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Abstract

Procedural text understanding aims at track-
ing the states (e.g., create, move, destroy)
and locations of the entities mentioned in a
given paragraph. To effectively track the states
and locations, it is essential to capture the
rich semantic relations between entities, ac-
tions, and locations in the paragraph. Al-
though recent works have achieved substan-
tial progress, most of them focus on leverag-
ing the inherent constraints or incorporating
external knowledge for state prediction. The
rich semantic relations in the given paragraph
are largely overlooked. In this paper, we pro-
pose a novel approach (REAL) to procedural
text understanding, where we build a general
framework to systematically model the entity-
entity, entity-action, and entity-location rela-
tions using a graph neural network. We fur-
ther develop algorithms for graph construc-
tion, representation learning, and state and lo-
cation tracking. We evaluate the proposed ap-
proach on two benchmark datasets, ProPara,
and Recipes. The experimental results show
that our method outperforms strong baselines
by a large margin, i.e., 5.0% on ProPara and
3.2% on Recipes, illustrating the utility of se-
mantic relations and the effectiveness of the
graph-based reasoning model.

1 Introduction

Procedural text often consists of a sequence of sen-
tences describing processes, such as a phenomenon
in nature (e.g., how sedimentary rock forms) (Dalvi
et al., 2018) or instructions to complete a task
(e.g., the recipe of Mac and Cheese) (Bosselut
et al., 2018). Given a paragraph and its partic-
ipant entities, the task of procedural text under-
standing is to track the states (e.g., create, move,
destroy) and locations (a span in the text) of the

∗Work is done during internship at Microsoft.
†Corresponding author.

entities. Compared with traditional machine read-
ing task, which mainly focuses on the static rela-
tions among entities, procedural text understanding
is more challenging since it involves discovering
complex temporal-spatial relations among various
entities from the process dynamics.

To effectively track the states and locations of
entities, it is crucial to systematically model rich
relations among various concepts in the paragraph,
including entities, actions, and locations. Three
types of relations are of particular interest.

First, mentions of the same entity in different
sentences are related. The inherent relation among
these mentions may provide clues for a model to
generate consistent predictions about the entity. For
example, the entity electrical pulses are mentioned
in two sentences “The retina’s rods and cones con-
vert it to electrical pulses. The optic nerve carries
electrical pulses through the optic canal.”. Con-
necting its two mentions in two sentences helps
to infer its location in the first sentence using the
second sentence’s information.

Second, detecting connections between an en-
tity and the corresponding actions helps to make
state predictions more accurate. Take the sentence
“As the encased bones decay, minerals seep in re-
placing the organic material.” as an example. The
entity bone is related to decay which indicates the
state destroy, while it is not connected to seep indi-
cating the state move. Given the relation between
bone and decay, it is easier for the model to predict
the state of bone as destroy, instead of being misled
by the action seep.

Last, when the state or location of one entity
changes, it may impact all associated entities. For
example, in sentence “trashbags are thrown into
trashcans.”, trashbags are associated with trash-
cans. Then, in the following sentence “The trash-
can is emptied by a large trash truck.”, although
trashbags are not explicitly mentioned, their loca-
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tions are changed by the association with trashcan.
Recent works on procedural text understanding

have achieved remarkable progress (Tandon et al.,
2018; Bosselut et al., 2018; Gupta and Durrett,
2019b; Du et al., 2019; Das et al., 2019; Gupta and
Durrett, 2019a). However, the existing methods do
not systematically model the relations among enti-
ties, actions, and locations. Instead, most methods
either leverage inherent constraints on entity states
or exploit external knowledge to make predictions.
For example, Gupta and Durrett (2019b) propose a
structural neural network to track each entity’s hid-
den state and summarize the global state transitions
with a CRF model. Tandon et al. (2018) inject com-
monsense knowledge into a neural model with soft
and hard constraints. Although Das et al. (2019)
model the relation between entities and locations,
there is no general framework to model the rela-
tions, and some important relations, such as entity-
action and entity-entity relations, are ignored.

