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Abstract

Computer-aided translation (CAT), the use of
software to assist a human translator in the
translation process, has been proven to be use-
ful in enhancing the productivity of human
translators. Autocompletion, which suggests
translation results according to the text pieces
provided by human translators, is a core func-
tion of CAT. There are two limitations in pre-
vious research in this line. First, most research
works on this topic focus on sentence-level au-
tocompletion (i.e., generating the whole trans-
lation as a sentence based on human input), but
word-level autocompletion is under-explored
so far. Second, almost no public benchmarks
are available for the autocompletion task of
CAT. This might be among the reasons why
research progress in CAT is much slower com-
pared to automatic MT. In this paper, we pro-
pose the task of general word-level autocom-
pletion (GWLAN) from a real-world CAT sce-
nario, and construct the first public bench-
mark! to facilitate research in this topic. In
addition, we propose an effective method for
GWLAN and compare it with several strong
baselines. Experiments demonstrate that our
proposed method can give significantly more
accurate predictions than the baseline methods
on our benchmark datasets.

1 Introduction

Machine translation (MT) has witnessed great ad-
vancements with the emergence of neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015; Wu et al., 2016; Gehring et al.,
2017; Vaswani et al., 2017), which is able to
produce much higher quality translation results
than statistical machine translation (SMT) mod-
els (Koehn et al., 2003; Chiang, 2005; Koehn,

The information of benchmark datasets is in https:
//github.com/ghrua/gwlan
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Figure 1: Illustration of Different Autocompletion
Methods. The translation context is in red. Sub-figure
in (a) is the sentence-level autocompletion, where the
gray part is the completion generated by MT system.
Both (b) and (c) are word-level autocompletion, under-
lined text “sp” is the human typed characters and the
words in the rounded rectangles are word-level auto-
completion candidates.

2009). In spite of this, MT systems cannot re-
place human translators, especially in the scenar-
ios with rigorous translation quality requirements
(e.g., translating product manuals, patent docu-
ments, government policies, and other official doc-
uments). Therefore, how to leverage the pros of
MT systems to help human translators, namely,
Computer-aided translation (CAT), attracts the at-
tention of researchers (Barrachina et al., 2009;
Green et al., 2014; Knowles and Koehn, 2016;
Santy et al., 2019). Among all CAT technologies
(such as translation memory, terminology manage-
ment, sample sentence search, etc.), autocomple-
tion plays an important role in a CAT system in
enhancing translation efficiency. Autocompletion
suggests translation results according to the text
pieces provided by human translators.

We note two limitations in previous research on
the topic of autocompletion for CAT. First, most
of previous studies aim to save human efforts by
sentence-level autocompletion (Figure 1 a). Nev-
ertheless, word-level autocompletion (Figure 1 b
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and c) has not been systematically studied. Sec-
ond, almost no public benchmarks are available for
the autocompletion task of CAT. Although some
achievements have been made, research progress
in CAT is more sluggish than that in automatic MT.
The lack of benchmarks has hindered researchers
from making continuous progress in this area.

In this work, we propose a General Word-Level
AutocompletioN (GWLAN) task, and construct a
benchmark with automatic evaluation to facilitate
further research progress in CAT. Specifically, the
GWLAN task aims to complete the target word
for human translators based on a source sentence,
translation context as well as human typed charac-
ters. Compared with previous work, GWLAN con-
siders four most general types of translation con-
text: prefix, suffix, zero context, and bidirectional
context. Besides, as in most real world scenarios,
we only know the relative position between input
words and the spans of translation context in the
GWLAN task. We construct a benchmark for the
task, with the goal of supporting automatic evalua-
tion and ensuring a convenient and fair comparison
among different methods. The benchmark is built
by extracting triples of source sentences, transla-
tion contexts, and human typed characters from
standard parallel datasets. Accuracy is adopted as
the evaluation metric in the benchmark.

To address the variety of context types and weak
position information issue, we propose a neural
model to complete a word in different types of con-
text as well as a joint training strategy to optimize
its parameters. Our model can learn the represen-
tation of potential target words in translation and
then choose the most possible word based on the
human input.

Our contributions are two-fold:

* We propose the task of general word-level
autocompletion for CAT, and construct the
first public benchmark to facilitate research in
this topic.

