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Abstract

In computational psycholinguistics, various
language models have been evaluated against
human reading behavior (e.g., eye movement)
to build human-like computational models.
However, most previous efforts have focused
almost exclusively on English, despite the re-
cent trend towards linguistic universal within
the general community. In order to fill the gap,
this paper investigates whether the established
results in computational psycholinguistics can
be generalized across languages. Specifically,
we re-examine an established generalization
—the lower perplexity a language model has,
the more human-like the language model is
in Japanese with typologically different struc-
tures from English. Our experiments demon-
strate that this established generalization ex-
hibits a surprising lack of universality; namely,
lower perplexity is not always human-like.
Moreover, this discrepancy between English
and Japanese is further explored from the
perspective of (non-)uniform information den-
sity. Overall, our results suggest that a cross-
lingual evaluation will be necessary to con-
struct human-like computational models.

1 Introduction

It is well known that the probability of a word
in context (i.e., surprisal) impacts its processing
difficulty in incremental human language compre-
hension (Hale, 2001; Demberg and Keller, 2008;
Levy, 2008; Smith and Levy, 2013). Building
on this basis, researchers have compared a vari-
ety of language models (LMs) in terms of how well
their surprisal correlates with human reading be-
havior (Roark et al., 2009; Frank and Bod, 2011;
Fossum and Levy, 2012; Hale et al., 2018; Good-
kind and Bicknell, 2018; Aurnhammer and Frank,
2019; Merkx and Frank, 2020; Wilcox et al., 2020).
Such investigations could provide insights into the
development of a general computational model of

human language processing. For example, recent
studies reported that LMs with better performance
for next-word prediction could also better predict
the human reading behavior (i.e. more human-
like) (Fossum and Levy, 2012; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020).

In this paper, we re-examine whether the re-
cent findings on human-like computational mod-
els can be generalized across languages. Despite
the community’s ongoing search for a language-
independent model (Bender, 2011), existing stud-
ies have focused almost exclusively on the English
language. Having said that, broad-coverage cross-
linguistic evaluation of the existing reports is pro-
hibitively difficult. In fact, data on human reading
behavior (e.g., eye movement) is available only in
limited languages. As an initial foray, this study
focuses on the Japanese language as a representa-
tive of languages that have typologically different
characteristics from the English language. If the ob-
servation is different between English and Japanese,
the current findings on English data might lack a
universality across languages.

We specifically revisit the recent report—the
lower perplexity a LM has, the more human-like the
LM is—in the English and Japanese languages (Fos-
sum and Levy, 2012; Goodkind and Bicknell, 2018;
Wilcox et al., 2020). In addition to the importance
of cross-linguistic evaluation, the report itself is
worth investigating. Recent studies in the machine
learning field have reported that more parameters,
training data, and computation cost can result in
better PPL (Kaplan et al., 2020; Brown et al., 2020).
Our investigation has implications for whether a
human-like model might exist beyond such im-
provements.

More concretely, over three dozens of LMs were
trained for each language, with variants in their ar-
chitecture, training data size, and the number of pa-
rameter updates. Then, the surprisals computed by
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Figure 1: Gaze duration from human subjects and surprisal from language models for the Japanese sentence
“Yononakaniwa samazamana hitoga irutoiu kotoga yoku wakatta.” (I understood well that there are all kinds of

people in the world.)

each LM were compared to human eye movement
data (Figure 1). The analysis of the relationship be-
tween PPL and the psychometric predictive power
revealed substantively different trends between the
Japanese and English LMs. In Japanese, a lower
PPL of a LM does not indicate better performance
for modeling reading behavior. By contrast, in En-
glish, there was a clear relationship between the
two metrics as reported in the prior studies.

This opens a remaining and important question:
why are English and Japanese different in this as-
pect? We discuss the differing results between
English and Japanese from the perspective of the
uniform information density hypothesis (Genzel
and Charniak, 2002; Levy, 2005; Jaeger and Levy,
2007). We find that the processing difficulty (i.e.,
gaze duration) of segments is less uniformly dis-
tributed within a Japanese sentence. Given this,
the discrepancy of the results between English and
Japanese might stem from a mismatch between
the information uniformity of the target language
and the LM’s training objective. We demonstrate
that tuning Japanese LMs to this training objec-
tive collapses the human-like nonuniformity of the
processing difficulty observed in Japanese subjects.
Our code is made publicly available.'

