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Abstract

Open relation extraction aims to cluster rela-
tion instances referring to the same underlying
relation, which is a critical step for general re-
lation extraction. Current OpenRE models are
commonly trained on the datasets generated
from distant supervision, which often results
in instability and makes the model easily col-
lapsed. In this paper, we revisit the procedure
of OpenRE from a causal view. By formu-
lating OpenRE using a structural causal mod-
el, we identify that the above-mentioned prob-
lems stem from the spurious correlations from
entities and context to the relation type. To
address this issue, we conduct Element Inter-
vention, which intervenes on the context and
entities respectively to obtain the underlying
causal effects of them. We also provide two
specific implementations of the interventions
based on entity ranking and context contrast-
ing. Experimental results on unsupervised re-
lation extraction datasets show that our meth-
ods outperform previous state-of-the-art meth-
ods and are robust across different datasets1.

1 Introduction

Relation extraction (RE) is the task to extract re-
lation between entity pair in plain text. For ex-
ample, when given the entity pair (Obama, the
United States) in the sentence “Obama was sworn
in as the 44th president of the United States”, an
RE model should accurately predict the relation-
ship “President of” and extract the corresponding
triplet (Obama, President of, the United States) for
downstream tasks. Despite the success of many
RE models (Zeng et al., 2014; Baldini Soares et al.,
2019), most previous RE paradigms rely on the pre-
defined relation types, which are always unavail-
able in open domain scenario and thereby limits
their capability in real applications.

∗Corresponding authors.
1Code available at https://github.com/Lfc1993/EI ORE
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Figure 1: The Structural Causal Model demonstrates
the procedure of OpenRE. (a) is the original SCM; (b)
Entity intervention that fixes the entity pair and adjusts
different contexts; (c) Context intervention that fixes
the context and adjusts different entity pairs.

Open Relation Extraction (OpenRE), on the oth-
er hand, has been proposed to extract relation facts
without pre-defined relation types neither annotat-
ed data. Given a relation instance consisting of two
entities and their context, OpenRE aims to identify
other instances which mention the same relation.
To achieve this, OpenRE is commonly formulated
as a clustering or pair-matching task. Therefore the
most critical challenge for OpenRE is how to learn
effective representations for relation instances and
then cluster them. To this end, Yao et al. (2011)
adopts topic model (Blei et al., 2003) to generate
latent relation type for unlabelled instances. Lat-
er works start to utilize datasets collected using
distant supervision for model training. Along this
line, Marcheggiani and Titov (2016) utilizes an
auto-encoder model and trains the model through
self-supervised signals from entity link predictor.
Hu et al. (2020) encodes each instance with pre-
trained language model (Devlin et al., 2019; Baldi-
ni Soares et al., 2019) and learn the representation
by self-supervised signals from pseudo labels.

Unfortunately, current OpenRE models are often
unstable and easily collapsed (Simon et al., 2019).

https://github.com/Lfc1993/EI_ORE


For example, OpenRE models frequently cluster
all relation instances with context “was born in”
into the relation type BORN IN PLACE because
they share similar context information. Howev-
er, “was born in” can also refer to the relation
BORN IN TIME. Furthermore, current models also
tend to cluster two relation instances with the same
entities (i.e., relation instances with the same head
and tail entities) or the same entity types into one
relation. This problem can be even more severe if
the dataset is generated using distant supervision
because it severely relies on prototypical context
and entity information as supervision signals and
therefore lacks of diversity.

In this paper, we attempt to explain and resolve
the above-mentioned problem in OpenRE from a
causal view. Specifically, we formulate the pro-
cess of OpenRE using a structural causal mod-
el (SCM) (Pearl, 2009), as shown in Figure 1. The
main assumption behind the SCM is that distant
supervision will generate highly correlated relation
instances to the original prototypical instance, and
there is a strong connection between the generated
instance to the prototypical instance through either
their entities or their context. For example, ”[Jobs]
was born in [California]” and ”[Jobs] was born in
[1955]” are highly correlated because they share
similar context “was born in” and entity “Jobs”.
Such connection will result in spurious correlation-
s, which appear in the form of the backdoor paths
in the SCM. Then the spurious correlations will
mislead OpenRE models, which are trained to cap-
ture the connection between entities and context to
the relation type.