* We propose a joint training strategy to opti-
mize the model parameters on different types
of contexts together. 2

2 Related Work

Computer-aided translation (CAT) is a widely used
practice when using MT technology in the industry.
This approach has been implemented into a human-

machine interactive translation system TranSmart (Huang
etal., 2021) at www.transmart .gq.com.

As the the MT systems advanced and improved,
various efficient interaction ways of CAT have
emerged (Vasconcellos and Ledén, 1985; Green
et al., 2014; Hokamp and Liu, 2017; Weng et al.,
2019; Wang et al., 2020). Among those different
methods, the autocompletion is the most related to
our work. Therefore, we will first describe previous
works in both sentence-level and word-level auto-
completion, then show the relation to other tasks
and scenarios.

Sentence-level Autocompletion Most of previ-
ous work in autocompletion for CAT focus on
sentence-level completion. A common use case
in this line is interactive machine translation (IMT)
(Green et al., 2014; Cheng et al., 2016; Peris et al.,
2017; Knowles and Koehn, 2016; Santy et al.,
2019). IMT systems utilize MT systems to com-
plete the rest of a translation after human transla-
tors editing a prefix translation (Alabau et al., 2014;
Zhao et al., 2020). For most IMT systems, the core
to achieve this completion is prefix-constrained de-
coding (Wuebker et al., 2016).

Another sentence-level autocompletion method,
lexically constrained decoding (LCD) (Hokamp
and Liu, 2017; Post and Vilar, 2018), recently at-
tracts lots of attention (Hasler et al., 2018; Susanto
et al., 2020; Kajiwara, 2019). Compared with IMT,
LCD relaxes the constraints provided by human
translators from prefixes to general forms: LCD
completes a translation based on some unordered
words (i.e., lexical constraints), which are not nec-
essary to be continuous (Hokamp and Liu, 2017;
Huetal., 2019; Dinu et al., 2019; Song et al., 2019).
Although it does not need additional training, its
inference is typically less efficient compared with
the standard NMT. Therefore, other works propose
efficient methods (Li et al., 2020; Song et al., 2019)
by using lexical constraints in a soft manner rather
than a hard manner as in LCD.

Word-level Autocompletion Word-level auto-
completion for CAT is less studied than sentence-
level autocompletion. Langlais et al. (2000); Santy
et al. (2019) consider to complete a target word
based on human typed characters and a transla-
tion prefix. But they require the target word to
be the next word of the translation prefix, which
limits its application. In contrast, in our work the
proposed word-level autocompletion is more gen-
eral and can be applied to real-world scenarios
such as post-editing (Vasconcellos and Ledn, 1985;

4793


www.transmart.qq.com

Green et al., 2013) and LCD, where human trans-
lators need to input some words (corrections or
constraints). Huang et al. (2015) propose a method
to predict a target word based on human typed char-
acters, however, this method only uses the source
side information and does not consider translation
context, leading to limited performance compared
with our work.

Others Our work may also be related to previous
works in input method editors (IME) (Huang et al.,
2018; Lee et al., 2007). However, they are in the
monolingual setting and not capable of using the
useful multilingual information.

3 Task and Benchmark

In this section, we first describe why we need word-
level autocompletion in real-world CAT scenarios.
We then present the details of the GWLAN task
and the construction of benchmark.

Why GWLAN? Word level autocompletion is
beneficial for improving input efficiency (Langlais
et al., 2000). Previous works assume that the trans-
lation context should be a prefix and the desired
word is next to the prefix as shown in Figure 1
(b), where the context is “We asked two” and the
desired word is “specialists”. However, in some
real-world CAT scenarios such as post-editing and
lexically constrained decoding, translation context
may be discontinuous and the input words (cor-
rections or lexical constraints) are not necessarily
conjunct to the translation context. As shown in
Figure 1 (c), the context is “We - - - their opinion”
and the human typed characters “sp” is conjunct to
neither “We” nor “their” in the context. Therefore,
existing methods can not perform well on such a
general scenario. This motivates us to propose a
general word-level autocompletion task for CAT.