A general framework to systematically model
the rich types of relations among entities, actions,
and locations is essential to procedural text under-
standing. To the best of our knowledge, we are
the first to explore comprehensive relation model-
ing, representation, and reasoning systematically.
Specifically, we first construct an entity-action-
location graph from a given paragraph, where
three types of concepts (i.e., entities, locations,
and actions) are identified and extracted as nodes.
We then detect critical connections among those
concepts and represent them as edges. Finally,
we adopt a graph attention network to conduct
Reasoning over the Entity-Action-Location graph
(REAL), which provides expressive representations
for downstream state and location predictions.

We evaluate the proposed approach on two
benchmark datasets for procedural text under-
standing, ProPara (Dalvi et al., 2018) and
Recipes (Bosselut et al., 2018). Our approach out-
performs the state-of-the-art strong baselines by a
large marge, i.e., 5.0% on ProPara and 3.2% on
Recipes. The ablation study and analysis show
that the graph-based reasoning approach generates
better representations for entities, locations, and
actions. Thus, it is highly valuable for both state
and location tracking of entities.

2 Related Work

REAL is closely related to two lines of works, i.e.,
procedural text understanding and graph reasoning

in language understanding.

Procedural Text Understanding. Compared
with early-stage models (Henaff et al., 2017; Seo
et al., 2017), recent progress in the procedural text
understanding task is mainly made on ensuring
the prediction’s consistency or injecting external
knowledge. Various approaches (Dalvi et al., 2018;
Gupta and Durrett, 2019b; Amini et al., 2020) have
been proposed to predict consistent state sequence.
For example, NCET (Gupta and Durrett, 2019b)
tracks the entity in a continuous space and lever-
ages a conditional random field (CRF) to keep a
consistent prediction sequence. Other models in-
ject knowledge from external data sources to com-
plement missing knowledge. ProStruct (Tandon
et al., 2018) introduces commonsense constraints to
refine the probability space, while KOALA (Zhang
et al., 2020) leverages Bert Encoder pre-trained on
related corpus from Wiki, and injects the Concept-
Net (Speer et al., 2017) knowledge. Besides, a few
models (Das et al., 2019; Dalvi et al., 2019) are pro-
posed to build graphs on the procedural text. For
instance, KG-MRC (Das et al., 2019) constructs
dynamic knowledge graphs between entities and lo-
cations. However, these methods can not systemat-
ically capture the relations among entities, actions,
and locations, and entity-action and entity-entity
relations are ignored.

Graph Reasoning in Language Understanding.
Graph-based reasoning methods (Zeng et al., 2020;
Zhong et al., 2020; Zheng and Kordjamshidi, 2020)
are widely used in natural language understand-
ing tasks to enhance performance. For example,
Zeng et al. (2020) constructs a double graph design
for the document-level Relation Extraction (RE)
task, Zhong et al. (2020) constructs the retrieved
evidence sentences as a graph for Fact-Checking
task. Compared with these works, the entity-action-
location graph in our approach copes better with
procedural text understanding task since it pre-
cisely defines concepts we are concerned within the
task and captures the rich and expressive relations
among them.

3 Model

Task Definition. The procedural text understand-
ing task is defined as follows. Given a paragraph
P consists of T sentences (S1, S2, ..., ST ), describ-
ing the process (e.g., photosynthesis, erosion) of
a set of N pre-specified entities {e1, e2, ..., eN},
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we need to predict the state yst and location ylt for
each entity at each step t corresponding to sentence
St

1. Candidate states are pre-defined (e.g., yst ∈
{not exist (O), exist (E), move (M), create (C), de-
stroy (D)} in the ProPara dataset), and location ylt
is usually a text span in the paragraph. Gold an-
notations for state and location at each step t are
denoted as ỹst and ỹst , respectively.
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Figure 1: An overview of REAL.

Figure 1 shows the overview of our approach,
which consists of three main components: graph
construction, graph-based representation learning,
and prediction module. The graph construction
module extracts nodes and edges from the input
procedural paragraph and constructs a graph. The
graph reasoning module initializes nodes represen-
tations using contextual word representations and
reasons over the built graph. Finally, the prediction
module leverages the graph-based representations
to predict the state and location.

3.1 Graph Construction

Figure 2 shows an example of the graph constructed
for a paragraph which describes how fossil forms.
A semantic graph is denoted asG = (N,E), where
N = {ni}Ki=1 denotes all the nodes, and E =
{ei}Li=1 denotes all the edges.