Based on the above observations, we propose
element intervention, which conducts backdoor ad-
justment on entities and context respectively to
block the backdoor paths. However, due to the
lack of supervision signals, we cannot directly op-
timize towards the underlying causal effects. To
this end, we further propose two surrogate imple-
mentations on the adjustments on context and en-
tities, respectively. Specifically, we regard the in-
stances in the original datasets as the relation pro-
totypes. Then we implement the adjustment on
context through a Hierarchy-Based Entity Rank-
ing (Hyber), which fixes the context, samples re-
lated entities from an entity hierarchy tree and
learns the causal relation through rank-based learn-
ing. Besides, we implement the adjustment on
entities through a Generation-based Context Con-

trasting (Gcc), which fixes the entities, generates
positive and negative contexts from a generation-
based model and learns the causal effects through
contrastive learning.

We conduct experiments on different unsuper-
vised relation extraction datasets. Experimental
results show that our method outperforms previ-
ous state-of-the-art methods with a large margin
and suffers much less performance discrepancy be-
tween different datasets, which demonstrate the
effectiveness and robustness of the proposed meth-
ods.

2 OpenRE from Causal View

In this section, we formulate OpenRE from the
perspective of Structural Causal Model and give
the theoretical proof for intervention methods
that block the backdoor paths from relation ele-
ments (i.e., context and entity pair) to the latent
relation types.

2.1 Task Definition

Relation extraction (RE) is the task of extract-
ing the relationship between two given entities
in the context. Considering the sequence exam-
ple: S = [s0, ..., sn−1] which contains n words,
e1 = [i, j] and e2 = [k, l] indicate the entity pair,
where 0 ≤ i ≤ j < k ≤ l ≤ n − 1, a relation
instance X is defined as X = (S, e1, e2), (i.e. the
tuple of entity pair and the corresponding context).
The element of a relation instance is the entity pair
and the corresponding context. Traditional RE task
is to predict the relations type when given X . How-
ever, the target relation types are not pre-defined
in OpenRE. Consequently, OpenRE is commonly
formulated as a clustering task or a pair-matching
task by considering whether two relation instances
Xi and Xj refer to the same relation.

Unfortunately, current OpenRE models are often
unstable and easily collapsed (Simon et al., 2019).
In the next section, we formulate OpenRE using a
structural causal model and then identify the rea-
sons behind these deficiencies from the SCM.

2.2 Structural Causal Model for OpenRE

Figure 1 (a) shows the structural causal model for
OpenRE. The main idea behind the SCM is distant
supervision will generate highly correlated relation
instances to the original prototypical instance, and
there is a strong connection between the generat-
ed instance to the prototypical instance through
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Figure 2: Framework of Element Intervention.

either their entities or their context. Specifically, in
the SCM, we describe OpenRE with five critical
variables: 1) the prototypical relation instance P ,
which is a representative relation instance of one
relation type cluster; 2) the entity pair E, which
encodes the entity information of one relation in-
stance; 3) the context C, which encodes the context
information of one relation instance; 4) a relation
instance X (which can be generated from distan-
t supervision or other strategies) and 5) the final
pair-wise matching result Y , which corresponds to
whether instance X and the prototypical relation
instance P entail the same relation.

Given the variables mentioned above, we formu-
late the process of generating OpenRE instances
based on the following causal relations:

• E ← P → C formulates the process of sam-
pling related entities and context respectively
from the prototypical relation instance P .

• E → X ← C formulates the relation instance
generating process. Given the context C and
entities E from the prototypical relation in-
stance P , a new relation instance X is gen-
erated based on the information in C and E.
This process can be conducted through distant
supervision.