3.1 Task Definition

Suppose * = (x1,x9,...,Zm,) iS a source se-
quence, s = (s1,S2,...,5k) is a sequence of
human typed characters, and a translation con-
text is denoted by ¢ = (¢, ¢,), where ¢; =
(e11,¢12,---5¢1i), ¢ = (¢ra,6r2,...,¢rj). The
translation pieces ¢; and ¢, are on the left and right
hand side of s, respectively. Formally, given a
source sequence x, typed character sequence s
and a context ¢, the general word-level autocom-
pletion (GWLAN) task aims to predict a target
word w which is to be placed in the middle be-

tween ¢; and ¢, to constitute a partial translation.
Note that in the partial translation consisting of
c;, w and ¢, w is not necessary to be consec-
utive to ¢;; or ¢.1. For example, in Figure 1
(©), ¢ = (“We”,), ¢, = (“their”, “option”, “.”),
s = (“sp”, ), the GWLAN task is expected to pre-
dict w = “specialists” to constitute a partial transla-
tion “We - - - specialists - - - their opinion.”, where
“...” represents zero, one, or more words (i.e., the
two words before and after it are not necessarily
consecutive).

To make our task more general in real-world
scenarios, we assume that the left context ¢; and
right context ¢, can be empty, which leads to the
following four types of context:

» Zero-context: both ¢; and ¢, are empty;
 Suffix: ¢; is empty;

* Prefix: ¢, is empty;

* Bi-context: neither ¢; nor ¢, is empty.

With the tuple (x, s, c), the GWLAN task is to
predict the human desired word w.

Relation to most similar tasks Some similar
techniques have been explored in CAT. Green et al.
(2014) and Knowles and Koehn (2016) studied a
autocompletion scenario called translation predic-
tion (TP), which provides suggestions of the next
word (or phrase) given a prefix. Besides the strict
assumption of translation context (i.e., prefix here),
compared with GWLAN, another difference is that
the information of human typed characters is ig-
nored in their setting. There also exist some works
that consider the human typed sequences (Huang
et al., 2015; Santy et al., 2019), but they only con-
sider a specific type of translation contexts. Huang
et al. (2015) propose to complete a target word
based on the zero-context assumption. Despite its
flexibility, this method is unable to explore transla-
tion contexts to improve the autocompletion perfor-
mance. The word-level autocompletion methods in
Langlais et al. (2000); Santy et al. (2019) have the
same assumption as TP, which impedes the use of
their methods under the scenarios like post editing
and lexically constrained decoding, where human
inputs are not necessarily conjunct to the variety of
translation contexts.

3.2 Benchmark Construction

To set up a benchmark, firstly we should create a
large scale dataset including tuples of (x, s, ¢, w)
for training and evaluating GWLAN models. Ide-
ally, we may hire professional translators to man-

4794



ually annotate such a dataset, but it is too costly
in practice. Therefore, in this work, we propose
to automatically construct the dataset from paral-
lel datasets which is originally used in automatic
machine translation tasks. The procedure for con-
structing our data is the same for train, validation,
and test sets. And we construct a dataset for each
type of translation context.

Assume we are given a parallel dataset
{(x,y")}, where ¢’ is the reference translation
of z'. Then, we can automatically construct the
data ¢’ and s’ by randomly sampling from y*. We
first sample a word w = y,i and then demonstrate
how to extract ¢’ for different translation contexts:
» Zero-context: both ¢; and ¢, are empty;

* Suffix: randomly sample a translation piece ¢, =
Ypr1:pro (tOM y, where k < pr1 < pr2. The ¢ is
empty here;
* Prefix: randomly sample a translation piece ¢; =
Yp1:p1» from y, where p;1 < pio < k. The ¢; is
empty here;
* Bi-context: sample ¢; as in prefix, and sample ¢,
as in suffix.

Then we have to simulate the human typed char-
acters s based on w. For languages like English and
German, we sample a position p from the character
sequence and the human input s = wy.,, where
1 < p < L. For languages like Chinese, the
human input is the phonetic symbols of the word,
since the word cannot be directly typed into the
computer. Therefore, we have to convert w to pho-
netic symbols that are characters in alphabet and
sample s from phonetic symbols like we did on
English.

Evaluation Metric To evaluate the performance
of the well-trained models, we choose accuracy as
the evaluation metric:

Niatch
A _ matc 1
cc Ny (1)

where N, qtcn 18 the number of words that are cor-
rectly predicted and N is the number of testing
examples.

4 Proposed Approach

Given a tuple (x, ¢, s), our approach decomposes
the whole word autocompletion process into two
parts: model the distribution of the target word w
based on the source sequence x and the translation
context ¢, and find the most possible word w based
on the distribution and human typed sequence s.