Nodes Extraction. We first extract text spans as
nodes from the given paragraph. The text spans
in the extracted nodes should cover all essential
concepts in the paragraph. Three types of concepts
play an important role in the entity tracking task,
i.e., actions, entity mentions, and location mentions.
Therefore, we extract nodes for them and get all
the nodes N = {Na, Ne, Nl} where Na represents

1We will use step and sentence interchangeably.

action nodes, Ne represents entity mention nodes,
and Nl represents location mention nodes.

We first tag all the verbs by an off-the-shelf part-
of-speech (POS) tagger2 and construct a set of ac-
tion nodes Na with each node associated with a
single verb or a phrase consisting of two consecu-
tive verbs. For the entity mentions, we extract the
explicit (exact matching or matching after lemma-
tization) or implicit (pronouns) mentions of all the
entities. Coreference resolution is used to find pro-
noun mentions in data pre-processing. Besides,
we utilize the POS tagger to extract location men-
tions. Each tagged noun or consecutive phrase of
adjective + noun is identified as a location mention.

Edges Generation. Capturing the semantic rela-
tions between various nodes is critical for under-
standing the process dynamics in the procedural
text. To this end, we first derive verb-centric se-
mantic structures via semantic role labeling (SRL)3

(Shi and Lin, 2019) for each sentence and then es-
tablish intra- and inter-semantic structure edges.

Given a verb-centric structure consisting of a
central verb and corresponding arguments, we cre-
ate two types of edges. (1) If an entity mention
ne ∈ Ne or location mention nl ∈ Nl is a sub-
string of an argument for verb na ∈ Na, then we
connect ne/nl to na. For example, for the sentence
“As the encased bones decay, minerals seep in re-
placing ...”, the verb decay has an argument the
encased bones where bones is an entity mention,
then we will connect the action node decay and
entity mention node bones. (2) Two mentions in
two arguments of the same verb are connected too.
For example, for the sentence “The trashbags are
thrown into a large outdoor trashcan”, the verb
thrown has two arguments, the trashbags and into
a large outdoor trashcan, then we connect the two
mention nodes trashbags and trashcans.

We also create edges between mentions of the
same entity in different semantic structures. For ex-
ample, in Figure 2, the entity bones are mentioned
in two sentences, which correspond to two entity
mention nodes. We connect these two nodes to
propagate information from one to the other during
graph-based reasoning.

3.2 Graph-based Representation Learning

Nodes Representation. We first feed the en-
tire paragraph to the BERT (Devlin et al., 2019)

2https://github.com/flairNLP/flair
3https://github.com/allenai/allennlp.
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Figure 2: An example of entity-action-location graph, constructed for paragraph “...Soft tissues quickly decompose
leaving the hard bones or shells behind. As the encased bones decay, minerals seep in replacing the organic
material... ”

model, which is then sent into a Bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) (BiL-
STM) to obtain the contextual embedding for each
token. Each node in our graph is associated with
a text span in the paragraph. Therefore, the ini-
tial node representation is derived by mean pool-
ing over all token embeddings in its corresponding
text span. The contextual representation of node
ni ∈ N is denoted as hi (i = 1, . . . ,K) with
hi ∈ Rd.

Graph Reasoning. We leverage a graph atten-
tion network (GAT) (Velickovic et al., 2018) for
reasoning over the built graph. The network per-
forms masked attention over neighbor nodes (i.e.,
connected with an edge) instead of all the nodes
in the graph. We apply a two-layer GAT, which
means each node can aggregate information from
their two-hop neighbor nodes (nodes that can be
reached within two edges).