• P → Y ← X formulates the OpenRE clus-
tering or pair-wise matching process. Given a
prototypical relation instance P and another
relation instance X , this process will deter-
mine whetherX belongs to the relation cluster
of P .

2.3 Spurious Correlations in OpenRE

Given a relation prototypical instance P , the learn-
ing process of OpenRE is commonly to maximize
the probability P(y, P |X) = P(y, P |E,C). How-
ever, as it can be observed from the SCM, there
exists a backdoor path P → E → X when we
learn the underlying effects of context C. That is
to say, the learned effect of C to Y is confounded
by E (through P ). For example, when we learned
the effects of context “was born in” to the relation
“BORN IN PLACE”, the backdoor path will lead
the model to mistake the contribution of the entities
(PERSON, PLACE) to the contribution of context,
and therefore resulted in spurious correlation. The
same thing happens when we learn the effects of
entities E, which is influenced by the backdoor
path P → C → X . As a result, optimizing these
spurious correlations will result in an unstable and
collapsed OpenRE model.

2.4 Resolving Spurious Correlations via
Element Intervention

To resolve the spurious correlations, we adopt the
backdoor adjustment (Pearl, 2009) to block the
backdoor paths. Specifically, we separately inter-
vene on context C and entities E by applying the
do–operation.

Entity Intervention. As shown in Figure 1 (b),
to avoid the spurious correlations of entities to re-
lation types, we conduct the do-operation by inter-



vening on the entities E:
P(Y, P |do(E = e0))

=
∑
C,X

P(C,P )P(X,Y |e0, C, P )

=
∑
C

P(C,P )P(Y |e0, C, P )

=
∑
C

P(P )P(C|P )P(Y |e0, C, P )

(1)

Since P(P ) is uniformly distributed in the real
world, this equation can be rewritten as:

P(Y, P |do(E = e0))

∝
∑
C

P(C|P )P(Y |e0, C, P ) (2)

This equation means the causal effect from the enti-
ties E to its matching result Y can be estimated by
considering the corresponding possibility of each
context given the prototypical relation instance P .
The detailed implementation will be described in
the next section.

Context Intervention. Similarly, we conduct
context intervention to avoid the spurious corre-
lations of context to relation types, as shown in
Figure 1 (c):

P(Y, P |do(C = c0))

∝
∑
E

P(E|P )P(Y |c0, E, P ) (3)

which means the causal effect from the context
C to its matching result Y can be estimated by
considering the corresponding possibility of each
entity E given P . The detailed implementation
will also be described in the next section.

2.5 Optimizing Causal Effects for OpenRE
To effectively capture the causal effects of entities
E and context C to OpenRE, a matching model
P(Y |C,E, P ; θ) should be learned by optimizing
the causal effects:
L(θ) =I(X,P ) · P(Y = 1, P |do(E = e(X))

+ I(X,P ) · P(Y = 1, P |do(C = c(X))

+ [1− I(X,P )] · P(Y = 0, P |do(E = e(X))

+ [1− I(X,P )] · P(Y = 0, P |do(C = c(X))
(4)

where e(X) and c(X) represents the entities and
context in relation instance X , I(X,P ) is an in-
dicator which represents whether X and P be-
long to the same relation. P(Y |C,E, P ; θ) =
P(Y |X,P ; θ) is a matching model, which is de-
fined using a prototype-based measurements:

P(Y |X,P ; θ) ∝ −D(R(X; θ), R(P ; θ)) (5)

where D is a distance measurement and R(X; θ)
is a representation learning model parametrized
by θ, which needs to be optimized during learn-
ing. In the following, we will use D(X,P ) =
D(R(X; θ), R(P ; θ)) for short.

However, it is difficult to directly optimize the
above loss function because 1) in unsupervised
OpenRE, we are unable to know whether the rela-
tion instanceX generated from (E,C) matches the
prototypical relation instance P ; 2) we are unable
to traverse all possibleE andC in Equation (2) and
(3). To resolve these problems, in the next section,
we will describe how we implement the context
intervention via hierarchy-based entity ranking and
the entity intervention via generation-based context
contrasting.