2 Related work

2.1 Human sentence processing and LMs

What factor determines the incremental difficulty of
human language processing? At present, surprisal
theory (Hale, 2001; Levy, 2008) has been widely
adopted in the field of computational psycholin-
guistics. This theory suggests that the processing
difficulty of a segment is determined by how pre-
dictable the segment is in its preceding context
(— log p(segment|preceding context)).

'https://github.com/kuribayashi4/
surprisal_reading_time_en_ja

Existing studies have compared various com-
putational models by checking the effectiveness
of their surprisals in modeling human reading be-
havior (Hale, 2001; Roark et al., 2009; Frank and
Bod, 2011; Fossum and Levy, 2012; Hale et al.,
2018; Goodkind and Bicknell, 2018; Merkx and
Frank, 2020; Wilcox et al., 2020). Data such as
eye movement (Kennedy et al., 2003) and brain
activity (Frank et al., 2015; Brennan et al., 2016)
are used as measures of human reading behavior.
For example, using eye movement data, Frank and
Bod (2011) compared the surprisals from phrase-
structure grammars (PSGs) with those from a non-
hierarchical, sequential model, tentatively conclud-
ing that human sentence processing was insensitive
to hierarchical structures since non-hierarchical
models displayed better psychological predictive
power than PSGs. Recently, researchers reported
that surprisals from LMs with low PPL correlate
well with human reading behaviors (Fossum and
Levy, 2012; Goodkind and Bicknell, 2018; Aurn-
hammer and Frank, 2019; Wilcox et al., 2020).

The work most closely related to this study
is Wilcox et al. (2020). They examined the relation-
ship between PPL, psychometric predictive power,
and syntactic knowledge in LMs using a variety
of models, including modern neural LMs (Radrof
et al., 2018). They found a tight relationship be-
tween PPL and psychometric predictive power
in the English corpora. This study investigates
whether this relationship can be generalized across
languages.

2.2 Reading behavior in Japanese

In comparison to English speakers, Japanese speak-
ers display different patterns in sentence process-
ing. For example, an anti-locality effect (the more
modifiers a word has in its preceding context,
the easier the word is to process) has typically
been observed in head-final languages, including
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Japanese (Konieczny, 2000). Such differences be-
tween the languages are assumed to be more or
less due to their different sentence structures. Re-
cently, eye movement data for naturally occurring
Japanese texts have recently become available (Asa-
hara et al., 2016) and was extensively annotated
with various linguistic properties (Asahara and
Kato, 2017; Asahara, 2017, 2018).

3 Methods

This section describes the settings of LMs, eye
movement data, and evaluation metrics.

3.1 Language models

A variety of sentence-level, left-to-right sequential
LMs was used.

Training data of English LMs: We used the
WikiText-103 dataset to train the English LMs.
Based on the reports that subword-level English
LMs exhibits superior psychometric predictive
power (Wilcox et al., 2020), input texts were
divided into subwords by a byte-pair encoding
(BPE) (Sennrich et al., 2016).> The training data
consist of approximately 4M sentences (114M sub-
words units).

Training data of Japanese LMs: We used news
articles and the Japanese part of Wikipedia to train
the Japanese LMs. Input texts were first segmented
into morphemes by MeCab (Kudo, 2006) with uni-
dic dictionary, and then further divided into sub-
words by BPE.? The training data consist of ap-
proximately 5SM sentences (146M subwords units).

Architectures: The following four variants of
LMs were used: Transformer-large (TRANS-
LG) (Vaswani et al., 2017), Transformer-small
(TRANS-SM), LSTM (LSTM) (Hochreiter and
Schmidhuber, 1997), and N-gram LMs (N-
GRAM).? The parameter size was almost the same
for TRANS-SM and LSTM. With respect to the N-
GRAM models, 3-gram, 4-gram, and 5-gram LMs
were used. Appendix A shows the hyperparameters
of the neural LMs.

*Implemented in SentencePiece (Kudo and Richardson,
2018). We set character coverage to 0.9995, and vocabulary
size to 32,000 in English. In Japanese, the vocabulary size is
100,000, reflecting its rich morphemes.

3The neural LMs were trained with the fairseq toolkit (Ott
et al.,, 2019). N-GRAM LMs were trained using KenLM
https://github.com/kpu/kenlm.

Training data size: For each neural LM architec-
ture (TRANS-LG, TRANS-SM, and LSTM), three
variants were trained using different training data
sizes: LG (full training data), MD (1/10 training
data), and sM (1/100 training data). The N-gram
LMs were trained on LG datasets.

Number of updates: The parameters of each
neural LM were saved at four different points dur-
ing training: 100, 1K, 10K, and 100K parameter
updates.