In each GAT layer, we first extract a set of neigh-
bor nodesNi for each node ni. The attention coeffi-
cients between node ni and its neighbour nj can be
computed through a shared attention mechanism,

eij = aT [Whi‖Whj ], (1)

where a ∈ R2d and W ∈ Rd×d are learnable pa-
rameters, and ‖ is the concatenation operation. We
apply a LeakyReLU activate function and normal-
ize the attention coefficients,

αij = softmax
j

(LeakyReLU (eij)) . (2)

Then, we aggregate the information from the neigh-
bor nodes with multi-head attention to enhance the
stability and efficiency. The aggregated feature for
ni with a K-head attention can be represented as

h′i =

K∥∥∥∥
k=1

σ

 ∑
nj∈Ni

αk
ijW

khj

 (3)

in the first layer, and

h′′i = σ

 1

K

K∑
k=1

∑
nj∈Ni

α′kijW
′kh′j

 (4)

in the second layer, where ‖ is the concatena-
tion operation, σ is the sigmoid activate function,
Wk ∈ Rd×d is learnable matrix for kth head in first
layer, and W′k ∈ RKd×d is learnable matrix for
kth head in second layer. αk

ij and α′kij are calculated
with the corresponding Wk and W′k, respectively.

3.3 Prediction Model
Inspired by NCET (Gupta and Durrett, 2019b), we
track the state and location separately, by a state
tracking and a location prediction module. Each
module takes the representations of concerned
nodes as input and outputs the prediction (i.e., state
or location of an entity) at each time step.

…

Linear

BiLSTM

Linear Linear

CRF Layer

BiLSTM BiLSTM

State 1 State 2 State T…

…

…𝑋!" 𝑋#" 𝑋$"

Figure 3: Overview of state tracking model, which pre-
dicts states of the entity in every sentence St given en-
tity e and paragraph P .

State Tracking. Given a paragraph P and an en-
tity e, the state tracking module tracks the state
of the entity for each sentence. We first generate
the representations of all sentences for the entity.
Considering that actions are good state-changing
signals, we concatenate the embeddings of entity
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mention node and action node in the sentence as
representation at step t. That is,

xe
t =

{
[he

t‖hv
t ], if St contains ne

0, otherwise
(5)

where xe
t denotes the representation of entity e in

sentence St , he
t denotes the representation of the

entity mention node ne in sentence St, hv
t denotes

the representation of the action node na connected
with ne in sentence St. If entity e is not mentioned
in sentence St, we use zero vector as representation
of St for e. Note if there are multiple mention
nodes for the entity e in sentence St, we take the
mean pooling over all mention nodes as he

t . And
we take similar approach for multiple actions.

We utilize a BiLSTM layer on the sequence of
sentence embeddings. And a conditional random
field (CRF) (Durrett and Klein, 2015) is applied on
the top of the BiLSTM to make the final prediction.
The loss function for the state tracking module is
defined as

Lstate = −
∑

(e,P )∈D

1

T

T∑
t=1

logP
(
ỹst |P, e; θG, θst

)
,

(6)
whereD is the training collection containing entity-
paragraph pairs, P

(
ỹst |P, e; θG, θst

)
represents the

predicted probability of gold state ỹst in sentence
St given the entity e and paragraph P , θG are pa-
rameters for graph reasoning and the text encoder,
and θst are parameters in state tracking module.
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Figure 4: Overview of location prediction model,
which predicts locations of the entity in every sentence
St given entity e and paragraph P .

Location Prediction. For the location prediction
module, we first collect all the location mention
nodes as location candidates set C. We add an iso-
lated location node to represent the special location

candidate ‘?’, which means the location cannot be
found in the paragraph. The representation of this
node is randomly initialized and learnable during
the training process.

Given an entity e and location candidate l ∈ C,
we represent the sentence St as

xl
t = [he

t‖hl
t], (7)

where he
t and hl

t denotes the representation of the
entity mention node and location mention node in
sentence St. If the entity or location candidate is
not mentioned in sentence St, we use a zero vector
replacing he

t or hl
t.

We use a BiLSTM followed by a linear layer for
the location predictor. The model outputs a score
for each candidate at each step t. Then, we apply
a softmax layer over all the location candidates’
scores at the same step, resulting in a normalized
probabilistic distribution. The location loss is de-
fined as

Lloc = −
∑

(e,P )∈D

1

T

T∑
t=1

logP
(
ỹlt|P, e; θG, θloc

)
,

(8)
whereP

(
ỹlt|P, e; θG, θloc

)
represents the predicted

probability of gold location ỹlt for entity e in sen-
tence St, and θloc are parameters for location pre-
diction module.

3.4 Learning and Inference

We create a single graph for each paragraph, which
stays unchanged once created. Then the graph rea-
soning module and state/location prediction mod-
ule are jointly trained in an end-to-end manner. The
overall loss is defined as

Ltotal = Lstate + λlocLloc, (9)

where λloc is the hyper-parameter to balance the
state tracking and the location prediction loss.