3 Element Intervention Implementation

As we mentioned above, it is difficult to directly
optimize the causal effects via Equation (4). To
tackle this issue, this section provides a detailed
implementation to approximate the causal effect-
s. Specifically, we regard all relation instances
in the original data as the prototypical relation in-
stance P , and then generate highly correlated re-
lation instances X from P via a hierarchy-based
sampling and generation-based contrasting. Then
we regard structural signals from the entity hier-
archy and confidence score from the generator as
distant supervision signals, and learn the causal
effects via ranking-based learning and contrastive
learning.

3.1 Hierarchy-based Entity Ranking for
Context Intervention

To implement context intervention, we propose to
formulate P(E|P ) using an entity hierarchy, and
approximately learn to optimize the causal effects
of P(Y = 1, P |do(C)) and P(Y = 0, P |do(C))
in Equation (4) via a hierarchy-based entity rank-
ing loss. Specifically, we first regard all relation in-
stances in the data as prototypical relation instance
P . Then we formulate the distribution P(E|P ) by
fixing the context in P and replacing entities by
sampling from an entity hierarchy. Each sampled
entity is regarded as the same P(E|P ). Intuitively,
the entity closer to the original entities in P tend-
s to generate more consistent relation instance to
P . To approximate this semantic similarity, we
utilize the meta-information in WikiData (i.e., the

“instance of” and “subclass of” statements, which



describe the basic property and concept of each en-
tity), and construct a hierarchical entity tree for
ranking the similarity between entities. In this
work, we apply a three-level hierarchy through
these two statements:

• Sibling Entities: The entities belonging to the
same parent category as the original entity. For
example, “Aube” and “Paris” are sibling entities
since they are both the child entity of “depart-
ment of France”, and both express the concepts
of location and GPE. These sibling entities can
be considered as golden entities to replace.

• Cousin Entities: The entities belonging to the
same grandparent category but the different par-
ent category from the original entity. For ex-
ample, “Occitanie” and “Paris” is of the same
grandparent category “French Administrative
Division”, but shares different parent category.
These entities can be considered as silver entities
since they are likely to be the same type as the
original one but less possible than the sibling
entities.

• Other Entities: The entities beyond the grand-
parent category, which are much less likely to be
the same type as the original one.

For the example in Figure 2, the prototypical rela-
tion instance “Hugo was born in [Paris], [France]”
is sampled to be intervened. We first fix the context
and randomly choose one of the head or tail entity
to be replaced. In this case, we choose ”Paris”.
Then, entities that correspond to different hierar-
chies are sampled and to replace the original entity.
In this case, “Aube” is sampled as the sibling enti-
ty, “Occitanie” to be the cousin entity and “19th

century” to be the other entity.
After sampled these intervened instances, we ap-

proximately optimize P(Y, P |do(C)) using a rank-
based loss function:

LE(θ;X ) =
n−1∑
i=1

max(0,

D(P,Xi)−D(P,Xi+1) +mE),
(6)

where θ is the model parameters, D(Xi, P ) is the
distances between representations of generated rela-
tion instance Xi and prototypical relation instance
P . X is the intervened relation instance set, mE is
the margin for entity ranking loss, and n = 3 is the
depth of the entity hierarchy.

3.2 Generation-based Context Contrasting
for Entity Intervention

Different from the context intervention that can eas-
ily replace entities, it is more difficult to intervene
on entities and modify the context. Fortunately,
the rapid progress in pre-trained language mod-
el (Radford et al., 2019; Lewis et al., 2020; Raffel
et al., 2020) makes the language generation from
RDF data2 available (Ribeiro et al., 2020). So in
this work, we take a different paradigm named
Generation-based Context Contrasting, which di-
rectly generates different relation instances from
specifically designed relation triplets, and approx-
imately learn to optimize the causal effects of
P(Y = 1, P |do(E)) and P(Y = 0, P |do(E)) in
Equation (4) via contrastive learning. Specifically,
we first sample relation triplets from Wikidata as
prototypical relation instance P , and then generates
relation triplets with the same entities but different
relation context using the following strategies:

• Relation Renaming, which contains the same
entity pair with the original one, but an alias
relation name for generating a sentence with dif-
ferent expressions. Then this instance is consid-
ered as a positive sample to prototypical relation
instance.