Output
Probabilities

Add & Norm

Feed Forward
Add & Norm

Nx (Cross—LinguaI Attention)

A

Add & Norm

Bidirectional Masked Attention]
N\ T )
Translation Context

Outputs of
Source Encoder

Figure 2: Cross-lingual encoder of the WPM.

Therefore, in the following subsections, we firstly
propose a word prediction model (WPM) to de-
fine the distribution p(w|x, ¢) of the target word
w (§4.1). Then we can treat the human input se-
quence s as soft constraints or hard constraints to
complete s and obtain the target word w (§4.2).
Finally, we present two strategies for training and
inference (§4.3).

4.1 Word Prediction Model

The purpose of WPM is to model the distribution
p(w|x, ). More concretely, we will use a single
placeholder [MASK] to represent the unknown tar-
get word w, and use the representation of [MASK]

learned from WPM to predict it. Formally, given
the source sequence x, and the translation context
¢ = (¢, ¢,), the possibility of the target word w
is:

P(w|x, ¢, cr; 0) = softmax (¢(h)) [w]  (2)

where £ is the representation of [MASK], ¢ is a lin-
ear network that projects the hidden representation
h to a vector with dimension of target vocabulary
size V, and softmax(d)[w] takes the component
regarding to w after the softmax operation over a
vector d € RV,

Inspired by the attention-based architectures
(Vaswani et al., 2017; Devlin et al., 2019)3, we

*Because the use of attention-based models has become
ubiquitous recently, we omit an exhaustive background de-
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Figure 3: The input representation of our model and architecture of Bidirectional Masked Attention. The input
embeddings are the sum of the token embeddings and position embeddings. [MASK] represents the potenial target

word in this translation context.

use a dual-encoder architecture to learn the repre-
sentation h based on source sequence x and trans-
lation context ¢. Our model has a source encoder
and a cross-lingual encoder. The source encoder
of WPM is the same as the Transformer encoder,
which is used to encode the source sequence x. As
shown in Figure 2, the output of source encoder
will be passed to the cross-lingual encoder later.
The cross-lingual encoder is similar to the Trans-
former decoder, while the only difference is that we
replace the auto-regressive attention (ARA) layer
by a bidirectional masked attention (BMA) module,
due to that the ARA layer cannot use the leftward
information flow (i.e., c,).

Specifically, the BMA module is built by a
multiple-layer self attention network. As shown
in Figure 3, in each layer of BMA, each token
in the attention query can attend to all words in
translation context ¢; and c,. In addition, the in-
put consists of three parts, the [MASK] token, and
translation contexts ¢; and c,, as illustrated in Fig-
ure 3. Note that its position embeddings E are only
used to represent the relative position relationship
between tokens. Taking the sentence in Figure 3
as an example, E3 does not precisely specify the
position of the target word w but roughly indicates
that w is on the right-hand-side of ¢; and on the
left-hand-side of c,. Finally, the representation of
[MASK] as learnt by BMA will be passed to Add
& Norm layer as shown in Figure 2.

scription of the model and refer readers to Vaswani et al.
(2017) and Devlin et al. (2019).

4.2 Human Input Autocompletion

After learning the representation h of the [MASK]
token, there are two ways to use the human input
sequence s to determinate the human desired word.
Firstly, we can learn the representation of s and
use it as a soft constraint while predicting word w.
Taking the sentence in Figure 3 as an example, sup-
posing the human typed sequence is s = “des”,
we can use an RNN network to learn the represen-
tation of de s and concatenate it with h to predict
the word descending. Alternatively, we can use
des as a hard constraint:

P(w|z,c;0)
Pslw] = 7 ’
0, otherwise.

if w starts with s

where P(-|-) is the probability distribution defined
in Eq. (2) and Z is the normalization term indepen-
dent on w. Then we pick w* = arg max,, Ps[w] as
the most possible word. In our preliminary experi-
ments, the performances of these two methods are
comparable, and there is no significant gain when
we use them together. One main reason is that the
model can already learn the starts-with action pre-
cisely in the soft constraint method. Therefore, we
propose to use the human inputs as hard constraints
in our later experiments, because of the method’s
efficiency and simplicity.

4.3 Training and Inference Strategy

Suppose D denotes the training data for GWLAN,
i.e., a set of tuples (x,c,s,w). Since there are
four different types of context in D as presented in
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§3, we can split D into four subsets Dyero, Dprefixs
Dagutix and Dy;. To yield good performances on
those four types of translation context, we also pro-
pose two training strategies. The inference strategy
differs accordingly.