To summarize, 39 LM training settings were
attained for each language (3 architectures x 3 data
size X 4 parameter updates = 36 neural LMs, plus
3 N-GRAM LMs). In addition, our experiments
use three LMs trained using different random seeds
for each neural LM training configure; hence, 111
LMs (36 neural LMs x 3 seeds, plus 3 N-GRAM
LMs) were tested for each language.

3.2 Eye movement data

English: The Dundee Corpus (Kennedy et al.,
2003), which contains gaze duration annotation for
each word, was used. Following Smith and Levy
(2013), the first-pass gaze duration was analyzed.
Then, following Goodkind and Bicknell (2018), the
data points that met any of the following criteria
were excluded:

* data points with zero gaze duration or that
beyond three standard deviations

* segments with punctuation or numeric charac-
ters

* segments whose next segment has punctuation
or numeric characters

* first or last segment in a line

In total, the analysis included 214,955 data points
in the corpus.

Japanese: The BCCWJ-EyeTrack (Asahara
et al., 2016), which contains gaze duration annota-
tion for each phrasal unit, was used. Note that the
phrasal unit (i.e., bunsetsu) consists of at least one
content morpheme and its postpositional function
morphemes. Henceforth, an English word and a
Japanese phrasal unit are referred to as a “segment.”
The same exclusion criteria as the Dundee Corpus
was applied to the BCCWJ-EyeTrack data.* In

4Strictly speaking, the exclusion criteria was slightly dif-
ferent between Japanese and English data. In the Japanese
data, we included the segments whose next segment had punc-
tuation or a numeric character, as there is no spillover effect
in Japanese (see Section 3.3)
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Corpus #articles  #sents. #segments #data points  #subjects Avg. GD Avg. #subwords
(used) per article per segment  per segment

Dundee Corpus 20 2,478 51,501 214,955 10 227.1 1.3

BCCW]J-EyeTrack 20 218 1,643 6,009 12 361.6 34

Table 1: Statistics of the corpora used for evaluating the psychometric predictive power of LMs. “#articles” and
“#sents.” are the number of articles and sentences in each corpus. “#segments” denotes the number of segments
annotated with human reading time in each corpus. “#data points” is the number of reading time annotations used
in our experiments. Each segment has the reading time annotations from multiple subjects (#subjects per article).
“Avg. GD per segment” is the averaged gaze duration per segment. “Avg. #subwords per segment” denotes the

averaged number of subwords consisting of each segment.

total, the analysis included 6,009 data points in the
corpus. Note that the BCCWJ-EyeTrack data was
deliberately designed to address language-specific
issues in Japanese such as the lack of segmentation
spaces in Japanese texts (Asahara et al., 2016).

Statistics: Table 1 shows the statistics of the
Dundee Corpus and BCCWIJ-EyeTrack data. The
BCCWIJ-EyeTrack has more than 10 times a
smaller number of data points than the Dundee
Corpus. Notably, the segment annotated with eye
movement information differs between English and
Japanese. On average, a Japanese segment consists
of 3.4 subwords, while an English segment consists
of 1.3 subwords. Smith and Levy (2013) theoret-
ically proved that the more fragments a word is
divided into when computing its surprisal, the bet-
ter the calculated surprisal approximates the human
cognitive effort if the human language processing
is highly incremental. Thus, we tentatively con-
sider that this difference did not make a negative
impact on the results using the Japanese data.

3.3 Evaluation metrics

Perplexity (PPL): PPL, the inverse geometric
mean of next-word probabilities p(w;|w<;) in a
text that consists of IV signals (w1, wa, - - - , wn), 18
a typical evaluation metric for unidirectional LMs

(Eq. 1):

N

PPL = [ p(wilwei) "% . (1)
1=0

Low PPL indicates that the model can accurately
predict the upcoming signal based on its preceding
context. The training objective of LMs works to
minimize the PPL computed by the model. In the
experiments, the PPL of a LM is evaluated with the
texts in the eye movement data, which do not over-
lap with the training data. A model with low PPL is

also called a linguistically accurate model (Frank
and Bod, 2011).

Psychometric predictive power: The
surprisal measure, a negative logarith-
mic probability of a segment in context

(— log p(segment|preceding context)), is a
widely used information-theoretic complexity
metric. Intuitively, a model is considered to
have high psychometric predictive power (i.e.,
psychological accuracy) if the surprisals of
segments computed by the model have trends
similar to the human subject’s cognitive load
(e.g., measured by gaze duration). Following the
existing studies (Goodkind and Bicknell, 2018;
Merkx and Frank, 2020; Wilcox et al., 2020), the
psychometric predictive power of a model was
measured by comparing surprisal from the model
and gaze duration from human subjects.