• Context Expansion, which extends the original
relation instance with an additional triplet. The
added triplet owns the same head/tail entity with
the original instance but differs in the relation
and tail/head entity. This variety aims to add ir-
relative context, which forces the model to focus
on the important part of the context and is also
considered as a positive sample to prototypical
relation instance.

• Relation Replacing, which contains the same
entity pair as the original one, but with other
relations between these two entities. This variety
aims to avoid spurious correlations that extracts
only based on the entity pair and is considered
as a negative instance to the prototypical relation
instance.

Then we use the generator to generate texts based
on these triplets. Specifically, we first wrap the
triplets with special markers “[H], [T],[ R]” corre-
sponds to head entity, tail entity, and relation name.
Then we input the concatenated texts for relation
instance generation. In our implementation, we

2https://www.w3.org/TR/WD-rdf-syntax-971002/
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use T5 (Raffel et al., 2020; Ribeiro et al., 2020) as
the base generator, and pre-train the generator on
WebNLG data (Gardent et al., 2017). After sam-
pled these intervened instances, we approximately
optimize P(Y, P |do(E)) using the following con-
trastive loss function:
LC(θ;X ) =

∑
Xp∈P

∑
Xn∈N

max(D(P,Xp)

−D(P,Xn) +mC , 0),
(7)

where θ is the model parameters, X is the inter-
vened instance set, P is the positive instance set
generated from relation renaming and context ex-
pansion, N is the negative instance set generated
from relation replacing, P is the original prototypi-
cal relation instance, mC is the margin.

3.3 Surrogate Loss for Optimizing Causal
Effects

Based on entity ranking and context contrasting, we
approximate the causal effects optimized in Equa-
tion (4) with the following ranking and contrastive
loss:

L(θ;X ) = LE(θ;X ) + LC(θ;X ). (8)

which involves both the entity ranking loss and the
context contrastive loss. During inference, we first
encode each instance into its representation using
the learned model. Then we apply a clustering al-
gorithm to cluster the relation representations, and
the relation for each instance is predicted through
the clustering results.

4 Experiments

4.1 Dataset

We conduct experiments on two OpenRE datasets
– T-REx SPO and T-REx DS, since these datasets
are from the same data source but only differ in
constructing settings, which is very suitable for e-
valuating the stability of OpenRE methods. These
datasets are both from T-REx3 (Elsahar et al., 2018)
– a dataset consists of Wikipedia sentences that are
distantly aligned with Wikidata relation triplets;
and these aligned sentences are further collected as
T-REx SPO and T-REx DS according to whether
they have surface-form relations or not. As a result,
T-REx SPO contains 763,000 sentences of 615 re-
lations, and T-REx DS contains nearly 12 million
sentences of 1189 relations. For both datasets, we

3https://hadyelsahar.github.io/t-rex/

use 20% for validation and the remaining for model
training as Hu et al. (2020).

4.2 Baseline and Evaluation Metrics

Baseline Methods. We compare our model with
the following baselines: 1) rel-LDA (Yao et al.,
2011), a generative model that considers the un-
supervised relation extraction as a topic model.
We choose the full rel-LDA with a total number
of 8 features for comparison in our experiment.
2) March (Marcheggiani and Titov, 2016), a VAE-
based model learned by self-supervised signal of
entity link predictor. 3) UIE (Simon et al., 2019), a
discriminative model that adopts additional regular-
ization to guide model learning. And it has differ-
ent versions according to the choices of different
relation encoding models (e.g., PCNN). We report
the results of two versions–UIE-PCNN and UIE-
BERT (i.e., using PCNN and BERT as the relation
encoding models) with the highest performance.
4) SelfORE (Hu et al., 2020), a self-supervised
framework that bootstraps to learn a contextual re-
lation representation through adaptive clustering
and pseudo label.