We perform inference in pipeline mode. Specifi-
cally, for each entity, we first apply the state track-
ing module to infer its state at each time step. Then
we only predict its location at steps when its state
is changed (i.e., the predicted state is create or
move4). And the locations of an entity with un-
changed states can be inferred according to its lo-
cations in previous steps. Such pipeline fashion

4The location of an entity will be None if its state is destroy.
Therefore, we do not need to predict its location when an entity
is destroyed.
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can increase consistency between states and loca-
tions of an entity than inferring location and state
simultaneously.

4 Experiments

This section describes the evaluation results of
REAL on two datasets (ProPara (Dalvi et al., 2018)
and Recipes (Bosselut et al., 2018)). We also pro-
vide ablation study and case analysis to illustrate
the effectiveness of graph-based reasoning.

4.1 Datasets and Evaluation Metrics

Statistics ProPara Recipes

#sentences 3.3K 7.6K
#para 488 866
#train/#dev/#test 391/43/54 693/86/87
avg. #entities per para 4.17 8.57
avg. #sentences per para 6.7 8.8

Table 1: Statistics of ProPara and Recipes dataset.

ProPara contains procedural texts about scien-
tific processes, e.g., photosynthesis, fossil formu-
lation. It contains about 1.9k instances (one entity-
paragraph pair as an instance) written and anno-
tated by human crowd workers. We follow the
official split (Dalvi et al., 2018) for train/dev/test
set. The Recipes dataset consists of paragraphs de-
scribing cooking procedures and their ingredients
as entities. We only use the human-labeled data in
our experiment, with 80%/10%/10% of the data for
train/dev/test, respectively. Detail statistics for the
two datasets can be found in Table 1.

We follow previous work’s setting (Dalvi et al.,
2018) and evaluate the proposed approach on two
types of tasks on the ProPara dataset, document-
level task and sentence-level task. Document-level
task focuses on figuring out input entities, output
entities, entity conversions, and entity movements
by answering corresponding questions. More de-
tails can be found in the official script5. Following
the official script, we evaluate models with aver-
aged precision, recall, and F1 scores. In sentence-
level task, we need to answer three categories of
questions: (Cat-1) Is entity e created (destroyed,
moved) in the process? (Cat-2) When is e created
(destroyed, moved)? (Cat-3) Where is e created
(destroyed, moved from/to)? For this task, we take

5https://github.com/allenai/aristo-leaderboard/tree/master
/propara

macro-average and micro-average of the score for
three sets of questions as evaluation metrics6.

For the Recipes dataset, we take the same setting
as (Zhang et al., 2020), where the goal is to predict
the ingredients’ location changes during the pro-
cess. We take precision, recall, and F1 scores to
evaluate models7.

4.2 Implementation Details

We use Bert base (Devlin et al., 2019) as encoder
and reason with 3-heads GAT. Batch size is set to
16, and embedding size is set to 256. The learning
rate r, location loss coefficient λloc and dropout
rate d are derived by grid searching with in 9 tri-
als in r ∈ {2.5 × 10−5, 3 × 10−5, 3.5 × 10−5},
λloc ∈ {0.2, 0.3, 0.4}, and d ∈ {0.3, 0.4, 0.5}.
The implementation is based on Python and trained
on a Tesla P40 GPU with Adam optimizer for ap-
proximately one hour (with approximately 112M
parameters). We choose the best model with high-
est prediction accuracy on development set.

4.3 Main Results

Table 2 compares REAL with previous work on the
ProPara data for both document-level and sentence-
level tasks. Our proposed approach consistently
outperforms all previous models, which do not
utilize external knowledge on all metrics. In par-
ticular, compared to DYNAPRO, it increases the
document-level F1 score by 5.3%, and sentence-
level macro averaged accuracy from 55.4% to
58.2%. Without any external data, our approach
achieves comparable results to KOALA, which
extensively leverages rich external knowledge in
ConceptNet and Wikipedia pages, demonstrating
the effectiveness of exploiting the entity-action-
location graph. We also compare REAL with the
re-implemented NCET8 on the Recipes dataset. As
shown in 3, REAL also surpass the strong baseline
by 3.2%. All these results verify the effectiveness
of the proposed graph-based reasoning approach.