While LMs process a text subword-by-subword,
gaze duration is annotated in a larger segment. Fol-
lowing the study using subwords (Wilcox et al.,
2020), the surprisal of each segment was calcu-
lated using the joint probability of its constituent
subwords. Formally, given a text consisting of
N subwords wy.y = (w1, wa, -+ ,wy), surprisal
I(-) of asegment s, = (wy, wyy1, -+ , W), where
1 <1 <m < N, was calculated as follows:

I(sk’) = _logp(wlv e 7wm|w<l)

m
= = logp(wy|wy, -+, wp_1) -
py

2

The effect of surprisals for modeling human read-
ing behavior was calculated using a linear mixed-
effects regression (Bates et al., 2015). Specifically,
the gaze duration (GD) was modeled using the fol-
lowing formula:
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Figure 2: Relationship between PPL (X-axis) and psychometric predictive power, i.e., ALogLik (Y-axis) in the
English and Japanese languages. Each point corresponds to each LM. A low score on the X-axis indicates the
high linguistic accuracy of the model. The PPL was calculated on the eye movement data, and the LMs with PPL.
more than 10° were excluded from the figure. A high score on the Y-axis indicates that the model has a high
psychometric predictive power. Note that the X-axis is on a log scale.

GD ~ surprisal + surprisal_prev_l
+ surprisal_prev_2 + freg* length
+ freg.prev_l x length prev_.1l 3)
+ screenN + lineN + segmentN
+ (llarticle) 4+ (1|subj) .

The regression model includes baseline factors
(e.g., frequency of a segment) that are of no in-
terest in the comparison of LMs. A collection of
factors used in the existing studies (Asahara et al.,
2016; Wilcox et al., 2020) were initially examined
and the factors that were not significant (p > 0.05)
for gaze duration modeling both in the Dundee
Corpus and BCCWJ-EyeTrack were excluded. The
frequency of a segment (freq) was calculated us-
ing the entire training data for LMs. Appendix B
shows the details of each factor in Eq. 3.

In English experiments, surprisals of pre-
ceding words and
surprisal_prev_2) were included in order to
handle the spillover effect (the processing cost
of a certain segment is affected by its preceding
segments) (Rayner and Well, 1996; Smith and
Levy, 2013). In Japanese experiments, the
surprisals of preceding words were not included
because our preliminary experiment showed that
these factors were not significantly effective for
modeling gaze duration in the BCCWJ-EyeTrack.’

(surprisal prev_l

3The reason is probably that a Japanese phrasal unit (i.e.,
bunsetsu) could be a larger unit than an English word.

All the regression models used in our experiments
were converged.

To isolate the effect of surprisal for gaze du-
ration modeling, a baseline regression model
was trained without surprisal information (exclud-
ing the surprisal, surprisal_prev_1l,and
surprisal_prev_2 terms from Eq. 3). Follow-
ing Wilcox et al. (2020), the mean by-segment dif-
ference of log-likelihood between the model using
surprisal values (Eq. 3) and the baseline model
was calculated. Henceforth, this metric is called
ALogLik. When surprisal from a LM is not ef-
fective for gaze duration modeling, the ALogLik
score becomes zero. A high ALogLik means that
the surprisal values obtained by the LM are effec-
tive for modeling gaze duration (i.e., the LM has a
high psychometric predictive power).

4 Experiments

The relationship between PPL and psychometric
predictive power is investigated. Furthermore, the
relationship is analyzed with respect to the training
configures of LMs (e.g., the number of parameter
updates). Then, we discuss the results from the per-
spective of the uniformity of information density.

4.1 Psychometric predictive power and PPL

Figure 2 shows the relationship between PPL and
psychometric predictive power (i.e., ALogLik) of
LMs in each of the languages. Each point cor-
responds to each LM, and a score on the Y-axis
indicates the psychometric predictive power of a
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Dundee Corpus: First, the results of the data
from the Dundee Corpus show a clear relationship
between PPL and psychometric predictive power;
namely, lower PPL corresponds to more psycho-
metric predictive power, as reported by prior stud-
ies (Goodkind and Bicknell, 2018; Wilcox et al.,
2020). Spearman’s rank correlation coefficient be-
tween the two metrics was —0.87.