Strategy 1: One Context Type One Model For
this strategy, we will train a model for each trans-
lation context, respectively. Specifically, for each
type of context t € {zero, prefix, suffix, bi}, we in-
dependently train one model §; by minimizing the
following loss £(Dy, 0):

£(Dy;0) = |D1t| S log P(ule,c;0),
(x,c,8,w)ED;

(3)
where P(w|z, c; 0) is the WPM model defined in
Eq. 2, |Dy| is the size of training dataset Dy, and
t can be any type of translation context. In this
way, we actually obtain four models in total after
training. In the inference process, for each testing
instance (x, ¢, ¢, s), we decide its context type ¢
in terms of ¢; and ¢, and then use ét to predict the

word w.

Strategy 2: Joint Model The separate training
strategy is straightforward. However, it may also
make the models struck in the local optimal. To
address these issues, we also propose a joint train-
ing strategy, which has the ability to stretch the
model out of the local optimal once the parameters
is over-fitting on one particular translation context.
Therefore, using the joint training strategy, we train
a single model for all types of translation context
by minimizing the following objective:

‘C(,D§ 9) = ﬁ(Dzem; é) + E(Dpreﬁ)d é)+
L(Dsuttix; 0) + L(Dyi; 0)

where each L£(D;;0) is as defined in Eq. 3. In
this way, we actually obtain a single model 6 after
training. In the inference process, for each testing
instance (x, ¢, ¢;, ) we always use 6 to predict
the target word w.

S Experiments

5.1 Datasets

We carry out experiments on four GWLAN tasks
including bidirectional Chinese—English tasks and
German—-English tasks. The benchmarks for our
experiments are based on the public translation

datasets. The training set for two directional Chi-
nese—English tasks consists of 1.25M bilingual sen-
tence pairs from LDC corpora. The toolkit we used
to convert Chinese word w to phonetic symbols
is pypinyin*. As discussed in (§3.2), the training
data for GWLAN is extracted from 1.25M sentence
pairs. The validation data for GWLAN is extracted
from NISTO2 and the test datasets for GWLAN
are constructed from NISTOS5 and NISTO06. For
two directional German—English tasks, we use the
WMT14 dataset preprocessed by Stanford”. The
validation and test sets for our tasks are based on
newstest13 and newstest14 respectively. For each
dataset, the models are tuned and selected based on
the validation set.

The main strategies we used to prepare our
benchmarks are shown in §3.2. However, lots of
trivial instances may be included if we directly use
the uniform distribution for sampling, e.g., predict-
ing word “the” given “th”. Therefore, we apply
some intuitive rules to reduce the probability of
trivial instances. For example, we assign higher
probability for words with more than 4 characters
in English and 2 characters in Chinese, and we re-
quire that the lengths of input character sequence s
and translation contexts ¢ should not be too long.

5.2 Systems for Comparison

In the experiments, we evaluate and compare the
performance of our methods (WPM-Sep and WPM-
Joint) and a few baselines. They are illustrated
below,

WPM-SEP is our approach with the “one con-
text one model” training and inference strategy in
Section §4.3. In other words, we train our model
for each translation context separately.

WPM-JOINT is our approach with the “joint
model” strategy in Section §4.3.

TRANSTABLE: We train an alignment model®
on the training set and build a word-level transla-
tion table. While testing, we can find the transla-
tions of all source words based on this table, and
select out valid translations based on the human
input. The word with highest frequency among
all candidates is regarded as the prediction. This
baseline is inspired by Huang et al. (2015).
‘https://github.com/mozillazg/
python-pinyin
Shttps://nlp.stanford.edu/projects/

nmt /
®https://github.com/clab/fast_align
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# | Systems Zh=En En=7h De=En En=-De
NISTO5 NISTO6 || NISTO5 NISTO6 || NT13 NTI14 | NT13 NTI4
1 | TRANSTABLE 41.40 39.78 28.00 26.99 37.43 36.64 || 32.99 31.12
2 | TRANS-PE 34.51 35.50 32.23 34.88 3445 33.02 || 31.51 30.65
3 | TRANS-NPE 35.97 36.78 34.31 36.19 36.69 36.01 || 33.25 31.30
4 | WPM-SEP 54.15 55.04 53.30 53.67 56.93 55.67 || 54.54 51.46
5 | WPM-JOINT 55.54 55.85 53.64 54.25 57.84 56.75 | 56.91 52.68

Table 1: The main results of different systems on Chinese-English and German-English datasets. The results in
this table are the averaged accuracy on four translation contexts (i.e., prefix, suffix, zero-context, and bi-context).