4.4 Ablations

We conduct an ablation study to testify the effec-
tiveness of multiple components in our approach.
Table 4 and Table 3 list the results on ProPara and

6https://github.com/allenai/propara/tree/master/propara/
evaluation

7https://github.com/ytyz1307zzh/Recipes
8The re-implemented NCET achieves comparable accu-

racy with the previous state-of-the-art algorithm, DYNAPRO,
i.e., 65.2% F1 score for NCET v.s. 65.5% for DYNAPRO.
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Models Document-level task Sentence-level task
Precsion Recall F1 Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg

EntNet (Henaff et al., 2017) 54.7 30.7 39.4 51.6 18.8 7.8 26.1 26.0
QRN (Seo et al., 2017) 60.9 31.1 41.4 52.4 15.5 10.9 26.3 26.5
ProLocal (Dalvi et al., 2018) 81.7 36.8 50.7 62.7 30.5 10.4 34.5 34.0
ProGlobal (Dalvi et al., 2018) 48.8 61.7 51.9 63.0 36.4 35.9 45.1 45.4
ProStruct (Tandon et al., 2018) 74.3 43.0 54.5 - - - - -
XPAD (Dalvi et al., 2019) 70.5 45.3 55.2 - - - - -
KG-MRC (Das et al., 2019) 69.3 49.3 57.6 62.9 40.0 38.2 47.0 46.6
NCET (Gupta and Durrett, 2019b) 67.1 58.5 62.5 73.7 47.1 41.0 53.9 54.0
DYNAPRO (Amini et al., 2020) 75.2 58.0 65.5 72.4 49.3 44.5 55.4 55.5
KOALA (Zhang et al., 2020) 77.7 64.4 70.4 78.5 53.3 41.3 57.7 57.5
REAL (our approach) 81.9 61.9 70.5 78.4 53.7 42.4 58.2 57.9

Table 2: Experiment results on ProPara document-level task and sentence-level task. KOALA uses rich external
data from Wikipedia and ConceptNet. Our approach achieves comparable performance to KOALA without any
external knowledge.

Models Precsion Recall F1

NCET re-implementation 56.5 46.4 50.9

REAL 55.2 52.9 54.1
-Location 54.9 51.7 53.3
-State 54.9 52.0 53.4
-Graph 57.2 47.9 52.1

Table 3: Comparison on Recipes dataset.

Models Precsion Recall F1

REAL 81.9 61.9 70.5
-Location 81.0 (-0.9) 57.7 (-4.2) 67.4 (-3.1)
-State 73.7 (-8.2) 61.2 (-0.7) 66.9 (-3.6)
-Graph 72.0 (-9.9) 61.2 (-0.7) 66.1 (-4.4)

Table 4: Ablation study on ProPara dataset.

Recipes, respectively. As shown in Table 4, re-
moving the graph-based representation learning for
location/state prediction decreases the F1 score by
3.1%/3.6%, the gap becomes 4.4% without any
graph-based reasoning. We can get similar obser-
vations on the Recipes dataset, indicating that ex-
ploiting the paragraph’s rich relations is critical for
both state tracking and location prediction.

4.5 Analyses of Different Relations

To further illustrate the effectiveness of different
types of relations, we conduct below analyses and
present three cases with predictions of REAL with
and without graph reasoning in Figure 5.

First, to verify the effectiveness of action-entity
relations in multi-verb sentences, we compare
REAL of with and without graph reasoning on sen-

Segments Models Precision Recall F1

muli-verb
w/o graph 73.0 58.2 64.8
w/ graph 82.5 61.0 70.1

implicit
w/o graph 74.9 57.9 65.3
w/ graph 83.7 60.3 70.1

Table 5: Analyses of impact of entity-action and entity-
entity relations on ProPara.

tences containing multiple (i.e., more than 2) verbs
in Table 5. We figure out that graph-based reason-
ing increases the performance by 5.7%, indicating
that accurately connecting entities and correspond-
ing actions improves the prediction accuracy. For
case 1 shown in Figure 5, the relation between the
entity bone the action decay helps the model to cor-
rectly predict the state of bone as destroy since the
action decay indicates destroy. However, without
such accurate connection between bone and decay,
the prediction model is very likely to be misled by
other actions such as seep or replace.