BCCWJ-EyeTrack: By contrast, in BCCWIJ-
EyeTrack, there was no clear, consistent trend be-
tween the PPL and psychometric predictive power.
While LMs with PPL over 400 show the correlation
between PPL and psychometric predictive power
(—0.68 with Spearman’s p), there is a positive cor-
relation (0.53 with Spearman’s p) for LMs with
PPL below 400. The positive correlation means
that the more accurately the LMs can predict the
upcoming word, the worse the psychometric predic-
tive power of the LMs is. These results demonstrate
the non-universality of the recent report across lan-
guages; lower perplexity is not always human-like.
The LSTM LM trained using the MD dataset with
1K updates achieved the best psychometric predic-
tive power. Notably, surprisal was effective for
gaze duration modeling in all the Japanese LMs.
AlogLik scores were significantly higher than zero
with the chi-square test (p <0.05).

4.2 Model architectures, data sizes, number
of parameter updates

Which factor (e.g., model architecture, training data
size, and the number of parameter updates) charac-
terizes the psychometric predictive power of LMs?
Is the collection of effective factors consistent be-
tween the two languages? This study takes a more
in-depth look at the separate effects of (i) model
architecture, (ii) training data size, and (iii) the
number of parameter updates for the psychometric
predictive power.

Figure 3 summarizes the effect of each factor,
where the Y-axis denotes the psychometric pre-
dictive power. The most noticeable trend is that
Japanese LMs with a relatively fewer number of pa-
rameter updates (1K) have better psychometric pre-
dictive power than the other Japanese LMs (bottom
right part of Figure 3), while this trend does not ex-
ist in the English LMs (top right part). This implies
that the training objective of the LMs, maximizing
+ Zf\il log P(w;|w<;), had a negative impact on
the psychometric predictive power of LMs, at least
in Japanese. We discuss this point in Section 4.3.

To quantitatively test the differences in Figure 3,
a linear regression model was trained to estimate
psychometric predictive power with the factors of
the model architecture, the training data size, and
the parameter update number in each language.
The training data size and the parameter update
number are represented as logarithmically trans-



formed numerical factors. The following trends
were found: (i) ; (ii) the training data size positively
affects the performance in English alone; and (iii)
the number of parameter updates positively affects
the performance only in English. There was no fac-
tor that boosted the psychometric predictive power
of LMs in both English and Japanese languages.

4.3 Discussion: uniform information density

The key question is: why do Japanese and English
show different trends between PPL and psychomet-
ric predictive power? One possible interpretation
connecting our results to the uniform information
density is discussed in this section.

In computational psycholinguistics, it is com-
monly assumed that language is designed to enable
efficient communication. This principle has been
typically investigated under the uniform informa-
tion density (UID) hypothesis (Genzel and Char-
niak, 2002; Levy, 2005; Jaeger and Levy, 2007).
This hypothesis suggests that speakers seek to keep
the amount of information constant across the sig-
nals (e.g., segments).

Assuming this hypothesis holds for all languages,
the reasonable expectation would be for human sub-
jects to show a near-uniform gaze duration across
segments regardless of their native language. How-
ever, this study found that the coefficient of varia-
tion® in gaze duration over the whole corpus was
around 1.7 times higher in Japanese compared to
English (0.75 vs. 0.44). Specifically, in Japanese,
the gaze duration tended to speed up towards the
end of sentences, whereas the duration was near-
uniform in English (Figure 4).” These observa-
tions imply that the Japanese language might have
a less uniform information density than English.
This phenomenon was also investigated through
the lens of word order, where SOV languages such
as Japanese are reported to show less uniformity of
information density (Maurits et al., 2010).

Based on this observation, the discrepancy be-
tween English and Japanese low-PPL LMs’ psy-
cholinguistic predictive power could stem from a
mismatch between the LM’s training objective and

8Coefficient of variation is <, where o and p are the stan-
dard deviation and the mean of the first-pass gaze durations in
the eye movement data.