Evaluation Metrics. We adopt three commonly-
used metrics to evaluate different methods:
B3 (Bagga and Baldwin, 1998), V-measure (Rosen-
berg and Hirschberg, 2007) and Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985).

Specifically, B3 contains the precision and recall
metrics to correspondingly measure the correct rate
of putting each sentence in its cluster or clustering
all samples into a single class, which are defined as
follows:
B3
Prec. = E

X,Y
P (g(X) = g(Y )|c(X) = c(Y ))

B3
Rec. = E

X,Y
P (c(X) = c(Y )|g(X) = g(Y ))

Then B3 F1 is computed as the harmonic mean of
the precision and recall.

Similar to B3, V-measure focuses more on small
impurities in a relatively “pure” cluster than less
“pure” cluster, and use the homogeneity and com-
pleteness metrics:

VHomo. =1−H(c(X)|g(X))/H(c(X))

VComp. =1−H(g(X)|c(X))/H(g(x))

ARI is a normalization of the Rand Index, which
measures the agreement degree between the clus-
ter and golden distribution. This metric ranges
in [-1,1], a more accurate cluster will get a high-
er score. Different from previous metrics, ARI is

https://hadyelsahar.github.io/t-rex/


Dataset model
B3 V-measure

ARIF1 Prec. Rec. F1 Homo. Comp.

T-REx SPO

rel-LDA-full (Yao et al., 2011)∗ 18.5 14.3 26.1 19.4 16.1 24.5 8.6
March (Marcheggiani and Titov, 2016)∗ 24.8 20.6 31.3 23.6 19.1 30.6 12.6
UIE-PCNN (Simon et al., 2019) 36.3 28.4 50.3 41.4 33.7 53.6 21.3
UIE-BERT (Simon et al., 2019) 38.1 30.7 50.3 39.1 37.6 40.8 23.5
SelfORE (Hu et al., 2020) 41.0 39.4 42.8 41.4 40.3 42.5 33.7
Our 45.0 46.7 43.4 45.3 45.4 45.2 36.6
w/o Hyber 41.4 40.9 42.0 43.7 42.3 45.2 33.2
w/o Gcc 42.2 44.2 40.4 45.2 44.7 45.7 34.7

T-REx DS

rel-LDA-full (Yao et al., 2011)∗ 12.7 8.3 26.6 17.0 13.3 23.5 3.4
March (Marcheggiani and Titov, 2016)∗ 9.0 6.4 15.5 5.7 4.5 7.9 1.9
UIE-PCNN (Simon et al., 2019) 19.7 14.0 33.4 26.6 20.8 36.8 9.4
UIE-BERT (Simon et al., 2019) 22.4 17.6 30.8 31.2 26.3 38.3 12.3
SelfORE (Hu et al., 2020) 32.9 29.7 36.8 32.4 30.1 35.1 20.1
Our 42.9 40.2 45.9 47.3 46.9 47.8 25.0
w/o Hyber 40.9 39.2 42.7 43.0 42.5 43.6 22.4
w/o Gcc 41.5 40.1 42.9 45.2 44.8 45.6 21.7

Table 1: Results (%) on unsupervised relation extraction datasets. The results of * are reproduced in Simon et al.
(2019), Hyber refers to our Hierarchy-based Entity Ranking methods and Gcc refers to Generation-based Context
Contrasting method.

less sensitive to precision/homogeneity and recal-
l/completeness.