# | Systems Zh=En En=Z7h

Prefix Suffix Zero Bi Avg. | Prefix Suffix Zero Bi Avg.
1 | TRANSTABLE || 4191 4499 4419 4328 43.59 | 29.73 3280 29.73 29.61 30.46
2 | TRANS-PE 29.84 38.61 26.08 48.06 35.64 || 30.64 3497 22.67 3895 31.80
3 | TRANS-NPE 37.36 4043 2950 4442 3792 | 36.10 43.05 32.00 4579 39.23
4 | WPM-SEP 5843 60.59 5399 64.46 5936 || 60.02 61.05 53.76 64.46 59.82
5 | WPM-JOINT 5991 60.71 5535 6230 59.56 || 61.39 61.73 53.87 63.78 60.19

Table 2: The results of different systems on NIST02. We evaluate the performances of those systems on both

Zh=-En and En=-Zh tasks by accuracy.

TRANS-PE: We train a vanilla NMT model us-
ing the Transformer-base model. During the infer-
ence process, we use the context on the left hand
side of human input as the model input, and return
the most possible words based on the probability of
valid words selected out by the human input. This
baseline is inspired by Langlais et al. (2000); Santy
et al. (2019).

TRANS-NPE: As another baseline, we also train
an NMT model based on Transformer, but without
position encoding on the target side. While testing,
we use the averaged hidden vectors of all the target
words outputted by the last decoder layer to predict
the potential candidates.

5.3 Main Results

Table 1 shows the main results of our methods and
three baselines on the test sets of Chinese-English
and German-English datasets. It is clear from the
results that our methods WPM-SEP and WPM-
JOINT significantly outperform the three baseline
methods. Results on Row 4 and Row 5 of Table
1 also show that the WPM-JOINT method, which
uses a joint training strategy to optimize a single
model, achieves better overall performance than
WPM-SEP, which trains four models for different
translation contexts respectively. In-depth analysis
about the two training strategies is presented in the

next section.

The method TRANS-PE, which assumes the
human input is the next word of the given con-
text, behaves poorly under the more general set-
ting. As the results of TRANS-NPE show, when
we use the same model as TRANS-PE and relax
the constraint of position by removing the posi-
tion encoding, the accuracy of the model improves.
One interesting finding is that the TRANSTABLE
method, which is only capable of leveraging the
zero-context, achieves good results on the Chinese-
English task when the target language is English.
However, when the target language is Chinese, the
performance of TRANSTABLE drops significantly.

6 Experimental Analysis

6.1 Effects on Different Translation Context

In this section, we presents more detailed results
on the four translation contexts and analyze the
features of GWLAN. These analyses can help us
to better understand the task and propose effective
approaches in the future.

Separate Training VS. Joint Training Com-
pared with WPM-SEP, WPM-JOINT shows two
advantages. On one hand, even there is only one
model, WPM-JOINT yields better performances
than WPM-SEP, enabling simpler deployment.
This may be caused by that training on multiple
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related tasks can force the model learn more ex-
pressive representations, avoiding over-fitting. On
the other hand, the variance of results on differ-
ent translation contexts of WPM-JOINT is smaller,
which can provide an more steady autocompletion
service. From the viewpoint of joint training, the
lower variance may be caused by that WPM-JOINT
spends more efforts to minimize the one with max-
imal risk (i.e., zero-context), although sometimes
it may slightly sacrifice the task with minimal risk
(i.e., bi-context).

The results of WPM-SEP and WPM-JOINT also
have some shared patterns. Firstly, the perfor-
mances of the two methods on prefix and suffix
translation contexts are nearly the same. Although
the prefix and suffix may play different roles in the
SVO language structure, they have little impact on
the the autocompletion accuracy using our method.
Moreover, among the results on four translation
contexts, the performances on bi-context are bet-
ter than prefix and suffix, and prefix and suffix are
better than zero-context. This finding shows that
more context information can help to reduce the
uncertainty of human desired words.