7 At least in our experimental setup, token position within
the sentence was not significantly effective for gaze duration
modeling in English sentences, whereas it was significant in
Japanese sentences. We checked the coefficient of the factor
of position in sentence segmentN using the linear regression
model of GD ~ sengmentN.
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Figure 4: Uniformity of gaze duration with respect
to segment position in a sentence. This plot is com-
puted by the generalized additive model of GD ~
segmentN. Here, segmentN is denoted as the posi-
tion of a segment in a sentence.

the information uniformity of the target language.
The objective function, + SN log P(w;w<;),
defines that the “ideal” is to maximize all next
word probabilities to 1.0 (a uniform goal).® That is,
LMs are, in theory, trained to approach a model sat-
isfying the UID assumption (Bloem, 2016), where
all surprisals from the LM are equally, sufficiently
small across the segments. Therefore, the objective
function might lead to a worse approximation of
human-like surprisal in languages that are further
from the UID assumption, such as Japanese, while
it might be more compatible with English, which
has a more uniform processing difficulty across
segments. This explanation would be consistent
with the observation that more tuning to the LM
training objective (i.e., a lower PPL) had a negative
impact on the psycholinguistic performance of the
Japanese LMs (Section 4.2). Note the tendency
of LMs to assign unreasonably high probabilities
to segments has also attracted attention from the
viewpoint of memorization capability of LMs (Car-
lini et al., 2020). In addition, the connection of the
UID hypothesis to the modern NLP techniques has
been recently explored (Meister et al., 2020; Wei
et al., 2021). We further investigate our hypothesis
in Section 5.

5 Probing nonuniform information
density of Japanese LMs

This study hypothesized that tuning to the LM ob-
jective (i.e., uniform goal) obscures the nonuniform
trend observed in the reading behavior of Japanese
subjects. We investigated whether the nonunifor-
mity of the processing difficulty observed in human
reading time is mirrored by LM surprisals.

Lo
SPPL, [1Y., P(w;|w<;)~ ¥, is minimized when the LM
objective are maximized.
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Settings: In a preliminary experiment, we ob-
served that the syntactic category (similar to part-
of-speech) was the most dominant linguistic factor
for explaining the difference in human gaze dura-
tion in Japanese sentences (see Appendix D). Based
on this observation, we analyze the nonuniformity
of surprisals in Japanese LMs with respect to the
syntactic categories.

The segments in BCCWJ-EyeTrack were classi-
fied into one of the following syntactic categories:
(a) nominal (nouns), (b) verbal (verbs), (c)
modifier (adjectives and adverbs), and (d)
other entries, as follows:

Kanojo-ga akai kaban-o kat-ta
She-NOM red bag-ACC buy-PAST
nominal modifier nominal verbal

As Asahara and Kato (2017) reported, verbal
and modi fier segments have a shorter gaze dura-
tion than the other segments in Japanese sentences.
An analysis was conducted on how strongly the
Japanese LM’s surprisals on segments are influ-
enced by their syntactic category. This influence
can be evaluated by examining how effectively syn-
tactic category factors can model LM surprisals.
In this experiment, surprisal was regarded as
“simulated gaze duration” from an “LM subject,”
and the importance of syntactic category infor-
mation for modeling the simulated gaze duration
(simulated_GD) was evaluated. To inspect the
effect of the syntactic category information for
modeling the simulated gaze duration, the follow-

ing regression model” was used, including a factor
defining which syntactic category the segment falls
into (syn_category):

simulated.GD ~ syn_category + sentN

4
+ tokenN + freg* length . @)

From this regression model, a log-likelihood
score for the simulated gaze duration was ob-
tained. = To evaluate the separate effect of
syn_category, ALogLik between Eq. 4 and a
baseline model was calculated. The baseline model
was simulated.GD ~ sentN + tokenN +
freq * length. The ALogLik is denoted as
“Effect of syntactic category.” A lower score means
that the LM lacked the property of varying process-
ing difficulty with respect to the syntactic category.

Results: The results are shown in Figure 5. First,
the higher psychometric predictive power the LMs
exhibit, the greater the effect of syntactic category
on surprisals (left part in Figure 5). This means
that, depending on the syntactic category of the
segment they processed, LMs with high psycho-
metric predictive power computed surprisals with
a more nonuniform trend. The right part of Fig-
ure 5 shows that, as PPL decreases below a certain
value (PPL ~ 400), the Japanese LMs compute
surprisals that obscure the nonuniform trends with

’sentN and tokenN denote the sentence position and
the segment position in a sentence (see Appendix B). Note that
the tokenN and syntactic category exhibit low correlation
(0.02 with Pearson’s 7).



respect to the syntactic category of segments. '’
This trend supports our hypothesis that tuning to
LM objectives obscures the human-like nonuni-
formity of the processing difficulty. Even though
LMs that are not fully tuned to the LM objective
(PPL ~ 400) acquire human-like trends with re-
spect to syntactic category, these biases tend to be
lost by further lowering their PPL.

