent space using the WSABIE algorithm, and the
syntax context was initialized with concatenating
their word embeddings. SimpleFrameId (Hartman-
n et al., 2017) useed the concatenation of SentBOW
(the average of embeddings of all the words in the
sentence) to represent the context and then learns
the common embedding space of context and frame
labels following the line of (Hermann et al., 2014).
The other trend is to construct the classifier mod-
el using deep neural network and regard discrete
frame labels as supervision signals, which is similar
to those earlier work. Open-Sesame (Swayamdipta
et al., 2017) used a bidirectional LSTM to construct
the FI classifier. Peng (Peng et al., 2018) proposed
a joint learning model for FI and FSRL, which
adopted a multitask model structure.

Different from previous studies, this paper fo-
cuses on how to represent frames by incorporating
frame knowledge into frame representations and
enriching frame labels with semantic information.

7 Conclusion

In this work, we propose a novel idea that lever-
ages frame knowledge, including frame definition,
frame elements and frame-to-frame relations, to im-
prove the model performance of FI task. Our pro-
posed KGFI framework mainly consists of a Bert-
based context encoder and a GCN-based frame
encoder which can effectively incorporate multiple
types of frame knowledge in a unified framework
and jointly map frames and target words into the
same semantic space. Extensive experimental re-
sults demonstrate that all kinds of knowledge about
frames are useful for enriching the representation
of frames, and the better frame representation is

helpful for FI task. The experimental results also
show that the proposed model achieves significant-
ly better performance than seven state-of-the-art
models across two benchmark datasets.
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