Comparison with baselines The TRANS-PE
method in previous works is more sensitive to the
position of human input. The statistical results
shows that the averaged distances in the original
sentence between the prediction words and trans-
lation contexts are various for different translation
contexts, which are 7.4, 6.5, 14.1, and 3.2 for pre-
fix, suffix, zero-context, and bi-context, respec-
tively. When the desired words are much closer to
the context, TRANS-PE can achieve better perfor-
mances. Moreover, TRANS-PE can achieve more
than 80 accuracy scores when the prediction word
is the next word of the given prefix, however, its
performance drops significantly when the word is
not necessarily conjunct to the prefix. We can also
find that TRANS-NPE, which removes the position
information of target words, achieves better overall
performances compared with TRANS-PE.

In contrast, the performance of TRANSTABLE
is less affected by the position of the prediction
words, which is demonstrated by the low variances
on both tasks in Table 2. The results of TRANSTA-
BLE have also surprised us, which achieves more
than 41 accuracy scores on the Zh=-En task. This
observation shows the importance of alignment and
the potential of statistical models. Compared with
the results on the Zh=-En task, the overall accu-
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Figure 4: Robustness Analysis. The x-axis represents
the percentage of words that have been replaced by
noise tokens in NIST02. The model used for this analy-
sis is the WPM-JOINT, which is trained on the Zh=En
task without noisy translation context.

racy on En=-Zh task is much lower, likely due to
that the number of valid words after filtered by the
human input on Chinese is much more than that on
English. Therefore, it is easier for TRANSTABLE
to determine the human desired words in English.

6.2 Robustness on Noisy Contexts

In this work, the translation contexts are simulated
using the references. However, in real-world sce-
narios, translation contexts may not be perfect, i.e.,
some words in the translation contexts may be in-
correct. In this section, we evaluate the robustness
of our model on noisy contexts. We first use the
translation table constructed by TRANSTABLE to
find some target words that share the same source
words with the original target words, and then use
those found words as noise tokens.

The robustness results are shown in Figure 4.
For all the translation context types except for zero-
context, the performance drops slowly when the
percentage of noise tokens increases. However,
even with 80% words in the context, the perfor-
mance of WPM-JOINT outperforms the case of
zero-context, which shows that our WPM-JOINT
method is noise tolerant.

6.3 Discussion

In this work, we formalize the task as a classifi-
cation problem. However, the generation formal-
ization also deserves to be explored in the future.
For example, the generation may happen in two
circumstances: word-level completion based on

4799



subwords, and phrase-level completion. In the first
case, although the autocompletion service provided
for human translators is word-level, in the internal
system we can generate a sequence of subwords
(Sennrich et al., 2015) that satisfy the human typed
characters, and provide human translators with the
merged subwords. This subword sequence gener-
ation can significantly alleviate the OOV issue in
the word-level autocompletion. In the phrase-level
autocompletion case, if we can predict more than
one desired words, the translation efficiency and
experience may be improved further. We would
like to leave it as future work.

It is also worth noting that we did not conduct
human studies in this work. We think evidences in
previous work can already prove the effectiveness
of word-level autocompletion when assisting hu-
man translators. For example, TransType (Langlais
et al., 2000) is a simple rule-based tool that only
considers the prefix context, but the majority of
translators said that TransType improved their typ-
ing speed a lot. Huang et al. (2015) hired 12 profes-
sional translators and systematically evaluate their
word autocompletion tool based on zero-context.
Experiments show that the more keystrokes are re-
duced, the more time can be saved for translators.
Since the prediction accuracy is highly correlated
with the keystrokes, we think higher accuracy will
make translators more productive. That is the main
reason that we use accuracy to automatically evalu-
ate the model performance. Besides, the automatic
evaluation metric also makes the GWLAN task
easier to follow.

7 Conclusion

We propose a General Word-Level Autocomple-
tioN (GWLAN) task for computer-aided translation
(CAT). In our setting, we relax the strict constraints
on the translation contexts in previous work, and
abstract four most general translation contexts used
in real-world CAT scenarios. We propose two ap-
proaches to address the variety of context types and
weak position information issues in GWLAN. To
support automatic evaluation and to ensure a conve-
nient and fair comparison among different methods,
we construct a benchmark for the task. Experi-
ments on this benchmark show that our method
outperforms baseline methods by a large margin on
four datasets. We believe that this benchmark to be
released will push forward future research in CAT.
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