Notably, we also observed that not all the types
of linguistic nonuniformity were obscured in sur-
prisals computed by the LMs with low PPL. For
example, Appendix E shows that LMs with lower
PPL compute surprisals that better correlates with
a particular syntactic factor although that factor is
a less dominant trend in human reading behavior
than the syntactic category (Appendix D).

6 Limitations and future works

To test the universality of the recent findings in
computational psycholinguistics across languages,
the initial focus is on English and Japanese as a pair
of languages with different linguistic properties.
Although the discrepancy of the results in the two
languages is discussed from the viewpoint of the
UID hypothesis, the two languages are also differ-
ent in various ways, such as writing systems, agglu-
tinative property, case marking, sentence structure,
and pro-drop nature. To identify the difference that
relates to the human-like behaviors of LMs, experi-
ments that include additional languages should be
conducted in the future.

In addition, the corpus size of the BCCWIJ-
EyeTrack data is smaller than the Dundee Cor-
pus. While the reading time data in the BCCWJ-
EyeTrack was collected from various human sub-
jects, the number of the independent segments was
limited (1,643 segments, 218 sentences). Thus,
whether the trends reported in this study generalize
to more diverse Japanese texts should be explored
in future work. It is hoped that this study moti-
vates the creation of a large-scale corpus of human
reading behaviors in diverse languages.

7 Conclusion

This study has investigated whether the recent re-
ports on the psychometric predictive power of LMs
can be generalized across languages. Our initial
investigation has re-examined the recent report—

9The correlation between PPL and the effect of syntactic
category in the LMs with PPL less than 400 was 0.45 and 0.34
with Pearson’s r and Spearman’s p, respectively.

the lower PPL a LM has, the more human-like the
LM is—using Japanese eye movement data. Our
experiments have demonstrated a surprising lack
of universality of this report; lower perplexity is
not always human-like. This discrepancy of the
results between the languages reinforces the need
for the cross-lingual evaluation of the psychomet-
ric predictive power of LMs. The discussion con-
siders potential factors that make the observation
different across languages from the viewpoint of
the uniform information density hypothesis. We
believe that this is an important first step for seek-
ing a language-agnostic model of human sentence
processing. Hopefully, this study encourages re-
searchers to further investigate the universality of
human language processing across languages.
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Figure 6: Relationship between PPL (X-axis) and psy-
chometric predictive power (Y-axis). Each point cor-
responds to each LM. Low score on X-axis indicates
the high linguistic accuracy of the model. High score
on Y-axis indicates that the model has a high psycho-
metric predictive power. Note that X-axis is on a log
scale. The shape, color, and size of each point is same
as Figure 2.
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Figure 7: Relationship between PPL (X-axis) and the
effect of the anti-locality (Y-axis). Each point corre-
sponds to each LM. A low score on X-axis indicates
the high linguistic accuracy of the model. A high score
on Y-axis indicates that the surprisals computed by the
corresponding model are highly biased towards the anti-
locality effect. Note that X-axis is on a log scale. The
shape, color, and size of each point is the same as Fig-
ure 2.

A Hyperparameters of LMs

Table 2 shows the hyperparameters of TRANS-SM,
TRANS-LG, and LSTM, respectively. Note that the
number of parameter updates varies as described
in Section 3.

B Factors used in regression models

Descriptions for the factors used in our experiments
are shown in Table 3. The frequency of a segment
(freq) was estimated using the full training data
for the LMs.

C Results of modeling logarithmic gaze
duration in BCCWJ-EyeTrack

Existing studies (Asahara et al., 2016) performed
experiments using the logarithmic gaze duration be-
cause the logarithmic gaze duration more matches
the normal distribution than the raw gaze duration.
Given this, we additionally conducted experiments
in Section 4, changing the target variable from the
raw gaze duration to its logarithmic gaze duration.
The result with this setting is shown in Figure 6.
There was no substantial difference with the results
shown in Section 4.

D Preliminary experiments in Section 5

Which linguistic factor is helpful for explaining the
difference in gaze duration? We conducted experi-
ments using linguistic annotation in the BCCWJ-
EyeTrack. Following the existing studies, we
checked the separate effect of syntactic category,
semantic category (Asahara and Kato, 2017), and a
particular aspect of hierarchical syntactic structure
(i.e., the anti-locality effect) (Asahara et al., 2016).
Specifically, we used the factors, syn_category,
sem_category, and n_dependents, shown in
Table 3. For each factor, we inspect the separate
effect of each factor for modeling gaze duration.
As Eq. 4, we first modeled the gaze duration using
each factor (factor_X):

GD ~ factor_X + sentN

5
+ segmentN 4 freqg* length . )

Then, we calculated the ALogLik between X and
a baseline model. The baseline model was GD ~
sentN + segmentN + freqg* length.