4.3 Hyperparameters and Implementation
Details

In the training period, we manually search the Hy-
perparameters of learning rate in [5e-6,1e-5, 5e-5],
and find 1e-5 is optimal, search weight decay in
[1e-6, 3e-6, 5e-5] and choose 3e-6, and use other
hyperparameters without search: the dropout rate
of 0.6, a batch size of 32, and a linear learning
schedule with a 0.85 decay rate per 1000 mini-
batches. In the evaluation period, we simply adopt
the pre-trained models for representation extrac-
tion, then cluster the evaluate instances based on
these representations. For clustering, we follow
previous work (Simon et al., 2019; Hu et al., 2020)
and set K=10 as the number of clusters. The train-
ing period of each epoch costs about one day. In
our implementation, we adopt Bert-base-uncased
model 4 as the base model for relation extraction
and a modified T5-base model 5 for text generation.
The entity hierarchical tree is constructed based
on WikiData and finally contains 589,121 entities.
The generation set contains about 530,000 triplets,
and each triplet corresponds to 5 positive/negative
triplets and generated texts. We use one Titan RTX
for Element Intervention training and four cards of
RTX for text generation.

4https://github.com/huggingface/transformers
5https://github.com/UKPLab/plms-graph2text

Source B3 V-meas. ARI
T-REx SPO 45.0 45.3 36.6
Generated 46.0 44.6 36.7

Table 2: The results (%) of entity ranking based on d-
ifferent data sources. These results are reported on T-
REx SPO. And we only report the F1 scores of B3 and
V-measure for simplicity.

4.4 Overall Results
Table 1 shows the overall results on T-REx SPO
and T-REx DS. From this table, we can see that:

1. Our method outperforms previous
OpenRE models and achieves the new
state-of-the-art performance. Comparing
with all baseline models, our method achieves
significant performance improvements:
on T-Rex SPO, our method improves the
SOTA B3 F1 and V-measure F1 by at least
3.9%, and ARI by 2.9%; on T-Rex DS, the
improvements are more evident, where SOTA
B3 F1 and V-measure F1 are improved by at
least 10.0%, and ARI is improved by 4.9%.

2. Our methods perform robustly in differen-
t datasets. Comparing the performances on
these two datasets, we can see that almost all
baseline methods suffer dramatic performance
drops on all these metrics, which verifies that
previous OpenRE methods can be easily influ-
enced by the spurious correlations in datasets,
as T-REx DS involves much more noisy in-
stances without relation surface forms. As

https://github.com/huggingface/transformers
https://github.com/UKPLab/plms-graph2text


Metrics Both Seen Unseen
BLEU 60.9 65.9 54.9
chrF++ 76.0 79.2 72.5

Table 3: Quantitative performance of our generator on
WebNLG. Seen stands for generating from seen rela-
tion triplets, unseen stands for generating from unseen
relation triplets. Both stands for a combination of seen
and unseen relation triplets.

contrast, our methods have marginal perfor-
mance differences, which indicates both the
effectiveness and robustness of our methods.

4.5 Detailed Analysis

In this section, we conduct several experiments for
detailed analysis of our method.

Ablation Study. To study the effect of different
intervention modules, we conduct an ablation study
on each intervention module by correspondingly
ablating one. The other setting remains the same
as the main model. From Table 1, we can see that,
in both T-REx SPO and DS, combining these t-
wo modules can result in a noticeable performance
gain, which demonstrates that both two modules
are important to the final model performance and
they are complementary on alleviating unnecessary
co-dependencies: Hyber aims to alleviate the spuri-
ous correlations between the context and the final
relation prediction, and Gcc aims to alleviate the
spurious correlations between entity pair and the
final relation prediction. Besides, in T-REx DS, we
can see that Hyber or Gcc only is effective enough
to outperform previous SOTA methods, which indi-
cates that element intervention has clearly unbiased
representation on either entity pair or context.

Entity Ranking on Generated Texts. This ex-
periment studies the effect of different data sources
for Hyber module. As shown in Table 2, we can see
that Hyber based on T-REx SPO dataset or the gen-
erated texts has marginal difference. That means
Hyber is robust to the source context. On the other
hand, the quality of the generated texts satisfies the
demand of this task.