Second, we illustrate the impact of entity-entity
relations by comparing our approach and baseline
where the entity is not explicitly mentioned9. As
shown in Table 5, REAL increase the accuracy by
4.8%, which indicates the effectiveness of our ap-
proach by modeling cross-entity relations. The
second case in Figure 5 illustrates the effectiveness
of using entity-entity relations. The entity bags is
not explicitly mentioned in the sentence “Trashcan
gets emptied into trash truck”, and thus the base-
line model cannot correctly predict its state and

9We only compare performance for those entity-sentence
pairs with gold state as Move, Create and Destroy.
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Text Paragraph (extract) State Location

As the encased bones decay , minerals seep in 
replacing the organic material cell by cell in a 
process called petrification.

E → D -

Text Paragraph (extract) State Location

1. Bags get carried out to the trashcan. M trashcan

2. Trashcan gets emptied into trash truck. E → M trashcan → trash 
truck

Text paragraph (extract) State Location

1. The cornea and lens refract light into a small 
image. C cornea and lens → 

retina

2. Shine it on the retina. E retina

Case 3 Entity: small image

Case 1 Entity: bone

Case 2 Entity: bags

small image

refract

cornea and
lens it retina

shine

Case 3 sub-graph

minerals

decay

bones material

seep

Case 1 sub-graph

trashcan

get carried

bag trashcan trash truck

get emptied

Case 2 sub-graph

replace

Figure 5: Examples of model predictions of our approach w/ (black) and w/o (red) graph reasoning. Corresponding
sub-graph is plot on the right of the paragraph. Dotted rectangles in the sub-graph highlight key connections for
correct prediction in graph-based reasoning.

location. However, connecting it to the entity trash-
can which is derived in the first sentence, helps the
model infer its state and location correctly.

Third, as discussed in section 1, mention-
mention connections might improve accuracy when
there are multiple mentions for the same entity. The
third case in Figure 5 shows how REAL utilizes re-
lations between different mentions for the same
entity. In the first sentence, the location of en-
tity small image is not mentioned, which results in
wrong location prediction when no graph reasoning
is used. In contrast, the built graph connects this
mention with preposition it in the second sentence
where its location is revealed as retina. Therefore,
our model correctly predicts small image’s location
by graph-based representation learning.

4.6 Error Analyses

We randomly sample 100 wrongly predicted exam-
ples and summarize them into the following types.

First, the ambiguity between similar entities
makes it difficult to derive accurate representations
for them. For instance, fixed nitrogen and gas-
based nitrogen are two different entities related to
nitrogen in the paragraph “Nitrogen exists naturally
in the atmosphere. Bacteria in soil fix the nitrogen.
Nitrogen is now usable by living things.”. It is dif-
ficult for a model to distinguish which entity the
mention nitrogen refers to.

Second, commonsense knowledge is required.
For example, it is difficult to infer the location of

the entity bone in the sentence “An animal dies.
It is buried in a watery environment.” without the
knowledge “bone is part of animal”. Therefore, in-
jecting appropriate external knowledge while avoid-
ing noise may improve the model.

Third, similar actions indicate different states in
different contexts. For instance, in sentence “the
tree eventually dies.”, the state of tree is labeled
as destroy, while in sentence “most fossils formed
when animals or plants die in wet environment.”,
the state of animals and plants are all annotated as
exist, which may confuse the model.

5 Conclusion and Future Work

In this work, we propose a novel approach REAL

for procedural text understanding. Unlike all pre-
vious works, we systematically exploit the rich
semantic relations between entities, location, and
actions. We design an entity-action-location graph
to systematically model various types of concepts
and their relations and develop the algorithms for
graph construction, representation, and reasoning.
We comprehensively conduct a quantitative and
qualitative comparison of the proposed approach
with strong baselines on two popular benchmark
datasets for procedural text understanding and
demonstrate the effectiveness of our approach. In
the future, we will investigate approaches to fur-
ther advance the procedural text understanding task,
such as incorporating entity disambiguation and ex-
ternal knowledge in our approach.
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