The ALogLik for each collection of factors are
shown in 5. We found that syntactic category is the
most influential factor for modeling gaze duration,
at least in this experiment.

E Anti-locality effect in LMs

Similar to Section 5, we analyzed how strongly
the surprisals from each Japanese LM are biased
towards a particular linguistic property. In this
section, we investigated the anti-locality effect in
the surprisals from LMs. The anti-locality is that
the more dependents a segment has in its preceding
context, the cognitive effort of the head segment
is reduced (i.e., modifiers alleviate the processing
cost of their head).



Analogous to the Section 5, we regarded sur-
prisal as “simulated gaze duration” from an “LM
subject,” and evaluated the importance of the
number of the dependents in its preceding con-
text (n_dependent s) for modeling the simulated
gaze duration (simulated_GD). To inspect the
effect of the n_.dependents for modeling the
simulated gaze duration, we used the following
regression model:

simulated.GD ~ n_dependents 4 sentN

6
+ tokenN + freg* length . ©

From this regression model, we obtained a log-
likelihood score for the simulated gaze duration.
To evaluate the separate effect of n_dependents,
we calculated the ALogLik between Eq. 6 and
a baseline model. The baseline model was
simulated.GD ~ sentN + segmentN +
freq * length. The ALogLik is denoted as
“Effect of the anti-locality.”

The results are shown in Figure 7. There is a
clear trend that the LMs with lower PPL exhibit
surprisals that are more consistent with the anti-
locality effect (Spearman’s p = —0.77 between
PPL and the strength of the anti-locality effect).
This suggests that the surprisals from LMs with low
PPL are biased towards the hierarchical structure
of sentences rather than the syntactic category.



architecture
adaptive softmax cut off

transformer_lm_gpt2_small
50,000, 140,000

share-decoder-input-output-embed True
embed_dim 1,024
Fairseq model ffn_embed_dim 4,096
layers 24
heads 16
dropout 0.1
attention_dropout 0.1
algorithm AdamW
learning rates Se-4
Optimizer betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0
type inverse_sqrt
Learning rate scheduler =~ warmup updates 4,000
warmup init Irarning rate le-7
Training batch size 61,440 tokens
sample-break-mode none

(a) TRANS-LG.

architecture
adaptive softmax cut off

transformer_lm_gpt
50,000, 140,000

share-decoder-input-output-embed True
embed_dim 384
Fairseq model ffn_embed_dim 2,048
layers 8
heads 6
dropout 0.1
attention_dropout 0.1
algorithm AdamW
learning rates Se-4
Optimizer betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0
type inverse_sqrt
Learning rate scheduler =~ warmup updates 4,000
warmup init Irarning rate le-7
Training batch size 61,440 tokens
sample-break-mode none
(b) TRANS-SM.
architecture Istm_Im
adaptive softmax cut off 50,000, 140,000
share-decoder-input-output-embed True
Fairseq model embed_dim 400
hiden_size 1,024
layers 2
dropout 0.1
algorithm AdamW
learning rates le-3
Optimizer betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0
type inverse_sqrt
Learning rate scheduler =~ warmup updates 4,000
warmup init Irarning rate le-7
Training batch size 20,480 tokens
sample-break-mode none

(c) LSTM.

Table 2: Hyperparameters for the LMs.



Factor name Type  Description

surprisal num  surprisal caluzulted by LMs

GD num  reading time (first pass time)

article factor article ID

screenN int screen display order

lineN int the serial number of line the segment is displayed

segmentN int the serial number of segment in a screen

sentN int the serial number of sentence the segment belongs to

tokenN int the position of segment in sentence

length int number of characters

freq num  geometric mean of the frequencies of subword constituents in a
segment

subj factor participant ID

syn_category factor syntactic category the segment falls into (nominal, verbal,
modifier, or other)

sem_category factor semantic category the segment falls into (relation, subject,
action, product, or nature)

n_dependents int number of dependents before the segment

Table 3: Factor names and their description.

syntactic category

number of segments Avg. gaze duration

nominal 4,322 388.4
verbal 1,090 291.0
modifier 588 297.1
other 9 239.3

Table 4: The statistics of the syntactic category labels in BCCWJ-EyeTrack.

linguistic property ALogLik

syntactic category 58.37
semantic category 17.08
number of dependents 13.84

Table 5: The separate effect of each linguistic annotation for modeling gaze duration.