Quality of Context Generation(unseen relation-
s). This experiment gives a quantitative analy-
sis of the generator used in our work. We select
WebNLG (Gardent et al., 2017) to test the gener-
ator, and adopt the widely-used metrics including
BLEU (Papineni et al., 2002) and chrF++ (Popović,
2017) for evaluation. As shown in Table 3, we can

Figure 3: Visualization of relation representation
learned by element intervention. Each relation instance
is colored with the ground-truth label.

see that our generator is quite effective on seen re-
lation generation. Though the generator suffers a
performance drop in unseen relations, the scores
are still receptible. Combined with results from
other experiments, the generator is sufficient for
this task.

Visualization of Relation Representations. In
this experiment, we visual the representations of
the validation instances. We sample 10 relations
from the T-REx SPO validation set and each rela-
tion with 200 instances for visualization. To reduce
the dimension, we use t-sne (van der Maaten and
Hinton, 2008) to map each representation to the di-
mension of 2. For the convenience of comparison,
we color each instance with its ground-truth rela-
tion label. Since the visualization results of only
Hyber or Gcc are marginally different from the full
model, so we only choose the full model for visual-
ization. As shown in Figure 3, we can see that each
relation is mostly separate from others. However,
there still be some instances misclassified due to
the overlapping in the representation space.

5 Related Work

Current success of supervised relation extraction
methods (Bunescu and Mooney, 2005; Qian et al.,
2008; Zeng et al., 2014; Zhou et al., 2016; Velikovi
et al., 2018) depends heavily on large amount of
annotated data. Due to this data bottleneck, some
weakly-supervised methods are proposed to learn
relation extraction models from distantly labeled
datasets (Mintz et al., 2009; Hoffmann et al., 2011;
Lin et al., 2016) or few-shot datasets (Han et al.,
2018; Baldini Soares et al., 2019; Peng et al., 2020).
However, these paradigms still require pre-defined



relation types and therefore restricts their applica-
tion to open scenarios.

Open relation extraction, on the other hand, aims
to cluster relation instances referring to the same
underlying relation without pre-defined relation
types. Previous methods for OpenRE can be rough-
ly divided into two categories. The generative
method (Yao et al., 2011) formulates OpenRE us-
ing a topic model, and the latent relations are gen-
erated based on the hand-crafted feature represen-
tations of entities and context. While the discrimi-
native method is first proposed by Marcheggiani
and Titov (2016), which learns the model through
the self-supervised signal from entity link predictor.
Along this line, Hu et al. (2020) propose the Self-
ORE that learns the model through pseudo label
and bootstrapping technology. However, Simon
et al. (2019) point out that previous OpenRE meth-
ods severely suffer from the instability, and they
also propose two regularizers to guide the learn-
ing procedure. But the fundamental cause of the
instability is still undiscovered.

In this paper, we revisit the procedure of
OpenRE from a causal view. By formulating
OpenRE using a structural causal model, we iden-
tify the cause of the above-mentioned problems,
and alleviate the problems by Element Intervention.
There are also some recent studies try to introduce
causal theory to explain the spurious correlations
in neural models (Feng et al., 2018; Gururangan
et al., 2018; Tang et al., 2020; Qi et al., 2020; Zeng
et al., 2020; Wu et al., 2020; Qin et al., 2020; Fu
et al., 2020). However, to the best of our knowl-
edge, this is the first work to revisit OpenRE from
the perspective of causality.

6 Conclusions

In this paper, we revisit OpenRE from the perspec-
tive of causal theory. We find that the strong con-
nections between the generated instance to the pro-
totypical instance through either their entities or
their context will result in spurious correlations,
which appear in the form of the backdoor paths
in the SCM. Then the spurious correlations will
mislead OpenRE models. Based on the observa-
tions, we propose Element Intervention to block the
backdoor paths, which intervenes on the context
and entities respectively to obtain the underlying
causal effects of them. We also provide two specif-
ic implementations of the interventions based on
entity ranking and context contrasting. Experimen-

tal results on two OpenRE datasets show that our
methods outperform previous methods with a large
margin, and suffer the least performance discrep-
ancy between datasets, which indicates both the
effectiveness and stability of our methods.
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